

Full pytest documentation

Download latest version as PDF [https://media.readthedocs.org/pdf/pytest/latest/pytest.pdf]

	Installation and Getting Started
	Install pytest

	Create your first test

	Run multiple tests

	Assert that a certain exception is raised

	Group multiple tests in a class

	Request a unique temporary directory for functional tests

	Continue reading

	Usage and Invocations
	Calling pytest through python -m pytest

	Possible exit codes

	Getting help on version, option names, environment variables

	Stopping after the first (or N) failures

	Specifying tests / selecting tests

	Modifying Python traceback printing

	Detailed summary report

	Dropping to PDB (Python Debugger) on failures

	Dropping to PDB (Python Debugger) at the start of a test

	Setting breakpoints

	Using the builtin breakpoint function

	Profiling test execution duration

	Creating JUnitXML format files

	Creating resultlog format files

	Sending test report to online pastebin service

	Early loading plugins

	Disabling plugins

	Calling pytest from Python code

	Using pytest with an existing test suite
	Running an existing test suite with pytest

	The writing and reporting of assertions in tests
	Asserting with the assert statement

	Assertions about expected exceptions

	Assertions about expected warnings

	Making use of context-sensitive comparisons

	Defining your own explanation for failed assertions

	Assertion introspection details

	pytest fixtures: explicit, modular, scalable
	Fixtures as Function arguments

	Fixtures: a prime example of dependency injection

	conftest.py: sharing fixture functions

	Sharing test data

	Scope: sharing a fixture instance across tests in a class, module or session

	Higher-scoped fixtures are instantiated first

	Fixture finalization / executing teardown code

	Fixtures can introspect the requesting test context

	Factories as fixtures

	Parametrizing fixtures

	Using marks with parametrized fixtures

	Modularity: using fixtures from a fixture function

	Automatic grouping of tests by fixture instances

	Using fixtures from classes, modules or projects

	Autouse fixtures (xUnit setup on steroids)

	Overriding fixtures on various levels

	Marking test functions with attributes
	Registering marks

	Raising errors on unknown marks

	Monkeypatching/mocking modules and environments
	Simple example: monkeypatching functions

	Global patch example: preventing “requests” from remote operations

	Monkeypatching environment variables

	API Reference

	Temporary directories and files
	The tmp_path fixture

	The tmp_path_factory fixture

	The ‘tmpdir’ fixture

	The ‘tmpdir_factory’ fixture

	The default base temporary directory

	Capturing of the stdout/stderr output
	Default stdout/stderr/stdin capturing behaviour

	Setting capturing methods or disabling capturing

	Using print statements for debugging

	Accessing captured output from a test function

	Warnings Capture
	@pytest.mark.filterwarnings

	Disabling warnings summary

	Disabling warning capture entirely

	DeprecationWarning and PendingDeprecationWarning

	Ensuring code triggers a deprecation warning

	Asserting warnings with the warns function

	Recording warnings

	Custom failure messages

	Internal pytest warnings

	Doctest integration for modules and test files
	Encoding

	Using ‘doctest’ options

	Output format

	pytest-specific features

	Skip and xfail: dealing with tests that cannot succeed
	Skipping test functions

	XFail: mark test functions as expected to fail

	Skip/xfail with parametrize

	Parametrizing fixtures and test functions
	@pytest.mark.parametrize: parametrizing test functions

	Basic pytest_generate_tests example

	More examples

	Cache: working with cross-testrun state
	Usage

	Rerunning only failures or failures first

	Behavior when no tests failed in the last run

	The new config.cache object

	Inspecting Cache content

	Clearing Cache content

	Stepwise

	unittest.TestCase Support
	Benefits out of the box

	pytest features in unittest.TestCase subclasses

	Mixing pytest fixtures into unittest.TestCase subclasses using marks

	Using autouse fixtures and accessing other fixtures

	Running tests written for nose
	Usage

	Supported nose Idioms

	Unsupported idioms / known issues

	classic xunit-style setup
	Module level setup/teardown

	Class level setup/teardown

	Method and function level setup/teardown

	Installing and Using plugins
	Requiring/Loading plugins in a test module or conftest file

	Finding out which plugins are active

	Deactivating / unregistering a plugin by name

	Writing plugins
	Plugin discovery order at tool startup

	conftest.py: local per-directory plugins

	Writing your own plugin

	Making your plugin installable by others

	Assertion Rewriting

	Requiring/Loading plugins in a test module or conftest file

	Accessing another plugin by name

	Registering custom markers

	Testing plugins

	Writing hook functions
	hook function validation and execution

	firstresult: stop at first non-None result

	hookwrapper: executing around other hooks

	Hook function ordering / call example

	Declaring new hooks

	Optionally using hooks from 3rd party plugins

	Logging
	caplog fixture

	Live Logs

	Release notes

	Incompatible changes in pytest 3.4

	Reference
	Functions

	Marks

	Fixtures

	Hooks

	Objects

	Special Variables

	Environment Variables

	Configuration Options

	Good Integration Practices
	Install package with pip

	Conventions for Python test discovery

	Choosing a test layout / import rules

	tox

	Integrating with setuptools / python setup.py test / pytest-runner

	Flaky tests
	Why flaky tests are a problem

	Potential root causes

	Pytest features

	Other general strategies

	Research

	Resources

	pytest import mechanisms and sys.path/PYTHONPATH
	Test modules / conftest.py files inside packages

	Standalone test modules / conftest.py files

	Invoking pytest versus python -m pytest

	Configuration
	Command line options and configuration file settings

	Initialization: determining rootdir and inifile

	How to change command line options defaults

	Builtin configuration file options

	Examples and customization tricks
	Demo of Python failure reports with pytest

	Basic patterns and examples

	Parametrizing tests

	Working with custom markers

	A session-fixture which can look at all collected tests

	Changing standard (Python) test discovery

	Working with non-python tests

	Setting up bash completion

	Backwards Compatibility Policy
	Deprecation Roadmap

	Deprecations and Removals
	Deprecated Features

	Removed Features

	Python 2.7 and 3.4 support plan

	Historical Notes
	Marker revamp and iteration

	cache plugin integrated into the core

	funcargs and pytest_funcarg__

	@pytest.yield_fixture decorator

	[pytest] header in setup.cfg

	Applying marks to @pytest.mark.parametrize parameters

	@pytest.mark.parametrize argument names as a tuple

	setup: is now an “autouse fixture”

	Conditions as strings instead of booleans

	pytest.set_trace()

	“compat” properties

	License

	Contribution getting started
	Feature requests and feedback

	Report bugs

	Fix bugs

	Implement features

	Write documentation

	Submitting Plugins to pytest-dev

	Preparing Pull Requests

	Writing Tests

	Joining the Development Team

	Development Guide
	Code Style

	Branches

	Issues

	Release Procedure

	Talks and Tutorials
	Books

	Talks and blog postings

	Project examples
	Some organisations using pytest

	Some Issues and Questions
	On naming, nosetests, licensing and magic

	pytest fixtures, parametrized tests

	pytest interaction with other packages

	Contact channels

	Tidelift
	What is it

	Funds

	Admins

	Release announcements

Installation and Getting Started

Pythons: Python 2.7, 3.4, 3.5, 3.6, 3.7, Jython, PyPy-2.3

Platforms: Unix/Posix and Windows

PyPI package name: pytest [https://pypi.org/project/pytest/]

Documentation as PDF: download latest [https://media.readthedocs.org/pdf/pytest/latest/pytest.pdf]

pytest is a framework that makes building simple and scalable tests easy. Tests are expressive and readable—no boilerplate code required. Get started in minutes with a small unit test or complex functional test for your application or library.

Install pytest

	Run the following command in your command line:

pip install -U pytest

	Check that you installed the correct version:

$ pytest --version
This is pytest version 4.x.y, imported from $PYTHON_PREFIX/lib/python3.7/site-packages/pytest.py

Create your first test

Create a simple test function with just four lines of code:

content of test_sample.py
def func(x):
 return x + 1

def test_answer():
 assert func(3) == 5

That’s it. You can now execute the test function:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_sample.py F [100%]

================================= FAILURES =================================
_______________________________ test_answer ________________________________

 def test_answer():
> assert func(3) == 5
E assert 4 == 5
E + where 4 = func(3)

test_sample.py:5: AssertionError
========================= 1 failed in 0.12 seconds =========================

This test returns a failure report because func(3) does not return 5.

Note

You can use the assert statement to verify test expectations. pytest’s Advanced assertion introspection [http://docs.python.org/reference/simple_stmts.html#the-assert-statement] will intelligently report intermediate values of the assert expression so you can avoid the many names of JUnit legacy methods [http://docs.python.org/library/unittest.html#test-cases].

Run multiple tests

pytest will run all files of the form test_*.py or *_test.py in the current directory and its subdirectories. More generally, it follows standard test discovery rules.

Assert that a certain exception is raised

Use the raises helper to assert that some code raises an exception:

content of test_sysexit.py
import pytest
def f():
 raise SystemExit(1)

def test_mytest():
 with pytest.raises(SystemExit):
 f()

Execute the test function with “quiet” reporting mode:

$ pytest -q test_sysexit.py
. [100%]
1 passed in 0.12 seconds

Group multiple tests in a class

Once you develop multiple tests, you may want to group them into a class. pytest makes it easy to create a class containing more than one test:

content of test_class.py
class TestClass(object):
 def test_one(self):
 x = "this"
 assert 'h' in x

 def test_two(self):
 x = "hello"
 assert hasattr(x, 'check')

pytest discovers all tests following its Conventions for Python test discovery, so it finds both test_ prefixed functions. There is no need to subclass anything. We can simply run the module by passing its filename:

$ pytest -q test_class.py
.F [100%]
================================= FAILURES =================================
____________________________ TestClass.test_two ____________________________

self = <test_class.TestClass object at 0xdeadbeef>

 def test_two(self):
 x = "hello"
> assert hasattr(x, 'check')
E AssertionError: assert False
E + where False = hasattr('hello', 'check')

test_class.py:8: AssertionError
1 failed, 1 passed in 0.12 seconds

The first test passed and the second failed. You can easily see the intermediate values in the assertion to help you understand the reason for the failure.

Request a unique temporary directory for functional tests

pytest provides Builtin fixtures/function arguments [https://docs.pytest.org/en/latest/builtin.html#builtinfixtures] to request arbitrary resources, like a unique temporary directory:

content of test_tmpdir.py
def test_needsfiles(tmpdir):
 print(tmpdir)
 assert 0

List the name tmpdir in the test function signature and pytest will lookup and call a fixture factory to create the resource before performing the test function call. Before the test runs, pytest creates a unique-per-test-invocation temporary directory:

$ pytest -q test_tmpdir.py
F [100%]
================================= FAILURES =================================
_____________________________ test_needsfiles ______________________________

tmpdir = local('PYTEST_TMPDIR/test_needsfiles0')

 def test_needsfiles(tmpdir):
 print(tmpdir)
> assert 0
E assert 0

test_tmpdir.py:3: AssertionError
--------------------------- Captured stdout call ---------------------------
PYTEST_TMPDIR/test_needsfiles0
1 failed in 0.12 seconds

More info on tmpdir handling is available at Temporary directories and files.

Find out what kind of builtin pytest fixtures exist with the command:

pytest --fixtures # shows builtin and custom fixtures

Note that this command omits fixtures with leading _ unless the -v option is added.

Continue reading

Check out additional pytest resources to help you customize tests for your unique workflow:

	“Calling pytest through python -m pytest” for command line invocation examples

	“Using pytest with an existing test suite” for working with pre-existing tests

	“Marking test functions with attributes” for information on the pytest.mark mechanism

	“pytest fixtures: explicit, modular, scalable” for providing a functional baseline to your tests

	“Writing plugins” for managing and writing plugins

	“Good Integration Practices” for virtualenv and test layouts

Usage and Invocations

Calling pytest through python -m pytest

You can invoke testing through the Python interpreter from the command line:

python -m pytest [...]

This is almost equivalent to invoking the command line script pytest [...]
directly, except that calling via python will also add the current directory to sys.path.

Possible exit codes

Running pytest can result in six different exit codes:

	Exit code 0

	All tests were collected and passed successfully

	Exit code 1

	Tests were collected and run but some of the tests failed

	Exit code 2

	Test execution was interrupted by the user

	Exit code 3

	Internal error happened while executing tests

	Exit code 4

	pytest command line usage error

	Exit code 5

	No tests were collected

Getting help on version, option names, environment variables

pytest --version # shows where pytest was imported from
pytest --fixtures # show available builtin function arguments
pytest -h | --help # show help on command line and config file options

Stopping after the first (or N) failures

To stop the testing process after the first (N) failures:

pytest -x # stop after first failure
pytest --maxfail=2 # stop after two failures

Specifying tests / selecting tests

Pytest supports several ways to run and select tests from the command-line.

Run tests in a module

pytest test_mod.py

Run tests in a directory

pytest testing/

Run tests by keyword expressions

pytest -k "MyClass and not method"

This will run tests which contain names that match the given string expression, which can
include Python operators that use filenames, class names and function names as variables.
The example above will run TestMyClass.test_something but not TestMyClass.test_method_simple.

Run tests by node ids

Each collected test is assigned a unique nodeid which consist of the module filename followed
by specifiers like class names, function names and parameters from parametrization, separated by :: characters.

To run a specific test within a module:

pytest test_mod.py::test_func

Another example specifying a test method in the command line:

pytest test_mod.py::TestClass::test_method

Run tests by marker expressions

pytest -m slow

Will run all tests which are decorated with the @pytest.mark.slow decorator.

For more information see marks.

Run tests from packages

pytest --pyargs pkg.testing

This will import pkg.testing and use its filesystem location to find and run tests from.

Modifying Python traceback printing

Examples for modifying traceback printing:

pytest --showlocals # show local variables in tracebacks
pytest -l # show local variables (shortcut)

pytest --tb=auto # (default) 'long' tracebacks for the first and last
 # entry, but 'short' style for the other entries
pytest --tb=long # exhaustive, informative traceback formatting
pytest --tb=short # shorter traceback format
pytest --tb=line # only one line per failure
pytest --tb=native # Python standard library formatting
pytest --tb=no # no traceback at all

The --full-trace causes very long traces to be printed on error (longer
than --tb=long). It also ensures that a stack trace is printed on
KeyboardInterrupt (Ctrl+C).
This is very useful if the tests are taking too long and you interrupt them
with Ctrl+C to find out where the tests are hanging. By default no output
will be shown (because KeyboardInterrupt is caught by pytest). By using this
option you make sure a trace is shown.

Detailed summary report

The -r flag can be used to display a “short test summary info” at the end of the test session,
making it easy in large test suites to get a clear picture of all failures, skips, xfails, etc.

Example:

content of test_example.py
import pytest

@pytest.fixture
def error_fixture():
 assert 0

def test_ok():
 print("ok")

def test_fail():
 assert 0

def test_error(error_fixture):
 pass

def test_skip():
 pytest.skip("skipping this test")

def test_xfail():
 pytest.xfail("xfailing this test")

@pytest.mark.xfail(reason="always xfail")
def test_xpass():
 pass

$ pytest -ra
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 6 items

test_example.py .FEsxX [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

 @pytest.fixture
 def error_fixture():
> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

 def test_fail():
> assert 0
E assert 0

test_example.py:14: AssertionError
========================= short test summary info ==========================
SKIPPED [1] $REGENDOC_TMPDIR/test_example.py:23: skipping this test
XFAIL test_example.py::test_xfail
 reason: xfailing this test
XPASS test_example.py::test_xpass always xfail
ERROR test_example.py::test_error - assert 0
FAILED test_example.py::test_fail - assert 0
= 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.12 seconds =

The -r options accepts a number of characters after it, with a used
above meaning “all except passes”.

Here is the full list of available characters that can be used:

	f - failed

	E - error

	s - skipped

	x - xfailed

	X - xpassed

	p - passed

	P - passed with output

	a - all except pP

	A - all

More than one character can be used, so for example to only see failed and skipped tests, you can execute:

$ pytest -rfs
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 6 items

test_example.py .FEsxX [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

 @pytest.fixture
 def error_fixture():
> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

 def test_fail():
> assert 0
E assert 0

test_example.py:14: AssertionError
========================= short test summary info ==========================
FAILED test_example.py::test_fail - assert 0
SKIPPED [1] $REGENDOC_TMPDIR/test_example.py:23: skipping this test
= 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.12 seconds =

Using p lists the passing tests, whilst P adds an extra section “PASSES” with those tests that passed but had
captured output:

$ pytest -rpP
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 6 items

test_example.py .FEsxX [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

 @pytest.fixture
 def error_fixture():
> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

 def test_fail():
> assert 0
E assert 0

test_example.py:14: AssertionError
================================== PASSES ==================================
_________________________________ test_ok __________________________________
--------------------------- Captured stdout call ---------------------------
ok
========================= short test summary info ==========================
PASSED test_example.py::test_ok
= 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.12 seconds =

Dropping to PDB [http://docs.python.org/library/pdb.html] (Python Debugger) on failures

Python comes with a builtin Python debugger called PDB [http://docs.python.org/library/pdb.html]. pytest
allows one to drop into the PDB [http://docs.python.org/library/pdb.html] prompt via a command line option:

pytest --pdb

This will invoke the Python debugger on every failure (or KeyboardInterrupt).
Often you might only want to do this for the first failing test to understand
a certain failure situation:

pytest -x --pdb # drop to PDB on first failure, then end test session
pytest --pdb --maxfail=3 # drop to PDB for first three failures

Note that on any failure the exception information is stored on
sys.last_value, sys.last_type and sys.last_traceback. In
interactive use, this allows one to drop into postmortem debugging with
any debug tool. One can also manually access the exception information,
for example:

>>> import sys
>>> sys.last_traceback.tb_lineno
42
>>> sys.last_value
AssertionError('assert result == "ok"',)

Dropping to PDB [http://docs.python.org/library/pdb.html] (Python Debugger) at the start of a test

pytest allows one to drop into the PDB [http://docs.python.org/library/pdb.html] prompt immediately at the start of each test via a command line option:

pytest --trace

This will invoke the Python debugger at the start of every test.

Setting breakpoints

To set a breakpoint in your code use the native Python import pdb;pdb.set_trace() call
in your code and pytest automatically disables its output capture for that test:

	Output capture in other tests is not affected.

	Any prior test output that has already been captured and will be processed as
such.

	Output capture gets resumed when ending the debugger session (via the
continue command).

Using the builtin breakpoint function

Python 3.7 introduces a builtin breakpoint() function.
Pytest supports the use of breakpoint() with the following behaviours:

	When breakpoint() is called and PYTHONBREAKPOINT is set to the default value, pytest will use the custom internal PDB trace UI instead of the system default Pdb.

	When tests are complete, the system will default back to the system Pdb trace UI.

	With --pdb passed to pytest, the custom internal Pdb trace UI is used with both breakpoint() and failed tests/unhandled exceptions.

	--pdbcls can be used to specify a custom debugger class.

Profiling test execution duration

To get a list of the slowest 10 test durations:

pytest --durations=10

By default, pytest will not show test durations that are too small (<0.01s) unless -vv is passed on the command-line.

Creating JUnitXML format files

To create result files which can be read by Jenkins [http://jenkins-ci.org/] or other Continuous
integration servers, use this invocation:

pytest --junitxml=path

to create an XML file at path.

To set the name of the root test suite xml item, you can configure the junit_suite_name option in your config file:

[pytest]
junit_suite_name = my_suite

New in version 4.0.

JUnit XML specification seems to indicate that "time" attribute
should report total test execution times, including setup and teardown
(1 [http://windyroad.com.au/dl/Open%20Source/JUnit.xsd], 2 [https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_14.1.0/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_useresults_junit.html]).
It is the default pytest behavior. To report just call durations
instead, configure the junit_duration_report option like this:

[pytest]
junit_duration_report = call

record_property

If you want to log additional information for a test, you can use the
record_property fixture:

def test_function(record_property):
 record_property("example_key", 1)
 assert True

This will add an extra property example_key="1" to the generated
testcase tag:

<testcase classname="test_function" file="test_function.py" line="0" name="test_function" time="0.0009">
 <properties>
 <property name="example_key" value="1" />
 </properties>
</testcase>

Alternatively, you can integrate this functionality with custom markers:

content of conftest.py

def pytest_collection_modifyitems(session, config, items):
 for item in items:
 for marker in item.iter_markers(name="test_id"):
 test_id = marker.args[0]
 item.user_properties.append(("test_id", test_id))

And in your tests:

content of test_function.py
import pytest

@pytest.mark.test_id(1501)
def test_function():
 assert True

Will result in:

<testcase classname="test_function" file="test_function.py" line="0" name="test_function" time="0.0009">
 <properties>
 <property name="test_id" value="1501" />
 </properties>
</testcase>

Warning

Please note that using this feature will break schema verifications for the latest JUnitXML schema.
This might be a problem when used with some CI servers.

record_xml_attribute

To add an additional xml attribute to a testcase element, you can use
record_xml_attribute fixture. This can also be used to override existing values:

def test_function(record_xml_attribute):
 record_xml_attribute("assertions", "REQ-1234")
 record_xml_attribute("classname", "custom_classname")
 print("hello world")
 assert True

Unlike record_property, this will not add a new child element.
Instead, this will add an attribute assertions="REQ-1234" inside the generated
testcase tag and override the default classname with "classname=custom_classname":

<testcase classname="custom_classname" file="test_function.py" line="0" name="test_function" time="0.003" assertions="REQ-1234">
 <system-out>
 hello world
 </system-out>
</testcase>

Warning

record_xml_attribute is an experimental feature, and its interface might be replaced
by something more powerful and general in future versions. The
functionality per-se will be kept, however.

Using this over record_xml_property can help when using ci tools to parse the xml report.
However, some parsers are quite strict about the elements and attributes that are allowed.
Many tools use an xsd schema (like the example below) to validate incoming xml.
Make sure you are using attribute names that are allowed by your parser.

Below is the Scheme used by Jenkins to validate the XML report:

<xs:element name="testcase">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="skipped" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="error" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="failure" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="system-out" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="system-err" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="assertions" type="xs:string" use="optional"/>
 <xs:attribute name="time" type="xs:string" use="optional"/>
 <xs:attribute name="classname" type="xs:string" use="optional"/>
 <xs:attribute name="status" type="xs:string" use="optional"/>
 </xs:complexType>
</xs:element>

Warning

Please note that using this feature will break schema verifications for the latest JUnitXML schema.
This might be a problem when used with some CI servers.

record_testsuite_property

New in version 4.5.

If you want to add a properties node at the test-suite level, which may contains properties
that are relevant to all tests, you can use the record_testsuite_property session-scoped fixture:

The record_testsuite_property session-scoped fixture can be used to add properties relevant
to all tests.

import pytest

@pytest.fixture(scope="session", autouse=True)
def log_global_env_facts(record_testsuite_property):
 record_testsuite_property("ARCH", "PPC")
 record_testsuite_property("STORAGE_TYPE", "CEPH")

class TestMe(object):
 def test_foo(self):
 assert True

The fixture is a callable which receives name and value of a <property> tag
added at the test-suite level of the generated xml:

<testsuite errors="0" failures="0" name="pytest" skipped="0" tests="1" time="0.006">
 <properties>
 <property name="ARCH" value="PPC"/>
 <property name="STORAGE_TYPE" value="CEPH"/>
 </properties>
 <testcase classname="test_me.TestMe" file="test_me.py" line="16" name="test_foo" time="0.000243663787842"/>
</testsuite>

name must be a string, value will be converted to a string and properly xml-escaped.

The generated XML is compatible with the latest xunit standard, contrary to record_property
and record_xml_attribute.

Creating resultlog format files

This option is rarely used and is scheduled for removal in 5.0.

See the deprecation docs [https://docs.pytest.org/en/latest/deprecations.html#result-log-result-log]
for more information.

To create plain-text machine-readable result files you can issue:

pytest --resultlog=path

and look at the content at the path location. Such files are used e.g.
by the PyPy-test [http://buildbot.pypy.org/summary] web page to show test results over several revisions.

Sending test report to online pastebin service

Creating a URL for each test failure:

pytest --pastebin=failed

This will submit test run information to a remote Paste service and
provide a URL for each failure. You may select tests as usual or add
for example -x if you only want to send one particular failure.

Creating a URL for a whole test session log:

pytest --pastebin=all

Currently only pasting to the http://bpaste.net service is implemented.

Early loading plugins

You can early-load plugins (internal and external) explicitly in the command-line with the -p option:

pytest -p mypluginmodule

The option receives a name parameter, which can be:

	A full module dotted name, for example myproject.plugins. This dotted name must be importable.

	The entry-point name of a plugin. This is the name passed to setuptools when the plugin is
registered. For example to early-load the pytest-cov [https://pypi.org/project/pytest-cov/] plugin you can use:

pytest -p pytest_cov

Disabling plugins

To disable loading specific plugins at invocation time, use the -p option
together with the prefix no:.

Example: to disable loading the plugin doctest, which is responsible for
executing doctest tests from text files, invoke pytest like this:

pytest -p no:doctest

Calling pytest from Python code

You can invoke pytest from Python code directly:

pytest.main()

this acts as if you would call “pytest” from the command line.
It will not raise SystemExit but return the exitcode instead.
You can pass in options and arguments:

pytest.main(['-x', 'mytestdir'])

You can specify additional plugins to pytest.main:

content of myinvoke.py
import pytest
class MyPlugin(object):
 def pytest_sessionfinish(self):
 print("*** test run reporting finishing")

pytest.main(["-qq"], plugins=[MyPlugin()])

Running it will show that MyPlugin was added and its
hook was invoked:

$ python myinvoke.py
.FEsxX. [100%]*** test run reporting finishing

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

 @pytest.fixture
 def error_fixture():
> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

 def test_fail():
> assert 0
E assert 0

test_example.py:14: AssertionError

Note

Calling pytest.main() will result in importing your tests and any modules
that they import. Due to the caching mechanism of python’s import system,
making subsequent calls to pytest.main() from the same process will not
reflect changes to those files between the calls. For this reason, making
multiple calls to pytest.main() from the same process (in order to re-run
tests, for example) is not recommended.

Using pytest with an existing test suite

Pytest can be used with most existing test suites, but its
behavior differs from other test runners such as nose or
Python’s default unittest framework.

Before using this section you will want to install pytest.

Running an existing test suite with pytest

Say you want to contribute to an existing repository somewhere.
After pulling the code into your development space using some
flavor of version control and (optionally) setting up a virtualenv
you will want to run:

cd <repository>
pip install -e . # Environment dependent alternatives include
 # 'python setup.py develop' and 'conda develop'

in your project root. This will set up a symlink to your code in
site-packages, allowing you to edit your code while your tests
run against it as if it were installed.

Setting up your project in development mode lets you avoid having to
reinstall every time you want to run your tests, and is less brittle than
mucking about with sys.path to point your tests at local code.

Also consider using tox.

The writing and reporting of assertions in tests

Asserting with the assert statement

pytest allows you to use the standard python assert for verifying
expectations and values in Python tests. For example, you can write the
following:

content of test_assert1.py
def f():
 return 3

def test_function():
 assert f() == 4

to assert that your function returns a certain value. If this assertion fails
you will see the return value of the function call:

$ pytest test_assert1.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_assert1.py F [100%]

================================= FAILURES =================================
______________________________ test_function _______________________________

 def test_function():
> assert f() == 4
E assert 3 == 4
E + where 3 = f()

test_assert1.py:6: AssertionError
========================= 1 failed in 0.12 seconds =========================

pytest has support for showing the values of the most common subexpressions
including calls, attributes, comparisons, and binary and unary
operators. (See Demo of Python failure reports with pytest). This allows you to use the
idiomatic python constructs without boilerplate code while not losing
introspection information.

However, if you specify a message with the assertion like this:

assert a % 2 == 0, "value was odd, should be even"

then no assertion introspection takes places at all and the message
will be simply shown in the traceback.

See Assertion introspection details for more information on assertion introspection.

Assertions about expected exceptions

In order to write assertions about raised exceptions, you can use
pytest.raises as a context manager like this:

import pytest

def test_zero_division():
 with pytest.raises(ZeroDivisionError):
 1 / 0

and if you need to have access to the actual exception info you may use:

def test_recursion_depth():
 with pytest.raises(RuntimeError) as excinfo:

 def f():
 f()

 f()
 assert "maximum recursion" in str(excinfo.value)

excinfo is a ExceptionInfo instance, which is a wrapper around
the actual exception raised. The main attributes of interest are
.type, .value and .traceback.

You can pass a match keyword parameter to the context-manager to test
that a regular expression matches on the string representation of an exception
(similar to the TestCase.assertRaisesRegexp method from unittest):

import pytest

def myfunc():
 raise ValueError("Exception 123 raised")

def test_match():
 with pytest.raises(ValueError, match=r".* 123 .*"):
 myfunc()

The regexp parameter of the match method is matched with the re.search
function, so in the above example match='123' would have worked as
well.

There’s an alternate form of the pytest.raises function where you pass
a function that will be executed with the given *args and **kwargs and
assert that the given exception is raised:

pytest.raises(ExpectedException, func, *args, **kwargs)

The reporter will provide you with helpful output in case of failures such as no
exception or wrong exception.

Note that it is also possible to specify a “raises” argument to
pytest.mark.xfail, which checks that the test is failing in a more
specific way than just having any exception raised:

@pytest.mark.xfail(raises=IndexError)
def test_f():
 f()

Using pytest.raises is likely to be better for cases where you are testing
exceptions your own code is deliberately raising, whereas using
@pytest.mark.xfail with a check function is probably better for something
like documenting unfixed bugs (where the test describes what “should” happen)
or bugs in dependencies.

Assertions about expected warnings

You can check that code raises a particular warning using
pytest.warns.

Making use of context-sensitive comparisons

pytest has rich support for providing context-sensitive information
when it encounters comparisons. For example:

content of test_assert2.py

def test_set_comparison():
 set1 = set("1308")
 set2 = set("8035")
 assert set1 == set2

if you run this module:

$ pytest test_assert2.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_assert2.py F [100%]

================================= FAILURES =================================
___________________________ test_set_comparison ____________________________

 def test_set_comparison():
 set1 = set("1308")
 set2 = set("8035")
> assert set1 == set2
E AssertionError: assert {'0', '1', '3', '8'} == {'0', '3', '5', '8'}
E Extra items in the left set:
E '1'
E Extra items in the right set:
E '5'
E Use -v to get the full diff

test_assert2.py:6: AssertionError
========================= 1 failed in 0.12 seconds =========================

Special comparisons are done for a number of cases:

	comparing long strings: a context diff is shown

	comparing long sequences: first failing indices

	comparing dicts: different entries

See the reporting demo for many more examples.

Defining your own explanation for failed assertions

It is possible to add your own detailed explanations by implementing
the pytest_assertrepr_compare hook.

	
pytest_assertrepr_compare(config, op, left, right)[source]

	return explanation for comparisons in failing assert expressions.

Return None for no custom explanation, otherwise return a list
of strings. The strings will be joined by newlines but any newlines
in a string will be escaped. Note that all but the first line will
be indented slightly, the intention is for the first line to be a summary.

	Parameters

	config (_pytest.config.Config) – pytest config object

As an example consider adding the following hook in a conftest.py
file which provides an alternative explanation for Foo objects:

content of conftest.py
from test_foocompare import Foo

def pytest_assertrepr_compare(op, left, right):
 if isinstance(left, Foo) and isinstance(right, Foo) and op == "==":
 return ["Comparing Foo instances:", " vals: %s != %s" % (left.val, right.val)]

now, given this test module:

content of test_foocompare.py
class Foo(object):
 def __init__(self, val):
 self.val = val

 def __eq__(self, other):
 return self.val == other.val

def test_compare():
 f1 = Foo(1)
 f2 = Foo(2)
 assert f1 == f2

you can run the test module and get the custom output defined in
the conftest file:

$ pytest -q test_foocompare.py
F [100%]
================================= FAILURES =================================
_______________________________ test_compare _______________________________

 def test_compare():
 f1 = Foo(1)
 f2 = Foo(2)
> assert f1 == f2
E assert Comparing Foo instances:
E vals: 1 != 2

test_foocompare.py:12: AssertionError
1 failed in 0.12 seconds

Assertion introspection details

Reporting details about a failing assertion is achieved by rewriting assert
statements before they are run. Rewritten assert statements put introspection
information into the assertion failure message. pytest only rewrites test
modules directly discovered by its test collection process, so asserts in
supporting modules which are not themselves test modules will not be rewritten.

You can manually enable assertion rewriting for an imported module by calling
register_assert_rewrite [https://docs.pytest.org/en/latest/writing_plugins.html#assertion-rewriting]
before you import it (a good place to do that is in your root conftest.py).

For further information, Benjamin Peterson wrote up Behind the scenes of pytest’s new assertion rewriting [http://pybites.blogspot.com/2011/07/behind-scenes-of-pytests-new-assertion.html].

Assertion rewriting caches files on disk

pytest will write back the rewritten modules to disk for caching. You can disable
this behavior (for example to avoid leaving stale .pyc files around in projects that
move files around a lot) by adding this to the top of your conftest.py file:

import sys

sys.dont_write_bytecode = True

Note that you still get the benefits of assertion introspection, the only change is that
the .pyc files won’t be cached on disk.

Additionally, rewriting will silently skip caching if it cannot write new .pyc files,
i.e. in a read-only filesystem or a zipfile.

Disabling assert rewriting

pytest rewrites test modules on import by using an import
hook to write new pyc files. Most of the time this works transparently.
However, if you are working with the import machinery yourself, the import hook may
interfere.

If this is the case you have two options:

	Disable rewriting for a specific module by adding the string
PYTEST_DONT_REWRITE to its docstring.

	Disable rewriting for all modules by using --assert=plain.

Add assert rewriting as an alternate introspection technique.

Introduce the --assert option. Deprecate --no-assert and
--nomagic.

Removes the --no-assert and --nomagic options.
Removes the --assert=reinterp option.

pytest fixtures: explicit, modular, scalable

The purpose of test fixtures [http://en.wikipedia.org/wiki/Test_fixture#Software] is to provide a fixed baseline
upon which tests can reliably and repeatedly execute. pytest fixtures
offer dramatic improvements over the classic xUnit style of setup/teardown
functions:

	fixtures have explicit names and are activated by declaring their use
from test functions, modules, classes or whole projects.

	fixtures are implemented in a modular manner, as each fixture name
triggers a fixture function which can itself use other fixtures.

	fixture management scales from simple unit to complex
functional testing, allowing to parametrize fixtures and tests according
to configuration and component options, or to re-use fixtures
across function, class, module or whole test session scopes.

In addition, pytest continues to support classic xunit-style setup. You can mix
both styles, moving incrementally from classic to new style, as you
prefer. You can also start out from existing unittest.TestCase
style or nose based projects.

Fixtures as Function arguments

Test functions can receive fixture objects by naming them as an input
argument. For each argument name, a fixture function with that name provides
the fixture object. Fixture functions are registered by marking them with
@pytest.fixture. Let’s look at a simple
self-contained test module containing a fixture and a test function
using it:

content of ./test_smtpsimple.py
import pytest

@pytest.fixture
def smtp_connection():
 import smtplib
 return smtplib.SMTP("smtp.gmail.com", 587, timeout=5)

def test_ehlo(smtp_connection):
 response, msg = smtp_connection.ehlo()
 assert response == 250
 assert 0 # for demo purposes

Here, the test_ehlo needs the smtp_connection fixture value. pytest
will discover and call the @pytest.fixture
marked smtp_connection fixture function. Running the test looks like this:

$ pytest test_smtpsimple.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_smtpsimple.py F [100%]

================================= FAILURES =================================
________________________________ test_ehlo _________________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

 def test_ehlo(smtp_connection):
 response, msg = smtp_connection.ehlo()
 assert response == 250
> assert 0 # for demo purposes
E assert 0

test_smtpsimple.py:11: AssertionError
========================= 1 failed in 0.12 seconds =========================

In the failure traceback we see that the test function was called with a
smtp_connection argument, the smtplib.SMTP() instance created by the fixture
function. The test function fails on our deliberate assert 0. Here is
the exact protocol used by pytest to call the test function this way:

	pytest finds the test_ehlo because
of the test_ prefix. The test function needs a function argument
named smtp_connection. A matching fixture function is discovered by
looking for a fixture-marked function named smtp_connection.

	smtp_connection() is called to create an instance.

	test_ehlo(<smtp_connection instance>) is called and fails in the last
line of the test function.

Note that if you misspell a function argument or want
to use one that isn’t available, you’ll see an error
with a list of available function arguments.

Note

You can always issue:

pytest --fixtures test_simplefactory.py

to see available fixtures (fixtures with leading _ are only shown if you add the -v option).

Fixtures: a prime example of dependency injection

Fixtures allow test functions to easily receive and work
against specific pre-initialized application objects without having
to care about import/setup/cleanup details.
It’s a prime example of dependency injection [http://en.wikipedia.org/wiki/Dependency_injection] where fixture
functions take the role of the injector and test functions are the
consumers of fixture objects.

conftest.py: sharing fixture functions

If during implementing your tests you realize that you
want to use a fixture function from multiple test files you can move it
to a conftest.py file.
You don’t need to import the fixture you want to use in a test, it
automatically gets discovered by pytest. The discovery of
fixture functions starts at test classes, then test modules, then
conftest.py files and finally builtin and third party plugins.

You can also use the conftest.py file to implement
local per-directory plugins.

Sharing test data

If you want to make test data from files available to your tests, a good way
to do this is by loading these data in a fixture for use by your tests.
This makes use of the automatic caching mechanisms of pytest.

Another good approach is by adding the data files in the tests folder.
There are also community plugins available to help managing this aspect of
testing, e.g. pytest-datadir [https://pypi.org/project/pytest-datadir/]
and pytest-datafiles [https://pypi.org/project/pytest-datafiles/].

Scope: sharing a fixture instance across tests in a class, module or session

Fixtures requiring network access depend on connectivity and are
usually time-expensive to create. Extending the previous example, we
can add a scope="module" parameter to the
@pytest.fixture invocation
to cause the decorated smtp_connection fixture function to only be invoked
once per test module (the default is to invoke once per test function).
Multiple test functions in a test module will thus
each receive the same smtp_connection fixture instance, thus saving time.
Possible values for scope are: function, class, module, package or session.

The next example puts the fixture function into a separate conftest.py file
so that tests from multiple test modules in the directory can
access the fixture function:

content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module")
def smtp_connection():
 return smtplib.SMTP("smtp.gmail.com", 587, timeout=5)

The name of the fixture again is smtp_connection and you can access its
result by listing the name smtp_connection as an input parameter in any
test or fixture function (in or below the directory where conftest.py is
located):

content of test_module.py

def test_ehlo(smtp_connection):
 response, msg = smtp_connection.ehlo()
 assert response == 250
 assert b"smtp.gmail.com" in msg
 assert 0 # for demo purposes

def test_noop(smtp_connection):
 response, msg = smtp_connection.noop()
 assert response == 250
 assert 0 # for demo purposes

We deliberately insert failing assert 0 statements in order to
inspect what is going on and can now run the tests:

$ pytest test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py FF [100%]

================================= FAILURES =================================
________________________________ test_ehlo _________________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

 def test_ehlo(smtp_connection):
 response, msg = smtp_connection.ehlo()
 assert response == 250
 assert b"smtp.gmail.com" in msg
> assert 0 # for demo purposes
E assert 0

test_module.py:6: AssertionError
________________________________ test_noop _________________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

 def test_noop(smtp_connection):
 response, msg = smtp_connection.noop()
 assert response == 250
> assert 0 # for demo purposes
E assert 0

test_module.py:11: AssertionError
========================= 2 failed in 0.12 seconds =========================

You see the two assert 0 failing and more importantly you can also see
that the same (module-scoped) smtp_connection object was passed into the
two test functions because pytest shows the incoming argument values in the
traceback. As a result, the two test functions using smtp_connection run
as quick as a single one because they reuse the same instance.

If you decide that you rather want to have a session-scoped smtp_connection
instance, you can simply declare it:

@pytest.fixture(scope="session")
def smtp_connection():
 # the returned fixture value will be shared for
 # all tests needing it
 ...

Finally, the class scope will invoke the fixture once per test class.

Note

Pytest will only cache one instance of a fixture at a time.
This means that when using a parametrized fixture, pytest may invoke a fixture more than once in the given scope.

package scope (experimental)

In pytest 3.7 the package scope has been introduced. Package-scoped fixtures
are finalized when the last test of a package finishes.

Warning

This functionality is considered experimental and may be removed in future
versions if hidden corner-cases or serious problems with this functionality
are discovered after it gets more usage in the wild.

Use this new feature sparingly and please make sure to report any issues you find.

Higher-scoped fixtures are instantiated first

Within a function request for features, fixture of higher-scopes (such as session) are instantiated first than
lower-scoped fixtures (such as function or class). The relative order of fixtures of same scope follows
the declared order in the test function and honours dependencies between fixtures.

Consider the code below:

@pytest.fixture(scope="session")
def s1():
 pass

@pytest.fixture(scope="module")
def m1():
 pass

@pytest.fixture
def f1(tmpdir):
 pass

@pytest.fixture
def f2():
 pass

def test_foo(f1, m1, f2, s1):
 ...

The fixtures requested by test_foo will be instantiated in the following order:

	s1: is the highest-scoped fixture (session).

	m1: is the second highest-scoped fixture (module).

	tmpdir: is a function-scoped fixture, required by f1: it needs to be instantiated at this point
because it is a dependency of f1.

	f1: is the first function-scoped fixture in test_foo parameter list.

	f2: is the last function-scoped fixture in test_foo parameter list.

Fixture finalization / executing teardown code

pytest supports execution of fixture specific finalization code
when the fixture goes out of scope. By using a yield statement instead of return, all
the code after the yield statement serves as the teardown code:

content of conftest.py

import smtplib
import pytest

@pytest.fixture(scope="module")
def smtp_connection():
 smtp_connection = smtplib.SMTP("smtp.gmail.com", 587, timeout=5)
 yield smtp_connection # provide the fixture value
 print("teardown smtp")
 smtp_connection.close()

The print and smtp.close() statements will execute when the last test in
the module has finished execution, regardless of the exception status of the
tests.

Let’s execute it:

$ pytest -s -q --tb=no
FFteardown smtp

2 failed in 0.12 seconds

We see that the smtp_connection instance is finalized after the two
tests finished execution. Note that if we decorated our fixture
function with scope='function' then fixture setup and cleanup would
occur around each single test. In either case the test
module itself does not need to change or know about these details
of fixture setup.

Note that we can also seamlessly use the yield syntax with with statements:

content of test_yield2.py

import smtplib
import pytest

@pytest.fixture(scope="module")
def smtp_connection():
 with smtplib.SMTP("smtp.gmail.com", 587, timeout=5) as smtp_connection:
 yield smtp_connection # provide the fixture value

The smtp_connection connection will be closed after the test finished
execution because the smtp_connection object automatically closes when
the with statement ends.

Note that if an exception happens during the setup code (before the yield keyword), the
teardown code (after the yield) will not be called.

An alternative option for executing teardown code is to
make use of the addfinalizer method of the request-context object to register
finalization functions.

Here’s the smtp_connection fixture changed to use addfinalizer for cleanup:

content of conftest.py
import smtplib
import pytest

@pytest.fixture(scope="module")
def smtp_connection(request):
 smtp_connection = smtplib.SMTP("smtp.gmail.com", 587, timeout=5)

 def fin():
 print("teardown smtp_connection")
 smtp_connection.close()

 request.addfinalizer(fin)
 return smtp_connection # provide the fixture value

Both yield and addfinalizer methods work similarly by calling their code after the test
ends, but addfinalizer has two key differences over yield:

	It is possible to register multiple finalizer functions.

	Finalizers will always be called regardless if the fixture setup code raises an exception.
This is handy to properly close all resources created by a fixture even if one of them
fails to be created/acquired:

@pytest.fixture
def equipments(request):
 r = []
 for port in ('C1', 'C3', 'C28'):
 equip = connect(port)
 request.addfinalizer(equip.disconnect)
 r.append(equip)
 return r

In the example above, if "C28" fails with an exception, "C1" and "C3" will still
be properly closed. Of course, if an exception happens before the finalize function is
registered then it will not be executed.

Fixtures can introspect the requesting test context

Fixture functions can accept the request object
to introspect the “requesting” test function, class or module context.
Further extending the previous smtp_connection fixture example, let’s
read an optional server URL from the test module which uses our fixture:

content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module")
def smtp_connection(request):
 server = getattr(request.module, "smtpserver", "smtp.gmail.com")
 smtp_connection = smtplib.SMTP(server, 587, timeout=5)
 yield smtp_connection
 print("finalizing %s (%s)" % (smtp_connection, server))
 smtp_connection.close()

We use the request.module attribute to optionally obtain an
smtpserver attribute from the test module. If we just execute
again, nothing much has changed:

$ pytest -s -q --tb=no
FFfinalizing <smtplib.SMTP object at 0xdeadbeef> (smtp.gmail.com)

2 failed in 0.12 seconds

Let’s quickly create another test module that actually sets the
server URL in its module namespace:

content of test_anothersmtp.py

smtpserver = "mail.python.org" # will be read by smtp fixture

def test_showhelo(smtp_connection):
 assert 0, smtp_connection.helo()

Running it:

$ pytest -qq --tb=short test_anothersmtp.py
F [100%]
================================= FAILURES =================================
______________________________ test_showhelo _______________________________
test_anothersmtp.py:5: in test_showhelo
 assert 0, smtp_connection.helo()
E AssertionError: (250, b'mail.python.org')
E assert 0
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef> (mail.python.org)

voila! The smtp_connection fixture function picked up our mail server name
from the module namespace.

Factories as fixtures

The “factory as fixture” pattern can help in situations where the result
of a fixture is needed multiple times in a single test. Instead of returning
data directly, the fixture instead returns a function which generates the data.
This function can then be called multiple times in the test.

Factories can have have parameters as needed:

@pytest.fixture
def make_customer_record():

 def _make_customer_record(name):
 return {
 "name": name,
 "orders": []
 }

 return _make_customer_record

def test_customer_records(make_customer_record):
 customer_1 = make_customer_record("Lisa")
 customer_2 = make_customer_record("Mike")
 customer_3 = make_customer_record("Meredith")

If the data created by the factory requires managing, the fixture can take care of that:

@pytest.fixture
def make_customer_record():

 created_records = []

 def _make_customer_record(name):
 record = models.Customer(name=name, orders=[])
 created_records.append(record)
 return record

 yield _make_customer_record

 for record in created_records:
 record.destroy()

def test_customer_records(make_customer_record):
 customer_1 = make_customer_record("Lisa")
 customer_2 = make_customer_record("Mike")
 customer_3 = make_customer_record("Meredith")

Parametrizing fixtures

Fixture functions can be parametrized in which case they will be called
multiple times, each time executing the set of dependent tests, i. e. the
tests that depend on this fixture. Test functions usually do not need
to be aware of their re-running. Fixture parametrization helps to
write exhaustive functional tests for components which themselves can be
configured in multiple ways.

Extending the previous example, we can flag the fixture to create two
smtp_connection fixture instances which will cause all tests using the fixture
to run twice. The fixture function gets access to each parameter
through the special request object:

content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module",
 params=["smtp.gmail.com", "mail.python.org"])
def smtp_connection(request):
 smtp_connection = smtplib.SMTP(request.param, 587, timeout=5)
 yield smtp_connection
 print("finalizing %s" % smtp_connection)
 smtp_connection.close()

The main change is the declaration of params with
@pytest.fixture, a list of values
for each of which the fixture function will execute and can access
a value via request.param. No test function code needs to change.
So let’s just do another run:

$ pytest -q test_module.py
FFFF [100%]
================================= FAILURES =================================
________________________ test_ehlo[smtp.gmail.com] _________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

 def test_ehlo(smtp_connection):
 response, msg = smtp_connection.ehlo()
 assert response == 250
 assert b"smtp.gmail.com" in msg
> assert 0 # for demo purposes
E assert 0

test_module.py:6: AssertionError
________________________ test_noop[smtp.gmail.com] _________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

 def test_noop(smtp_connection):
 response, msg = smtp_connection.noop()
 assert response == 250
> assert 0 # for demo purposes
E assert 0

test_module.py:11: AssertionError
________________________ test_ehlo[mail.python.org] ________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

 def test_ehlo(smtp_connection):
 response, msg = smtp_connection.ehlo()
 assert response == 250
> assert b"smtp.gmail.com" in msg
E AssertionError: assert b'smtp.gmail.com' in b'mail.python.org\nPIPELINING\nSIZE 51200000\nETRN\nSTARTTLS\nAUTH DIGEST-MD5 NTLM CRAM-MD5\nENHANCEDSTATUSCODES\n8BITMIME\nDSN\nSMTPUTF8\nCHUNKING'

test_module.py:5: AssertionError
-------------------------- Captured stdout setup ---------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
________________________ test_noop[mail.python.org] ________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

 def test_noop(smtp_connection):
 response, msg = smtp_connection.noop()
 assert response == 250
> assert 0 # for demo purposes
E assert 0

test_module.py:11: AssertionError
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
4 failed in 0.12 seconds

We see that our two test functions each ran twice, against the different
smtp_connection instances. Note also, that with the mail.python.org
connection the second test fails in test_ehlo because a
different server string is expected than what arrived.

pytest will build a string that is the test ID for each fixture value
in a parametrized fixture, e.g. test_ehlo[smtp.gmail.com] and
test_ehlo[mail.python.org] in the above examples. These IDs can
be used with -k to select specific cases to run, and they will
also identify the specific case when one is failing. Running pytest
with --collect-only will show the generated IDs.

Numbers, strings, booleans and None will have their usual string
representation used in the test ID. For other objects, pytest will
make a string based on the argument name. It is possible to customise
the string used in a test ID for a certain fixture value by using the
ids keyword argument:

content of test_ids.py
import pytest

@pytest.fixture(params=[0, 1], ids=["spam", "ham"])
def a(request):
 return request.param

def test_a(a):
 pass

def idfn(fixture_value):
 if fixture_value == 0:
 return "eggs"
 else:
 return None

@pytest.fixture(params=[0, 1], ids=idfn)
def b(request):
 return request.param

def test_b(b):
 pass

The above shows how ids can be either a list of strings to use or
a function which will be called with the fixture value and then
has to return a string to use. In the latter case if the function
return None then pytest’s auto-generated ID will be used.

Running the above tests results in the following test IDs being used:

$ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 10 items
<Module test_anothersmtp.py>
 <Function test_showhelo[smtp.gmail.com]>
 <Function test_showhelo[mail.python.org]>
<Module test_ids.py>
 <Function test_a[spam]>
 <Function test_a[ham]>
 <Function test_b[eggs]>
 <Function test_b[1]>
<Module test_module.py>
 <Function test_ehlo[smtp.gmail.com]>
 <Function test_noop[smtp.gmail.com]>
 <Function test_ehlo[mail.python.org]>
 <Function test_noop[mail.python.org]>

======================= no tests ran in 0.12 seconds =======================

Using marks with parametrized fixtures

pytest.param() can be used to apply marks in values sets of parametrized fixtures in the same way
that they can be used with @pytest.mark.parametrize.

Example:

content of test_fixture_marks.py
import pytest
@pytest.fixture(params=[0, 1, pytest.param(2, marks=pytest.mark.skip)])
def data_set(request):
 return request.param

def test_data(data_set):
 pass

Running this test will skip the invocation of data_set with value 2:

$ pytest test_fixture_marks.py -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 3 items

test_fixture_marks.py::test_data[0] PASSED [33%]
test_fixture_marks.py::test_data[1] PASSED [66%]
test_fixture_marks.py::test_data[2] SKIPPED [100%]

=================== 2 passed, 1 skipped in 0.12 seconds ====================

Modularity: using fixtures from a fixture function

You can not only use fixtures in test functions but fixture functions
can use other fixtures themselves. This contributes to a modular design
of your fixtures and allows re-use of framework-specific fixtures across
many projects. As a simple example, we can extend the previous example
and instantiate an object app where we stick the already defined
smtp_connection resource into it:

content of test_appsetup.py

import pytest

class App(object):
 def __init__(self, smtp_connection):
 self.smtp_connection = smtp_connection

@pytest.fixture(scope="module")
def app(smtp_connection):
 return App(smtp_connection)

def test_smtp_connection_exists(app):
 assert app.smtp_connection

Here we declare an app fixture which receives the previously defined
smtp_connection fixture and instantiates an App object with it. Let’s run it:

$ pytest -v test_appsetup.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 2 items

test_appsetup.py::test_smtp_connection_exists[smtp.gmail.com] PASSED [50%]
test_appsetup.py::test_smtp_connection_exists[mail.python.org] PASSED [100%]

========================= 2 passed in 0.12 seconds =========================

Due to the parametrization of smtp_connection, the test will run twice with two
different App instances and respective smtp servers. There is no
need for the app fixture to be aware of the smtp_connection
parametrization because pytest will fully analyse the fixture dependency graph.

Note that the app fixture has a scope of module and uses a
module-scoped smtp_connection fixture. The example would still work if
smtp_connection was cached on a session scope: it is fine for fixtures to use
“broader” scoped fixtures but not the other way round:
A session-scoped fixture could not use a module-scoped one in a
meaningful way.

Automatic grouping of tests by fixture instances

pytest minimizes the number of active fixtures during test runs.
If you have a parametrized fixture, then all the tests using it will
first execute with one instance and then finalizers are called
before the next fixture instance is created. Among other things,
this eases testing of applications which create and use global state.

The following example uses two parametrized fixtures, one of which is
scoped on a per-module basis, and all the functions perform print calls
to show the setup/teardown flow:

content of test_module.py
import pytest

@pytest.fixture(scope="module", params=["mod1", "mod2"])
def modarg(request):
 param = request.param
 print(" SETUP modarg %s" % param)
 yield param
 print(" TEARDOWN modarg %s" % param)

@pytest.fixture(scope="function", params=[1,2])
def otherarg(request):
 param = request.param
 print(" SETUP otherarg %s" % param)
 yield param
 print(" TEARDOWN otherarg %s" % param)

def test_0(otherarg):
 print(" RUN test0 with otherarg %s" % otherarg)
def test_1(modarg):
 print(" RUN test1 with modarg %s" % modarg)
def test_2(otherarg, modarg):
 print(" RUN test2 with otherarg %s and modarg %s" % (otherarg, modarg))

Let’s run the tests in verbose mode and with looking at the print-output:

$ pytest -v -s test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 8 items

test_module.py::test_0[1] SETUP otherarg 1
 RUN test0 with otherarg 1
PASSED TEARDOWN otherarg 1

test_module.py::test_0[2] SETUP otherarg 2
 RUN test0 with otherarg 2
PASSED TEARDOWN otherarg 2

test_module.py::test_1[mod1] SETUP modarg mod1
 RUN test1 with modarg mod1
PASSED
test_module.py::test_2[mod1-1] SETUP otherarg 1
 RUN test2 with otherarg 1 and modarg mod1
PASSED TEARDOWN otherarg 1

test_module.py::test_2[mod1-2] SETUP otherarg 2
 RUN test2 with otherarg 2 and modarg mod1
PASSED TEARDOWN otherarg 2

test_module.py::test_1[mod2] TEARDOWN modarg mod1
 SETUP modarg mod2
 RUN test1 with modarg mod2
PASSED
test_module.py::test_2[mod2-1] SETUP otherarg 1
 RUN test2 with otherarg 1 and modarg mod2
PASSED TEARDOWN otherarg 1

test_module.py::test_2[mod2-2] SETUP otherarg 2
 RUN test2 with otherarg 2 and modarg mod2
PASSED TEARDOWN otherarg 2
 TEARDOWN modarg mod2

========================= 8 passed in 0.12 seconds =========================

You can see that the parametrized module-scoped modarg resource caused an
ordering of test execution that lead to the fewest possible “active” resources.
The finalizer for the mod1 parametrized resource was executed before the
mod2 resource was setup.

In particular notice that test_0 is completely independent and finishes first.
Then test_1 is executed with mod1, then test_2 with mod1, then test_1
with mod2 and finally test_2 with mod2.

The otherarg parametrized resource (having function scope) was set up before
and teared down after every test that used it.

Using fixtures from classes, modules or projects

Sometimes test functions do not directly need access to a fixture object.
For example, tests may require to operate with an empty directory as the
current working directory but otherwise do not care for the concrete
directory. Here is how you can use the standard tempfile [http://docs.python.org/library/tempfile.html] and pytest fixtures to
achieve it. We separate the creation of the fixture into a conftest.py
file:

content of conftest.py

import pytest
import tempfile
import os

@pytest.fixture()
def cleandir():
 newpath = tempfile.mkdtemp()
 os.chdir(newpath)

and declare its use in a test module via a usefixtures marker:

content of test_setenv.py
import os
import pytest

@pytest.mark.usefixtures("cleandir")
class TestDirectoryInit(object):
 def test_cwd_starts_empty(self):
 assert os.listdir(os.getcwd()) == []
 with open("myfile", "w") as f:
 f.write("hello")

 def test_cwd_again_starts_empty(self):
 assert os.listdir(os.getcwd()) == []

Due to the usefixtures marker, the cleandir fixture
will be required for the execution of each test method, just as if
you specified a “cleandir” function argument to each of them. Let’s run it
to verify our fixture is activated and the tests pass:

$ pytest -q
.. [100%]
2 passed in 0.12 seconds

You can specify multiple fixtures like this:

@pytest.mark.usefixtures("cleandir", "anotherfixture")
def test():
 ...

and you may specify fixture usage at the test module level, using
a generic feature of the mark mechanism:

pytestmark = pytest.mark.usefixtures("cleandir")

Note that the assigned variable must be called pytestmark, assigning e.g.
foomark will not activate the fixtures.

It is also possible to put fixtures required by all tests in your project
into an ini-file:

content of pytest.ini
[pytest]
usefixtures = cleandir

Warning

Note this mark has no effect in fixture functions. For example,
this will not work as expected:

@pytest.mark.usefixtures("my_other_fixture")
@pytest.fixture
def my_fixture_that_sadly_wont_use_my_other_fixture():
 ...

Currently this will not generate any error or warning, but this is intended
to be handled by #3664 [https://github.com/pytest-dev/pytest/issues/3664].

Autouse fixtures (xUnit setup on steroids)

Occasionally, you may want to have fixtures get invoked automatically
without declaring a function argument explicitly or a usefixtures decorator.
As a practical example, suppose we have a database fixture which has a
begin/rollback/commit architecture and we want to automatically surround
each test method by a transaction and a rollback. Here is a dummy
self-contained implementation of this idea:

content of test_db_transact.py

import pytest

class DB(object):
 def __init__(self):
 self.intransaction = []
 def begin(self, name):
 self.intransaction.append(name)
 def rollback(self):
 self.intransaction.pop()

@pytest.fixture(scope="module")
def db():
 return DB()

class TestClass(object):
 @pytest.fixture(autouse=True)
 def transact(self, request, db):
 db.begin(request.function.__name__)
 yield
 db.rollback()

 def test_method1(self, db):
 assert db.intransaction == ["test_method1"]

 def test_method2(self, db):
 assert db.intransaction == ["test_method2"]

The class-level transact fixture is marked with autouse=true
which implies that all test methods in the class will use this fixture
without a need to state it in the test function signature or with a
class-level usefixtures decorator.

If we run it, we get two passing tests:

$ pytest -q
.. [100%]
2 passed in 0.12 seconds

Here is how autouse fixtures work in other scopes:

	autouse fixtures obey the scope= keyword-argument: if an autouse fixture
has scope='session' it will only be run once, no matter where it is
defined. scope='class' means it will be run once per class, etc.

	if an autouse fixture is defined in a test module, all its test
functions automatically use it.

	if an autouse fixture is defined in a conftest.py file then all tests in
all test modules below its directory will invoke the fixture.

	lastly, and please use that with care: if you define an autouse
fixture in a plugin, it will be invoked for all tests in all projects
where the plugin is installed. This can be useful if a fixture only
anyway works in the presence of certain settings e. g. in the ini-file. Such
a global fixture should always quickly determine if it should do
any work and avoid otherwise expensive imports or computation.

Note that the above transact fixture may very well be a fixture that
you want to make available in your project without having it generally
active. The canonical way to do that is to put the transact definition
into a conftest.py file without using autouse:

content of conftest.py
@pytest.fixture
def transact(request, db):
 db.begin()
 yield
 db.rollback()

and then e.g. have a TestClass using it by declaring the need:

@pytest.mark.usefixtures("transact")
class TestClass(object):
 def test_method1(self):
 ...

All test methods in this TestClass will use the transaction fixture while
other test classes or functions in the module will not use it unless
they also add a transact reference.

Overriding fixtures on various levels

In relatively large test suite, you most likely need to override a global or root fixture with a locally
defined one, keeping the test code readable and maintainable.

Override a fixture on a folder (conftest) level

Given the tests file structure is:

tests/
 __init__.py

 conftest.py
 # content of tests/conftest.py
 import pytest

 @pytest.fixture
 def username():
 return 'username'

 test_something.py
 # content of tests/test_something.py
 def test_username(username):
 assert username == 'username'

 subfolder/
 __init__.py

 conftest.py
 # content of tests/subfolder/conftest.py
 import pytest

 @pytest.fixture
 def username(username):
 return 'overridden-' + username

 test_something.py
 # content of tests/subfolder/test_something.py
 def test_username(username):
 assert username == 'overridden-username'

As you can see, a fixture with the same name can be overridden for certain test folder level.
Note that the base or super fixture can be accessed from the overriding
fixture easily - used in the example above.

Override a fixture on a test module level

Given the tests file structure is:

tests/
 __init__.py

 conftest.py
 # content of tests/conftest.py
 import pytest

 @pytest.fixture
 def username():
 return 'username'

 test_something.py
 # content of tests/test_something.py
 import pytest

 @pytest.fixture
 def username(username):
 return 'overridden-' + username

 def test_username(username):
 assert username == 'overridden-username'

 test_something_else.py
 # content of tests/test_something_else.py
 import pytest

 @pytest.fixture
 def username(username):
 return 'overridden-else-' + username

 def test_username(username):
 assert username == 'overridden-else-username'

In the example above, a fixture with the same name can be overridden for certain test module.

Override a fixture with direct test parametrization

Given the tests file structure is:

tests/
 __init__.py

 conftest.py
 # content of tests/conftest.py
 import pytest

 @pytest.fixture
 def username():
 return 'username'

 @pytest.fixture
 def other_username(username):
 return 'other-' + username

 test_something.py
 # content of tests/test_something.py
 import pytest

 @pytest.mark.parametrize('username', ['directly-overridden-username'])
 def test_username(username):
 assert username == 'directly-overridden-username'

 @pytest.mark.parametrize('username', ['directly-overridden-username-other'])
 def test_username_other(other_username):
 assert other_username == 'other-directly-overridden-username-other'

In the example above, a fixture value is overridden by the test parameter value. Note that the value of the fixture
can be overridden this way even if the test doesn’t use it directly (doesn’t mention it in the function prototype).

Override a parametrized fixture with non-parametrized one and vice versa

Given the tests file structure is:

tests/
 __init__.py

 conftest.py
 # content of tests/conftest.py
 import pytest

 @pytest.fixture(params=['one', 'two', 'three'])
 def parametrized_username(request):
 return request.param

 @pytest.fixture
 def non_parametrized_username(request):
 return 'username'

 test_something.py
 # content of tests/test_something.py
 import pytest

 @pytest.fixture
 def parametrized_username():
 return 'overridden-username'

 @pytest.fixture(params=['one', 'two', 'three'])
 def non_parametrized_username(request):
 return request.param

 def test_username(parametrized_username):
 assert parametrized_username == 'overridden-username'

 def test_parametrized_username(non_parametrized_username):
 assert non_parametrized_username in ['one', 'two', 'three']

 test_something_else.py
 # content of tests/test_something_else.py
 def test_username(parametrized_username):
 assert parametrized_username in ['one', 'two', 'three']

 def test_username(non_parametrized_username):
 assert non_parametrized_username == 'username'

In the example above, a parametrized fixture is overridden with a non-parametrized version, and
a non-parametrized fixture is overridden with a parametrized version for certain test module.
The same applies for the test folder level obviously.

Marking test functions with attributes

By using the pytest.mark helper you can easily set
metadata on your test functions. There are
some builtin markers, for example:

	skip - always skip a test function

	skipif - skip a test function if a certain condition is met

	xfail - produce an “expected failure” outcome if a certain
condition is met

	parametrize to perform multiple calls
to the same test function.

It’s easy to create custom markers or to apply markers
to whole test classes or modules. Those markers can be used by plugins, and also
are commonly used to select tests on the command-line with the -m option.

See Working with custom markers for examples which also serve as documentation.

Note

Marks can only be applied to tests, having no effect on
fixtures.

Registering marks

You can register custom marks in your pytest.ini file like this:

[pytest]
markers =
 slow: marks tests as slow (deselect with '-m "not slow"')
 serial

Note that everything after the : is an optional description.

Alternatively, you can register new markers programatically in a
pytest_configure hook:

def pytest_configure(config):
 config.addinivalue_line(
 "markers", "env(name): mark test to run only on named environment"
)

Registered marks appear in pytest’s help text and do not emit warnings (see the next section). It
is recommended that third-party plugins always register their markers.

Raising errors on unknown marks

Unregistered marks applied with the @pytest.mark.name_of_the_mark decorator
will always emit a warning in order to avoid silently doing something
surprising due to mis-typed names. As described in the previous section, you can disable
the warning for custom marks by registering them in your pytest.ini file or
using a custom pytest_configure hook.

When the --strict-markers command-line flag is passed, any unknown marks applied
with the @pytest.mark.name_of_the_mark decorator will trigger an error. You can
enforce this validation in your project by adding --strict-markers to addopts:

[pytest]
addopts = --strict-markers
markers =
 slow: marks tests as slow (deselect with '-m "not slow"')
 serial

Monkeypatching/mocking modules and environments

Sometimes tests need to invoke functionality which depends
on global settings or which invokes code which cannot be easily
tested such as network access. The monkeypatch fixture
helps you to safely set/delete an attribute, dictionary item or
environment variable or to modify sys.path for importing.
See the monkeypatch blog post [http://tetamap.wordpress.com/2009/03/03/monkeypatching-in-unit-tests-done-right/] for some introduction material
and a discussion of its motivation.

Simple example: monkeypatching functions

If you want to pretend that os.expanduser returns a certain
directory, you can use the monkeypatch.setattr() method to
patch this function before calling into a function which uses it:

content of test_module.py
import os.path
def getssh(): # pseudo application code
 return os.path.join(os.path.expanduser("~admin"), '.ssh')

def test_mytest(monkeypatch):
 def mockreturn(path):
 return '/abc'
 monkeypatch.setattr(os.path, 'expanduser', mockreturn)
 x = getssh()
 assert x == '/abc/.ssh'

Here our test function monkeypatches os.path.expanduser and
then calls into a function that calls it. After the test function
finishes the os.path.expanduser modification will be undone.

Global patch example: preventing “requests” from remote operations

If you want to prevent the “requests” library from performing http
requests in all your tests, you can do:

content of conftest.py
import pytest
@pytest.fixture(autouse=True)
def no_requests(monkeypatch):
 monkeypatch.delattr("requests.sessions.Session.request")

This autouse fixture will be executed for each test function and it
will delete the method request.session.Session.request
so that any attempts within tests to create http requests will fail.

Note

Be advised that it is not recommended to patch builtin functions such as open,
compile, etc., because it might break pytest’s internals. If that’s
unavoidable, passing --tb=native, --assert=plain and --capture=no might
help although there’s no guarantee.

Note

Mind that patching stdlib functions and some third-party libraries used by pytest
might break pytest itself, therefore in those cases it is recommended to use
MonkeyPatch.context() to limit the patching to the block you want tested:

import functools

def test_partial(monkeypatch):
 with monkeypatch.context() as m:
 m.setattr(functools, "partial", 3)
 assert functools.partial == 3

See issue #3290 [https://github.com/pytest-dev/pytest/issues/3290] for details.

Monkeypatching environment variables

If you are working with environment variables you often need to safely change the values
or delete them from the system for testing purposes. Monkeypatch provides a mechanism
to do this using the setenv and delenv method. Our example code to test:

contents of our original code file e.g. code.py
import os

def get_os_user_lower():
 """Simple retrieval function.
 Returns lowercase USER or raises EnvironmentError."""
 username = os.getenv("USER")

 if username is None:
 raise EnvironmentError("USER environment is not set.")

 return username.lower()

There are two potential paths. First, the USER environment variable is set to a
value. Second, the USER environment variable does not exist. Using monkeypatch
both paths can be safely tested without impacting the running environment:

contents of our test file e.g. test_code.py
import pytest

def test_upper_to_lower(monkeypatch):
 """Set the USER env var to assert the behavior."""
 monkeypatch.setenv("USER", "TestingUser")
 assert get_os_user_lower() == "testinguser"

def test_raise_exception(monkeypatch):
 """Remove the USER env var and assert EnvironmentError is raised."""
 monkeypatch.delenv("USER", raising=False)

 with pytest.raises(EnvironmentError):
 _ = get_os_user_lower()

This behavior can be moved into fixture structures and shared across tests:

import pytest

@pytest.fixture
def mock_env_user(monkeypatch):
 monkeypatch.setenv("USER", "TestingUser")

@pytest.fixture
def mock_env_missing(monkeypatch):
 monkeypatch.delenv("USER", raising=False)

Notice the tests reference the fixtures for mocks
def test_upper_to_lower(mock_env_user):
 assert get_os_user_lower() == "testinguser"

def test_raise_exception(mock_env_missing):
 with pytest.raises(EnvironmentError):
 _ = get_os_user_lower()

API Reference

Consult the docs for the MonkeyPatch class.

Temporary directories and files

The tmp_path fixture

You can use the tmp_path fixture which will
provide a temporary directory unique to the test invocation,
created in the base temporary directory.

tmp_path is a pathlib/pathlib2.Path object. Here is an example test usage:

content of test_tmp_path.py
import os

CONTENT = u"content"

def test_create_file(tmp_path):
 d = tmp_path / "sub"
 d.mkdir()
 p = d / "hello.txt"
 p.write_text(CONTENT)
 assert p.read_text() == CONTENT
 assert len(list(tmp_path.iterdir())) == 1
 assert 0

Running this would result in a passed test except for the last
assert 0 line which we use to look at values:

$ pytest test_tmp_path.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_tmp_path.py F [100%]

================================= FAILURES =================================
_____________________________ test_create_file _____________________________

tmp_path = PosixPath('PYTEST_TMPDIR/test_create_file0')

 def test_create_file(tmp_path):
 d = tmp_path / "sub"
 d.mkdir()
 p = d / "hello.txt"
 p.write_text(CONTENT)
 assert p.read_text() == CONTENT
 assert len(list(tmp_path.iterdir())) == 1
> assert 0
E assert 0

test_tmp_path.py:13: AssertionError
========================= 1 failed in 0.12 seconds =========================

The tmp_path_factory fixture

The tmp_path_factory is a session-scoped fixture which can be used
to create arbitrary temporary directories from any other fixture or test.

It is intended to replace tmpdir_factory, and returns pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] instances.

See tmp_path_factory API for details.

The ‘tmpdir’ fixture

You can use the tmpdir fixture which will
provide a temporary directory unique to the test invocation,
created in the base temporary directory.

tmpdir is a py.path.local [https://py.readthedocs.io/en/latest/path.html] object which offers os.path methods
and more. Here is an example test usage:

content of test_tmpdir.py
import os
def test_create_file(tmpdir):
 p = tmpdir.mkdir("sub").join("hello.txt")
 p.write("content")
 assert p.read() == "content"
 assert len(tmpdir.listdir()) == 1
 assert 0

Running this would result in a passed test except for the last
assert 0 line which we use to look at values:

$ pytest test_tmpdir.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_tmpdir.py F [100%]

================================= FAILURES =================================
_____________________________ test_create_file _____________________________

tmpdir = local('PYTEST_TMPDIR/test_create_file0')

 def test_create_file(tmpdir):
 p = tmpdir.mkdir("sub").join("hello.txt")
 p.write("content")
 assert p.read() == "content"
 assert len(tmpdir.listdir()) == 1
> assert 0
E assert 0

test_tmpdir.py:7: AssertionError
========================= 1 failed in 0.12 seconds =========================

The ‘tmpdir_factory’ fixture

The tmpdir_factory is a session-scoped fixture which can be used
to create arbitrary temporary directories from any other fixture or test.

For example, suppose your test suite needs a large image on disk, which is
generated procedurally. Instead of computing the same image for each test
that uses it into its own tmpdir, you can generate it once per-session
to save time:

contents of conftest.py
import pytest

@pytest.fixture(scope="session")
def image_file(tmpdir_factory):
 img = compute_expensive_image()
 fn = tmpdir_factory.mktemp("data").join("img.png")
 img.save(str(fn))
 return fn

contents of test_image.py
def test_histogram(image_file):
 img = load_image(image_file)
 # compute and test histogram

See tmpdir_factory API for details.

The default base temporary directory

Temporary directories are by default created as sub-directories of
the system temporary directory. The base name will be pytest-NUM where
NUM will be incremented with each test run. Moreover, entries older
than 3 temporary directories will be removed.

You can override the default temporary directory setting like this:

pytest --basetemp=mydir

When distributing tests on the local machine, pytest takes care to
configure a basetemp directory for the sub processes such that all temporary
data lands below a single per-test run basetemp directory.

Capturing of the stdout/stderr output

Default stdout/stderr/stdin capturing behaviour

During test execution any output sent to stdout and stderr is
captured. If a test or a setup method fails its according captured
output will usually be shown along with the failure traceback. (this
behavior can be configured by the --show-capture command-line option).

In addition, stdin is set to a “null” object which will
fail on attempts to read from it because it is rarely desired
to wait for interactive input when running automated tests.

By default capturing is done by intercepting writes to low level
file descriptors. This allows to capture output from simple
print statements as well as output from a subprocess started by
a test.

Setting capturing methods or disabling capturing

There are two ways in which pytest can perform capturing:

	file descriptor (FD) level capturing (default): All writes going to the
operating system file descriptors 1 and 2 will be captured.

	sys level capturing: Only writes to Python files sys.stdout
and sys.stderr will be captured. No capturing of writes to
filedescriptors is performed.

You can influence output capturing mechanisms from the command line:

pytest -s # disable all capturing
pytest --capture=sys # replace sys.stdout/stderr with in-mem files
pytest --capture=fd # also point filedescriptors 1 and 2 to temp file

Using print statements for debugging

One primary benefit of the default capturing of stdout/stderr output
is that you can use print statements for debugging:

content of test_module.py

def setup_function(function):
 print("setting up %s" % function)

def test_func1():
 assert True

def test_func2():
 assert False

and running this module will show you precisely the output
of the failing function and hide the other one:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .F [100%]

================================= FAILURES =================================
________________________________ test_func2 ________________________________

 def test_func2():
> assert False
E assert False

test_module.py:9: AssertionError
-------------------------- Captured stdout setup ---------------------------
setting up <function test_func2 at 0xdeadbeef>
==================== 1 failed, 1 passed in 0.12 seconds ====================

Accessing captured output from a test function

The capsys, capsysbinary, capfd, and capfdbinary fixtures
allow access to stdout/stderr output created during test execution. Here is
an example test function that performs some output related checks:

def test_myoutput(capsys): # or use "capfd" for fd-level
 print("hello")
 sys.stderr.write("world\n")
 captured = capsys.readouterr()
 assert captured.out == "hello\n"
 assert captured.err == "world\n"
 print("next")
 captured = capsys.readouterr()
 assert captured.out == "next\n"

The readouterr() call snapshots the output so far -
and capturing will be continued. After the test
function finishes the original streams will
be restored. Using capsys this way frees your
test from having to care about setting/resetting
output streams and also interacts well with pytest’s
own per-test capturing.

If you want to capture on filedescriptor level you can use
the capfd fixture which offers the exact
same interface but allows to also capture output from
libraries or subprocesses that directly write to operating
system level output streams (FD1 and FD2).

The return value from readouterr changed to a namedtuple with two attributes, out and err.

If the code under test writes non-textual data, you can capture this using
the capsysbinary fixture which instead returns bytes from
the readouterr method. The capfsysbinary fixture is currently only
available in python 3.

If the code under test writes non-textual data, you can capture this using
the capfdbinary fixture which instead returns bytes from
the readouterr method. The capfdbinary fixture operates on the
filedescriptor level.

To temporarily disable capture within a test, both capsys
and capfd have a disabled() method that can be used
as a context manager, disabling capture inside the with block:

def test_disabling_capturing(capsys):
 print("this output is captured")
 with capsys.disabled():
 print("output not captured, going directly to sys.stdout")
 print("this output is also captured")

Warnings Capture

Starting from version 3.1, pytest now automatically catches warnings during test execution
and displays them at the end of the session:

content of test_show_warnings.py
import warnings

def api_v1():
 warnings.warn(UserWarning("api v1, should use functions from v2"))
 return 1

def test_one():
 assert api_v1() == 1

Running pytest now produces this output:

$ pytest test_show_warnings.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_show_warnings.py . [100%]

============================= warnings summary =============================
test_show_warnings.py::test_one
 $REGENDOC_TMPDIR/test_show_warnings.py:5: UserWarning: api v1, should use functions from v2
 warnings.warn(UserWarning("api v1, should use functions from v2"))

-- Docs: https://docs.pytest.org/en/latest/warnings.html
=================== 1 passed, 1 warnings in 0.12 seconds ===================

The -W flag can be passed to control which warnings will be displayed or even turn
them into errors:

$ pytest -q test_show_warnings.py -W error::UserWarning
F [100%]
================================= FAILURES =================================
_________________________________ test_one _________________________________

 def test_one():
> assert api_v1() == 1

test_show_warnings.py:10:
_ _

 def api_v1():
> warnings.warn(UserWarning("api v1, should use functions from v2"))
E UserWarning: api v1, should use functions from v2

test_show_warnings.py:5: UserWarning
1 failed in 0.12 seconds

The same option can be set in the pytest.ini file using the filterwarnings ini option.
For example, the configuration below will ignore all user warnings, but will transform
all other warnings into errors.

[pytest]
filterwarnings =
 error
 ignore::UserWarning

When a warning matches more than one option in the list, the action for the last matching option
is performed.

Both -W command-line option and filterwarnings ini option are based on Python’s own
-W option [https://docs.python.org/3/using/cmdline.html?highlight=#cmdoption-W] and warnings.simplefilter [https://docs.python.org/3/library/warnings.html#warnings.simplefilter], so please refer to those sections in the Python
documentation for other examples and advanced usage.

@pytest.mark.filterwarnings

You can use the @pytest.mark.filterwarnings to add warning filters to specific test items,
allowing you to have finer control of which warnings should be captured at test, class or
even module level:

import warnings

def api_v1():
 warnings.warn(UserWarning("api v1, should use functions from v2"))
 return 1

@pytest.mark.filterwarnings("ignore:api v1")
def test_one():
 assert api_v1() == 1

Filters applied using a mark take precedence over filters passed on the command line or configured
by the filterwarnings ini option.

You may apply a filter to all tests of a class by using the filterwarnings mark as a class
decorator or to all tests in a module by setting the pytestmark variable:

turns all warnings into errors for this module
pytestmark = pytest.mark.filterwarnings("error")

Credits go to Florian Schulze for the reference implementation in the pytest-warnings [https://github.com/fschulze/pytest-warnings]
plugin.

Disabling warnings summary

Although not recommended, you can use the --disable-warnings command-line option to suppress the
warning summary entirely from the test run output.

Disabling warning capture entirely

This plugin is enabled by default but can be disabled entirely in your pytest.ini file with:

[pytest]
addopts = -p no:warnings

Or passing -p no:warnings in the command-line. This might be useful if your test suites handles warnings
using an external system.

DeprecationWarning and PendingDeprecationWarning

By default pytest will display DeprecationWarning and PendingDeprecationWarning warnings from
user code and third-party libraries, as recommended by PEP-0565 [https://www.python.org/dev/peps/pep-0565].
This helps users keep their code modern and avoid breakages when deprecated warnings are effectively removed.

Sometimes it is useful to hide some specific deprecation warnings that happen in code that you have no control over
(such as third-party libraries), in which case you might use the warning filters options (ini or marks) to ignore
those warnings.

For example:

[pytest]
filterwarnings =
 ignore:.*U.*mode is deprecated:DeprecationWarning

This will ignore all warnings of type DeprecationWarning where the start of the message matches
the regular expression ".*U.*mode is deprecated".

Note

If warnings are configured at the interpreter level, using
the PYTHONWARNINGS [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONWARNINGS] environment variable or the
-W command-line option, pytest will not configure any filters by default.

Also pytest doesn’t follow PEP-0506 suggestion of resetting all warning filters because
it might break test suites that configure warning filters themselves
by calling warnings.simplefilter (see issue #2430 [https://github.com/pytest-dev/pytest/issues/2430]
for an example of that).

Ensuring code triggers a deprecation warning

You can also call a global helper for checking
that a certain function call triggers a DeprecationWarning or
PendingDeprecationWarning:

import pytest

def test_global():
 pytest.deprecated_call(myfunction, 17)

By default, DeprecationWarning and PendingDeprecationWarning will not be
caught when using pytest.warns or recwarn because default Python warnings filters hide
them. If you wish to record them in your own code, use the
command warnings.simplefilter('always'):

import warnings
import pytest

def test_deprecation(recwarn):
 warnings.simplefilter("always")
 warnings.warn("deprecated", DeprecationWarning)
 assert len(recwarn) == 1
 assert recwarn.pop(DeprecationWarning)

You can also use it as a contextmanager:

def test_global():
 with pytest.deprecated_call():
 myobject.deprecated_method()

Asserting warnings with the warns function

You can check that code raises a particular warning using pytest.warns,
which works in a similar manner to raises:

import warnings
import pytest

def test_warning():
 with pytest.warns(UserWarning):
 warnings.warn("my warning", UserWarning)

The test will fail if the warning in question is not raised. The keyword
argument match to assert that the exception matches a text or regex:

>>> with warns(UserWarning, match='must be 0 or None'):
... warnings.warn("value must be 0 or None", UserWarning)

>>> with warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("value must be 42", UserWarning)

>>> with warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("this is not here", UserWarning)
Traceback (most recent call last):
 ...
Failed: DID NOT WARN. No warnings of type ...UserWarning... was emitted...

You can also call pytest.warns on a function or code string:

pytest.warns(expected_warning, func, *args, **kwargs)
pytest.warns(expected_warning, "func(*args, **kwargs)")

The function also returns a list of all raised warnings (as
warnings.WarningMessage objects), which you can query for
additional information:

with pytest.warns(RuntimeWarning) as record:
 warnings.warn("another warning", RuntimeWarning)

check that only one warning was raised
assert len(record) == 1
check that the message matches
assert record[0].message.args[0] == "another warning"

Alternatively, you can examine raised warnings in detail using the
recwarn fixture (see below).

Note

DeprecationWarning and PendingDeprecationWarning are treated
differently; see Ensuring code triggers a deprecation warning.

Recording warnings

You can record raised warnings either using pytest.warns or with
the recwarn fixture.

To record with pytest.warns without asserting anything about the warnings,
pass None as the expected warning type:

with pytest.warns(None) as record:
 warnings.warn("user", UserWarning)
 warnings.warn("runtime", RuntimeWarning)

assert len(record) == 2
assert str(record[0].message) == "user"
assert str(record[1].message) == "runtime"

The recwarn fixture will record warnings for the whole function:

import warnings

def test_hello(recwarn):
 warnings.warn("hello", UserWarning)
 assert len(recwarn) == 1
 w = recwarn.pop(UserWarning)
 assert issubclass(w.category, UserWarning)
 assert str(w.message) == "hello"
 assert w.filename
 assert w.lineno

Both recwarn and pytest.warns return the same interface for recorded
warnings: a WarningsRecorder instance. To view the recorded warnings, you can
iterate over this instance, call len on it to get the number of recorded
warnings, or index into it to get a particular recorded warning.

Full API: WarningsRecorder.

Custom failure messages

Recording warnings provides an opportunity to produce custom test
failure messages for when no warnings are issued or other conditions
are met.

def test():
 with pytest.warns(Warning) as record:
 f()
 if not record:
 pytest.fail("Expected a warning!")

If no warnings are issued when calling f, then not record will
evaluate to True. You can then call pytest.fail with a
custom error message.

Internal pytest warnings

pytest may generate its own warnings in some situations, such as improper usage or deprecated features.

For example, pytest will emit a warning if it encounters a class that matches python_classes but also
defines an __init__ constructor, as this prevents the class from being instantiated:

content of test_pytest_warnings.py
class Test:
 def __init__(self):
 pass

 def test_foo(self):
 assert 1 == 1

$ pytest test_pytest_warnings.py -q

============================= warnings summary =============================
test_pytest_warnings.py:1
 $REGENDOC_TMPDIR/test_pytest_warnings.py:1: PytestCollectionWarning: cannot collect test class 'Test' because it has a __init__ constructor (from: test_pytest_warnings.py)
 class Test:

-- Docs: https://docs.pytest.org/en/latest/warnings.html
1 warnings in 0.12 seconds

These warnings might be filtered using the same builtin mechanisms used to filter other types of warnings.

Please read our Backwards Compatibility Policy to learn how we proceed about deprecating and eventually removing
features.

The following warning types ares used by pytest and are part of the public API:

	
class PytestWarning[source]

	Bases: UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning].

Base class for all warnings emitted by pytest.

	
class PytestAssertRewriteWarning[source]

	Bases: PytestWarning.

Warning emitted by the pytest assert rewrite module.

	
class PytestCacheWarning[source]

	Bases: PytestWarning.

Warning emitted by the cache plugin in various situations.

	
class PytestCollectionWarning[source]

	Bases: PytestWarning.

Warning emitted when pytest is not able to collect a file or symbol in a module.

	
class PytestConfigWarning[source]

	Bases: PytestWarning.

Warning emitted for configuration issues.

	
class PytestDeprecationWarning[source]

	Bases: pytest.PytestWarning, DeprecationWarning [https://docs.python.org/3/library/exceptions.html#DeprecationWarning].

Warning class for features that will be removed in a future version.

	
class PytestExperimentalApiWarning[source]

	Bases: pytest.PytestWarning, FutureWarning [https://docs.python.org/3/library/exceptions.html#FutureWarning].

Warning category used to denote experiments in pytest. Use sparingly as the API might change or even be
removed completely in future version

	
class PytestUnhandledCoroutineWarning[source]

	Bases: PytestWarning.

Warning emitted when pytest encounters a test function which is a coroutine,
but it was not handled by any async-aware plugin. Coroutine test functions
are not natively supported.

	
class PytestUnknownMarkWarning[source]

	Bases: PytestWarning.

Warning emitted on use of unknown markers.
See https://docs.pytest.org/en/latest/mark.html for details.

	
class RemovedInPytest4Warning[source]

	Bases: pytest.PytestDeprecationWarning.

Warning class for features scheduled to be removed in pytest 4.0.

Doctest integration for modules and test files

By default all files matching the test*.txt pattern will
be run through the python standard doctest module. You
can change the pattern by issuing:

pytest --doctest-glob='*.rst'

on the command line. --doctest-glob can be given multiple times in the command-line.

If you then have a text file like this:

content of test_example.txt

hello this is a doctest
>>> x = 3
>>> x
3

then you can just invoke pytest directly:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_example.txt . [100%]

========================= 1 passed in 0.12 seconds =========================

By default, pytest will collect test*.txt files looking for doctest directives, but you
can pass additional globs using the --doctest-glob option (multi-allowed).

In addition to text files, you can also execute doctests directly from docstrings of your classes
and functions, including from test modules:

content of mymodule.py
def something():
 """ a doctest in a docstring
 >>> something()
 42
 """
 return 42

$ pytest --doctest-modules
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

mymodule.py . [50%]
test_example.txt . [100%]

========================= 2 passed in 0.12 seconds =========================

You can make these changes permanent in your project by
putting them into a pytest.ini file like this:

content of pytest.ini
[pytest]
addopts = --doctest-modules

Note

The builtin pytest doctest supports only doctest blocks, but if you are looking
for more advanced checking over all your documentation,
including doctests, .. codeblock:: python Sphinx directive support,
and any other examples your documentation may include, you may wish to
consider Sybil [https://sybil.readthedocs.io/en/latest/index.html].
It provides pytest integration out of the box.

Encoding

The default encoding is UTF-8, but you can specify the encoding
that will be used for those doctest files using the
doctest_encoding ini option:

content of pytest.ini
[pytest]
doctest_encoding = latin1

Using ‘doctest’ options

The standard doctest module provides some options [https://docs.python.org/3/library/doctest.html#option-flags]
to configure the strictness of doctest tests. In pytest, you can enable those flags using the
configuration file.

For example, to make pytest ignore trailing whitespaces and ignore
lengthy exception stack traces you can just write:

[pytest]
doctest_optionflags= NORMALIZE_WHITESPACE IGNORE_EXCEPTION_DETAIL

pytest also introduces new options to allow doctests to run in Python 2 and
Python 3 unchanged:

	ALLOW_UNICODE: when enabled, the u prefix is stripped from unicode
strings in expected doctest output.

	ALLOW_BYTES: when enabled, the b prefix is stripped from byte strings
in expected doctest output.

Alternatively, options can be enabled by an inline comment in the doc test
itself:

content of example.rst
>>> get_unicode_greeting() # doctest: +ALLOW_UNICODE
'Hello'

By default, pytest would report only the first failure for a given doctest. If
you want to continue the test even when you have failures, do:

pytest --doctest-modules --doctest-continue-on-failure

Output format

You can change the diff output format on failure for your doctests
by using one of standard doctest modules format in options
(see doctest.REPORT_UDIFF [https://docs.python.org/3/library/doctest.html#doctest.REPORT_UDIFF], doctest.REPORT_CDIFF [https://docs.python.org/3/library/doctest.html#doctest.REPORT_CDIFF],
doctest.REPORT_NDIFF [https://docs.python.org/3/library/doctest.html#doctest.REPORT_NDIFF], doctest.REPORT_ONLY_FIRST_FAILURE [https://docs.python.org/3/library/doctest.html#doctest.REPORT_ONLY_FIRST_FAILURE]):

pytest --doctest-modules --doctest-report none
pytest --doctest-modules --doctest-report udiff
pytest --doctest-modules --doctest-report cdiff
pytest --doctest-modules --doctest-report ndiff
pytest --doctest-modules --doctest-report only_first_failure

pytest-specific features

Some features are provided to make writing doctests easier or with better integration with
your existing test suite. Keep in mind however that by using those features you will make
your doctests incompatible with the standard doctests module.

Using fixtures

It is possible to use fixtures using the getfixture helper:

content of example.rst
>>> tmp = getfixture('tmpdir')
>>> ...
>>>

Also, Using fixtures from classes, modules or projects and Autouse fixtures (xUnit setup on steroids) fixtures are supported
when executing text doctest files.

‘doctest_namespace’ fixture

The doctest_namespace fixture can be used to inject items into the
namespace in which your doctests run. It is intended to be used within
your own fixtures to provide the tests that use them with context.

doctest_namespace is a standard dict object into which you
place the objects you want to appear in the doctest namespace:

content of conftest.py
import numpy
@pytest.fixture(autouse=True)
def add_np(doctest_namespace):
 doctest_namespace['np'] = numpy

which can then be used in your doctests directly:

content of numpy.py
def arange():
 """
 >>> a = np.arange(10)
 >>> len(a)
 10
 """
 pass

Note that like the normal conftest.py, the fixtures are discovered in the directory tree conftest is in.
Meaning that if you put your doctest with your source code, the relevant conftest.py needs to be in the same directory tree.
Fixtures will not be discovered in a sibling directory tree!

Skipping tests dynamically

New in version 4.4.

You can use pytest.skip to dynamically skip doctests. For example:

>>> import sys, pytest
>>> if sys.platform.startswith('win'):
... pytest.skip('this doctest does not work on Windows')
...

Skip and xfail: dealing with tests that cannot succeed

You can mark test functions that cannot be run on certain platforms
or that you expect to fail so pytest can deal with them accordingly and
present a summary of the test session, while keeping the test suite green.

A skip means that you expect your test to pass only if some conditions are met,
otherwise pytest should skip running the test altogether. Common examples are skipping
windows-only tests on non-windows platforms, or skipping tests that depend on an external
resource which is not available at the moment (for example a database).

A xfail means that you expect a test to fail for some reason.
A common example is a test for a feature not yet implemented, or a bug not yet fixed.
When a test passes despite being expected to fail (marked with pytest.mark.xfail),
it’s an xpass and will be reported in the test summary.

pytest counts and lists skip and xfail tests separately. Detailed
information about skipped/xfailed tests is not shown by default to avoid
cluttering the output. You can use the -r option to see details
corresponding to the “short” letters shown in the test progress:

pytest -rxXs # show extra info on xfailed, xpassed, and skipped tests

More details on the -r option can be found by running pytest -h.

(See How to change command line options defaults)

Skipping test functions

The simplest way to skip a test function is to mark it with the skip decorator
which may be passed an optional reason:

@pytest.mark.skip(reason="no way of currently testing this")
def test_the_unknown():
 ...

Alternatively, it is also possible to skip imperatively during test execution or setup
by calling the pytest.skip(reason) function:

def test_function():
 if not valid_config():
 pytest.skip("unsupported configuration")

The imperative method is useful when it is not possible to evaluate the skip condition
during import time.

It is also possible to skip the whole module using
pytest.skip(reason, allow_module_level=True) at the module level:

import sys
import pytest

if not sys.platform.startswith("win"):
 pytest.skip("skipping windows-only tests", allow_module_level=True)

Reference: pytest.mark.skip

skipif

If you wish to skip something conditionally then you can use skipif instead.
Here is an example of marking a test function to be skipped
when run on an interpreter earlier than Python3.6:

import sys

@pytest.mark.skipif(sys.version_info < (3, 6), reason="requires python3.6 or higher")
def test_function():
 ...

If the condition evaluates to True during collection, the test function will be skipped,
with the specified reason appearing in the summary when using -rs.

You can share skipif markers between modules. Consider this test module:

content of test_mymodule.py
import mymodule

minversion = pytest.mark.skipif(
 mymodule.__versioninfo__ < (1, 1), reason="at least mymodule-1.1 required"
)

@minversion
def test_function():
 ...

You can import the marker and reuse it in another test module:

test_myothermodule.py
from test_mymodule import minversion

@minversion
def test_anotherfunction():
 ...

For larger test suites it’s usually a good idea to have one file
where you define the markers which you then consistently apply
throughout your test suite.

Alternatively, you can use condition strings instead of booleans, but they can’t be shared between modules easily
so they are supported mainly for backward compatibility reasons.

Reference: pytest.mark.skipif

Skip all test functions of a class or module

You can use the skipif marker (as any other marker) on classes:

@pytest.mark.skipif(sys.platform == "win32", reason="does not run on windows")
class TestPosixCalls(object):
 def test_function(self):
 "will not be setup or run under 'win32' platform"

If the condition is True, this marker will produce a skip result for
each of the test methods of that class.

If you want to skip all test functions of a module, you may use
the pytestmark name on the global level:

test_module.py
pytestmark = pytest.mark.skipif(...)

If multiple skipif decorators are applied to a test function, it
will be skipped if any of the skip conditions is true.

Skipping files or directories

Sometimes you may need to skip an entire file or directory, for example if the
tests rely on Python version-specific features or contain code that you do not
wish pytest to run. In this case, you must exclude the files and directories
from collection. Refer to Customizing test collection for more
information.

Skipping on a missing import dependency

You can use the following helper at module level
or within a test or test setup function:

docutils = pytest.importorskip("docutils")

If docutils cannot be imported here, this will lead to a
skip outcome of the test. You can also skip based on the
version number of a library:

docutils = pytest.importorskip("docutils", minversion="0.3")

The version will be read from the specified
module’s __version__ attribute.

Summary

Here’s a quick guide on how to skip tests in a module in different situations:

	Skip all tests in a module unconditionally:

pytestmark = pytest.mark.skip("all tests still WIP")

	Skip all tests in a module based on some condition:

pytestmark = pytest.mark.skipif(sys.platform == "win32", reason="tests for linux only")

	Skip all tests in a module if some import is missing:

pexpect = pytest.importorskip("pexpect")

XFail: mark test functions as expected to fail

You can use the xfail marker to indicate that you
expect a test to fail:

@pytest.mark.xfail
def test_function():
 ...

This test will be run but no traceback will be reported
when it fails. Instead terminal reporting will list it in the
“expected to fail” (XFAIL) or “unexpectedly passing” (XPASS) sections.

Alternatively, you can also mark a test as XFAIL from within a test or setup function
imperatively:

def test_function():
 if not valid_config():
 pytest.xfail("failing configuration (but should work)")

This will unconditionally make test_function XFAIL. Note that no other code is executed
after pytest.xfail call, differently from the marker. That’s because it is implemented
internally by raising a known exception.

Reference: pytest.mark.xfail

strict parameter

Both XFAIL and XPASS don’t fail the test suite, unless the strict keyword-only
parameter is passed as True:

@pytest.mark.xfail(strict=True)
def test_function():
 ...

This will make XPASS (“unexpectedly passing”) results from this test to fail the test suite.

You can change the default value of the strict parameter using the
xfail_strict ini option:

[pytest]
xfail_strict=true

reason parameter

As with skipif you can also mark your expectation of a failure
on a particular platform:

@pytest.mark.xfail(sys.version_info >= (3, 6), reason="python3.6 api changes")
def test_function():
 ...

raises parameter

If you want to be more specific as to why the test is failing, you can specify
a single exception, or a tuple of exceptions, in the raises argument.

@pytest.mark.xfail(raises=RuntimeError)
def test_function():
 ...

Then the test will be reported as a regular failure if it fails with an
exception not mentioned in raises.

run parameter

If a test should be marked as xfail and reported as such but should not be
even executed, use the run parameter as False:

@pytest.mark.xfail(run=False)
def test_function():
 ...

This is specially useful for xfailing tests that are crashing the interpreter and should be
investigated later.

Ignoring xfail

By specifying on the commandline:

pytest --runxfail

you can force the running and reporting of an xfail marked test
as if it weren’t marked at all. This also causes pytest.xfail to produce no effect.

Examples

Here is a simple test file with the several usages:

-*- coding: utf-8 -*-
import pytest

xfail = pytest.mark.xfail

@xfail
def test_hello():
 assert 0

@xfail(run=False)
def test_hello2():
 assert 0

@xfail("hasattr(os, 'sep')")
def test_hello3():
 assert 0

@xfail(reason="bug 110")
def test_hello4():
 assert 0

@xfail('pytest.__version__[0] != "17"')
def test_hello5():
 assert 0

def test_hello6():
 pytest.xfail("reason")

@xfail(raises=IndexError)
def test_hello7():
 x = []
 x[1] = 1

Running it with the report-on-xfail option gives this output:

example $ pytest -rx xfail_demo.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/example
collected 7 items

xfail_demo.py xxxxxxx [100%]

========================= short test summary info ==========================
XFAIL xfail_demo.py::test_hello
XFAIL xfail_demo.py::test_hello2
 reason: [NOTRUN]
XFAIL xfail_demo.py::test_hello3
 condition: hasattr(os, 'sep')
XFAIL xfail_demo.py::test_hello4
 bug 110
XFAIL xfail_demo.py::test_hello5
 condition: pytest.__version__[0] != "17"
XFAIL xfail_demo.py::test_hello6
 reason: reason
XFAIL xfail_demo.py::test_hello7
======================== 7 xfailed in 0.12 seconds =========================

Skip/xfail with parametrize

It is possible to apply markers like skip and xfail to individual
test instances when using parametrize:

import pytest

@pytest.mark.parametrize(
 ("n", "expected"),
 [
 (1, 2),
 pytest.param(1, 0, marks=pytest.mark.xfail),
 pytest.param(1, 3, marks=pytest.mark.xfail(reason="some bug")),
 (2, 3),
 (3, 4),
 (4, 5),
 pytest.param(
 10, 11, marks=pytest.mark.skipif(sys.version_info >= (3, 0), reason="py2k")
),
],
)
def test_increment(n, expected):
 assert n + 1 == expected

Parametrizing fixtures and test functions

pytest enables test parametrization at several levels:

	pytest.fixture() allows one to parametrize fixture
functions.

	@pytest.mark.parametrize allows one to define multiple sets of
arguments and fixtures at the test function or class.

	pytest_generate_tests allows one to define custom parametrization
schemes or extensions.

@pytest.mark.parametrize: parametrizing test functions

The builtin pytest.mark.parametrize decorator enables
parametrization of arguments for a test function. Here is a typical example
of a test function that implements checking that a certain input leads
to an expected output:

content of test_expectation.py
import pytest

@pytest.mark.parametrize("test_input,expected", [("3+5", 8), ("2+4", 6), ("6*9", 42)])
def test_eval(test_input, expected):
 assert eval(test_input) == expected

Here, the @parametrize decorator defines three different (test_input,expected)
tuples so that the test_eval function will run three times using
them in turn:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_expectation.py ..F [100%]

================================= FAILURES =================================
____________________________ test_eval[6*9-42] _____________________________

test_input = '6*9', expected = 42

 @pytest.mark.parametrize("test_input,expected", [("3+5", 8), ("2+4", 6), ("6*9", 42)])
 def test_eval(test_input, expected):
> assert eval(test_input) == expected
E AssertionError: assert 54 == 42
E + where 54 = eval('6*9')

test_expectation.py:6: AssertionError
==================== 1 failed, 2 passed in 0.12 seconds ====================

Note

pytest by default escapes any non-ascii characters used in unicode strings
for the parametrization because it has several downsides.
If however you would like to use unicode strings in parametrization and see them in the terminal as is (non-escaped), use this option in your pytest.ini:

[pytest]
disable_test_id_escaping_and_forfeit_all_rights_to_community_support = True

Keep in mind however that this might cause unwanted side effects and
even bugs depending on the OS used and plugins currently installed, so use it at your own risk.

As designed in this example, only one pair of input/output values fails
the simple test function. And as usual with test function arguments,
you can see the input and output values in the traceback.

Note that you could also use the parametrize marker on a class or a module
(see Marking test functions with attributes) which would invoke several functions with the argument sets.

It is also possible to mark individual test instances within parametrize,
for example with the builtin mark.xfail:

content of test_expectation.py
import pytest

@pytest.mark.parametrize(
 "test_input,expected",
 [("3+5", 8), ("2+4", 6), pytest.param("6*9", 42, marks=pytest.mark.xfail)],
)
def test_eval(test_input, expected):
 assert eval(test_input) == expected

Let’s run this:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_expectation.py ..x [100%]

=================== 2 passed, 1 xfailed in 0.12 seconds ====================

The one parameter set which caused a failure previously now
shows up as an “xfailed (expected to fail)” test.

In case the values provided to parametrize result in an empty list - for
example, if they’re dynamically generated by some function - the behaviour of
pytest is defined by the empty_parameter_set_mark option.

To get all combinations of multiple parametrized arguments you can stack
parametrize decorators:

import pytest

@pytest.mark.parametrize("x", [0, 1])
@pytest.mark.parametrize("y", [2, 3])
def test_foo(x, y):
 pass

This will run the test with the arguments set to x=0/y=2, x=1/y=2,
x=0/y=3, and x=1/y=3 exhausting parameters in the order of the decorators.

Basic pytest_generate_tests example

Sometimes you may want to implement your own parametrization scheme
or implement some dynamism for determining the parameters or scope
of a fixture. For this, you can use the pytest_generate_tests hook
which is called when collecting a test function. Through the passed in
metafunc object you can inspect the requesting test context and, most
importantly, you can call metafunc.parametrize() to cause
parametrization.

For example, let’s say we want to run a test taking string inputs which
we want to set via a new pytest command line option. Let’s first write
a simple test accepting a stringinput fixture function argument:

content of test_strings.py

def test_valid_string(stringinput):
 assert stringinput.isalpha()

Now we add a conftest.py file containing the addition of a
command line option and the parametrization of our test function:

content of conftest.py

def pytest_addoption(parser):
 parser.addoption(
 "--stringinput",
 action="append",
 default=[],
 help="list of stringinputs to pass to test functions",
)

def pytest_generate_tests(metafunc):
 if "stringinput" in metafunc.fixturenames:
 metafunc.parametrize("stringinput", metafunc.config.getoption("stringinput"))

If we now pass two stringinput values, our test will run twice:

$ pytest -q --stringinput="hello" --stringinput="world" test_strings.py
.. [100%]
2 passed in 0.12 seconds

Let’s also run with a stringinput that will lead to a failing test:

$ pytest -q --stringinput="!" test_strings.py
F [100%]
================================= FAILURES =================================
___________________________ test_valid_string[!] ___________________________

stringinput = '!'

 def test_valid_string(stringinput):
> assert stringinput.isalpha()
E AssertionError: assert False
E + where False = <built-in method isalpha of str object at 0xdeadbeef>()
E + where <built-in method isalpha of str object at 0xdeadbeef> = '!'.isalpha

test_strings.py:4: AssertionError
1 failed in 0.12 seconds

As expected our test function fails.

If you don’t specify a stringinput it will be skipped because
metafunc.parametrize() will be called with an empty parameter
list:

$ pytest -q -rs test_strings.py
s [100%]
========================= short test summary info ==========================
SKIPPED [1] test_strings.py: got empty parameter set ['stringinput'], function test_valid_string at $REGENDOC_TMPDIR/test_strings.py:2
1 skipped in 0.12 seconds

Note that when calling metafunc.parametrize multiple times with different parameter sets, all parameter names across
those sets cannot be duplicated, otherwise an error will be raised.

More examples

For further examples, you might want to look at more
parametrization examples.

Cache: working with cross-testrun state

Usage

The plugin provides two command line options to rerun failures from the
last pytest invocation:

	--lf, --last-failed - to only re-run the failures.

	--ff, --failed-first - to run the failures first and then the rest of
the tests.

For cleanup (usually not needed), a --cache-clear option allows to remove
all cross-session cache contents ahead of a test run.

Other plugins may access the config.cache object to set/get
json encodable values between pytest invocations.

Note

This plugin is enabled by default, but can be disabled if needed: see
Deactivating / unregistering a plugin by name (the internal name for this plugin is
cacheprovider).

Rerunning only failures or failures first

First, let’s create 50 test invocation of which only 2 fail:

content of test_50.py
import pytest

@pytest.mark.parametrize("i", range(50))
def test_num(i):
 if i in (17, 25):
 pytest.fail("bad luck")

If you run this for the first time you will see two failures:

$ pytest -q
.................F.......F........................ [100%]
================================= FAILURES =================================
_______________________________ test_num[17] _______________________________

i = 17

 @pytest.mark.parametrize("i", range(50))
 def test_num(i):
 if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
_______________________________ test_num[25] _______________________________

i = 25

 @pytest.mark.parametrize("i", range(50))
 def test_num(i):
 if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
2 failed, 48 passed in 0.12 seconds

If you then run it with --lf:

$ pytest --lf
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 50 items / 48 deselected / 2 selected
run-last-failure: rerun previous 2 failures

test_50.py FF [100%]

================================= FAILURES =================================
_______________________________ test_num[17] _______________________________

i = 17

 @pytest.mark.parametrize("i", range(50))
 def test_num(i):
 if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
_______________________________ test_num[25] _______________________________

i = 25

 @pytest.mark.parametrize("i", range(50))
 def test_num(i):
 if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
================= 2 failed, 48 deselected in 0.12 seconds ==================

You have run only the two failing test from the last run, while 48 tests have
not been run (“deselected”).

Now, if you run with the --ff option, all tests will be run but the first
previous failures will be executed first (as can be seen from the series
of FF and dots):

$ pytest --ff
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 50 items
run-last-failure: rerun previous 2 failures first

test_50.py FF.. [100%]

================================= FAILURES =================================
_______________________________ test_num[17] _______________________________

i = 17

 @pytest.mark.parametrize("i", range(50))
 def test_num(i):
 if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
_______________________________ test_num[25] _______________________________

i = 25

 @pytest.mark.parametrize("i", range(50))
 def test_num(i):
 if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
=================== 2 failed, 48 passed in 0.12 seconds ====================

New --nf, --new-first options: run new tests first followed by the rest
of the tests, in both cases tests are also sorted by the file modified time,
with more recent files coming first.

Behavior when no tests failed in the last run

When no tests failed in the last run, or when no cached lastfailed data was
found, pytest can be configured either to run all of the tests or no tests,
using the --last-failed-no-failures option, which takes one of the following values:

pytest --last-failed --last-failed-no-failures all # run all tests (default behavior)
pytest --last-failed --last-failed-no-failures none # run no tests and exit

The new config.cache object

Plugins or conftest.py support code can get a cached value using the
pytest config object. Here is a basic example plugin which
implements a pytest fixtures: explicit, modular, scalable which re-uses previously created state
across pytest invocations:

content of test_caching.py
import pytest
import time

def expensive_computation():
 print("running expensive computation...")

@pytest.fixture
def mydata(request):
 val = request.config.cache.get("example/value", None)
 if val is None:
 expensive_computation()
 val = 42
 request.config.cache.set("example/value", val)
 return val

def test_function(mydata):
 assert mydata == 23

If you run this command for the first time, you can see the print statement:

$ pytest -q
F [100%]
================================= FAILURES =================================
______________________________ test_function _______________________________

mydata = 42

 def test_function(mydata):
> assert mydata == 23
E assert 42 == 23

test_caching.py:17: AssertionError
-------------------------- Captured stdout setup ---------------------------
running expensive computation...
1 failed in 0.12 seconds

If you run it a second time the value will be retrieved from
the cache and nothing will be printed:

$ pytest -q
F [100%]
================================= FAILURES =================================
______________________________ test_function _______________________________

mydata = 42

 def test_function(mydata):
> assert mydata == 23
E assert 42 == 23

test_caching.py:17: AssertionError
1 failed in 0.12 seconds

See the config.cache for more details.

Inspecting Cache content

You can always peek at the content of the cache using the
--cache-show command line option:

$ pytest --cache-show
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
cachedir: $PYTHON_PREFIX/.pytest_cache
--------------------------- cache values for '*' ---------------------------
cache/lastfailed contains:
 {'test_50.py::test_num[17]': True,
 'test_50.py::test_num[25]': True,
 'test_assert1.py::test_function': True,
 'test_assert2.py::test_set_comparison': True,
 'test_caching.py::test_function': True,
 'test_foocompare.py::test_compare': True}
cache/nodeids contains:
 ['test_caching.py::test_function']
cache/stepwise contains:
 []
example/value contains:
 42

======================= no tests ran in 0.12 seconds =======================

--cache-show takes an optional argument to specify a glob pattern for
filtering:

$ pytest --cache-show example/*
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
cachedir: $PYTHON_PREFIX/.pytest_cache
----------------------- cache values for 'example/*' -----------------------
example/value contains:
 42

======================= no tests ran in 0.12 seconds =======================

Clearing Cache content

You can instruct pytest to clear all cache files and values
by adding the --cache-clear option like this:

pytest --cache-clear

This is recommended for invocations from Continuous Integration
servers where isolation and correctness is more important
than speed.

Stepwise

As an alternative to --lf -x, especially for cases where you expect a large part of the test suite will fail, --sw, --stepwise allows you to fix them one at a time. The test suite will run until the first failure and then stop. At the next invocation, tests will continue from the last failing test and then run until the next failing test. You may use the --stepwise-skip option to ignore one failing test and stop the test execution on the second failing test instead. This is useful if you get stuck on a failing test and just want to ignore it until later.

unittest.TestCase Support

pytest supports running Python unittest-based tests out of the box.
It’s meant for leveraging existing unittest-based test suites
to use pytest as a test runner and also allow to incrementally adapt
the test suite to take full advantage of pytest’s features.

To run an existing unittest-style test suite using pytest, type:

pytest tests

pytest will automatically collect unittest.TestCase subclasses and
their test methods in test_*.py or *_test.py files.

Almost all unittest features are supported:

	@unittest.skip style decorators;

	setUp/tearDown;

	setUpClass/tearDownClass;

	setUpModule/tearDownModule;

Up to this point pytest does not have support for the following features:

	load_tests protocol [https://docs.python.org/3/library/unittest.html#load-tests-protocol];

	subtests [https://docs.python.org/3/library/unittest.html#distinguishing-test-iterations-using-subtests];

Benefits out of the box

By running your test suite with pytest you can make use of several features,
in most cases without having to modify existing code:

	Obtain more informative tracebacks;

	stdout and stderr capturing;

	Test selection options using -k and -m flags;

	Stopping after the first (or N) failures;

	–pdb command-line option for debugging on test failures
(see note below);

	Distribute tests to multiple CPUs using the pytest-xdist [https://pypi.org/project/pytest-xdist/] plugin;

	Use plain assert-statements instead of self.assert* functions (unittest2pytest [https://pypi.org/project/unittest2pytest/] is immensely helpful in this);

pytest features in unittest.TestCase subclasses

The following pytest features work in unittest.TestCase subclasses:

	Marks: skip, skipif, xfail;

	Auto-use fixtures;

The following pytest features do not work, and probably
never will due to different design philosophies:

	Fixtures (except for autouse fixtures, see below);

	Parametrization;

	Custom hooks;

Third party plugins may or may not work well, depending on the plugin and the test suite.

Mixing pytest fixtures into unittest.TestCase subclasses using marks

Running your unittest with pytest allows you to use its
fixture mechanism with unittest.TestCase style
tests. Assuming you have at least skimmed the pytest fixture features,
let’s jump-start into an example that integrates a pytest db_class
fixture, setting up a class-cached database object, and then reference
it from a unittest-style test:

content of conftest.py

we define a fixture function below and it will be "used" by
referencing its name from tests

import pytest

@pytest.fixture(scope="class")
def db_class(request):
 class DummyDB(object):
 pass
 # set a class attribute on the invoking test context
 request.cls.db = DummyDB()

This defines a fixture function db_class which - if used - is
called once for each test class and which sets the class-level
db attribute to a DummyDB instance. The fixture function
achieves this by receiving a special request object which gives
access to the requesting test context such
as the cls attribute, denoting the class from which the fixture
is used. This architecture de-couples fixture writing from actual test
code and allows re-use of the fixture by a minimal reference, the fixture
name. So let’s write an actual unittest.TestCase class using our
fixture definition:

content of test_unittest_db.py

import unittest
import pytest

@pytest.mark.usefixtures("db_class")
class MyTest(unittest.TestCase):
 def test_method1(self):
 assert hasattr(self, "db")
 assert 0, self.db # fail for demo purposes

 def test_method2(self):
 assert 0, self.db # fail for demo purposes

The @pytest.mark.usefixtures("db_class") class-decorator makes sure that
the pytest fixture function db_class is called once per class.
Due to the deliberately failing assert statements, we can take a look at
the self.db values in the traceback:

$ pytest test_unittest_db.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_unittest_db.py FF [100%]

================================= FAILURES =================================
___________________________ MyTest.test_method1 ____________________________

self = <test_unittest_db.MyTest testMethod=test_method1>

 def test_method1(self):
 assert hasattr(self, "db")
> assert 0, self.db # fail for demo purposes
E AssertionError: <conftest.db_class.<locals>.DummyDB object at 0xdeadbeef>
E assert 0

test_unittest_db.py:9: AssertionError
___________________________ MyTest.test_method2 ____________________________

self = <test_unittest_db.MyTest testMethod=test_method2>

 def test_method2(self):
> assert 0, self.db # fail for demo purposes
E AssertionError: <conftest.db_class.<locals>.DummyDB object at 0xdeadbeef>
E assert 0

test_unittest_db.py:12: AssertionError
========================= 2 failed in 0.12 seconds =========================

This default pytest traceback shows that the two test methods
share the same self.db instance which was our intention
when writing the class-scoped fixture function above.

Using autouse fixtures and accessing other fixtures

Although it’s usually better to explicitly declare use of fixtures you need
for a given test, you may sometimes want to have fixtures that are
automatically used in a given context. After all, the traditional
style of unittest-setup mandates the use of this implicit fixture writing
and chances are, you are used to it or like it.

You can flag fixture functions with @pytest.fixture(autouse=True)
and define the fixture function in the context where you want it used.
Let’s look at an initdir fixture which makes all test methods of a
TestCase class execute in a temporary directory with a
pre-initialized samplefile.ini. Our initdir fixture itself uses
the pytest builtin tmpdir fixture to delegate the
creation of a per-test temporary directory:

content of test_unittest_cleandir.py
import pytest
import unittest

class MyTest(unittest.TestCase):

 @pytest.fixture(autouse=True)
 def initdir(self, tmpdir):
 tmpdir.chdir() # change to pytest-provided temporary directory
 tmpdir.join("samplefile.ini").write("# testdata")

 def test_method(self):
 with open("samplefile.ini") as f:
 s = f.read()
 assert "testdata" in s

Due to the autouse flag the initdir fixture function will be
used for all methods of the class where it is defined. This is a
shortcut for using a @pytest.mark.usefixtures("initdir") marker
on the class like in the previous example.

Running this test module …:

$ pytest -q test_unittest_cleandir.py
. [100%]
1 passed in 0.12 seconds

… gives us one passed test because the initdir fixture function
was executed ahead of the test_method.

Note

unittest.TestCase methods cannot directly receive fixture
arguments as implementing that is likely to inflict
on the ability to run general unittest.TestCase test suites.

The above usefixtures and autouse examples should help to mix in
pytest fixtures into unittest suites.

You can also gradually move away from subclassing from unittest.TestCase to plain asserts
and then start to benefit from the full pytest feature set step by step.

Note

Running tests from unittest.TestCase subclasses with --pdb will
disable tearDown and cleanup methods for the case that an Exception
occurs. This allows proper post mortem debugging for all applications
which have significant logic in their tearDown machinery. However,
supporting this feature has the following side effect: If people
overwrite unittest.TestCase __call__ or run, they need to
to overwrite debug in the same way (this is also true for standard
unittest).

Note

Due to architectural differences between the two frameworks, setup and
teardown for unittest-based tests is performed during the call phase
of testing instead of in pytest’s standard setup and teardown
stages. This can be important to understand in some situations, particularly
when reasoning about errors. For example, if a unittest-based suite
exhibits errors during setup, pytest will report no errors during its
setup phase and will instead raise the error during call.

Running tests written for nose

pytest has basic support for running tests written for nose [https://nose.readthedocs.io/en/latest/].

Usage

After Install pytest type:

python setup.py develop # make sure tests can import our package
pytest # instead of 'nosetests'

and you should be able to run your nose style tests and
make use of pytest’s capabilities.

Supported nose Idioms

	setup and teardown at module/class/method level

	SkipTest exceptions and markers

	setup/teardown decorators

	yield-based tests and their setup (considered deprecated as of pytest 3.0)

	__test__ attribute on modules/classes/functions

	general usage of nose utilities

Unsupported idioms / known issues

	unittest-style setUp, tearDown, setUpClass, tearDownClass
are recognized only on unittest.TestCase classes but not
on plain classes. nose supports these methods also on plain
classes but pytest deliberately does not. As nose and pytest already
both support setup_class, teardown_class, setup_method, teardown_method
it doesn’t seem useful to duplicate the unittest-API like nose does.
If you however rather think pytest should support the unittest-spelling on
plain classes please post to this issue [https://github.com/pytest-dev/pytest/issues/377/].

	nose imports test modules with the same import path (e.g.
tests.test_mod) but different file system paths
(e.g. tests/test_mode.py and other/tests/test_mode.py)
by extending sys.path/import semantics. pytest does not do that
but there is discussion in #268 [https://github.com/pytest-dev/pytest/issues/268] for adding some support. Note that
nose2 choose to avoid this sys.path/import hackery [https://nose2.readthedocs.io/en/latest/differences.html#test-discovery-and-loading].

If you place a conftest.py file in the root directory of your project
(as determined by pytest) pytest will run tests “nose style” against
the code below that directory by adding it to your sys.path instead of
running against your installed code.

You may find yourself wanting to do this if you ran python setup.py install
to set up your project, as opposed to python setup.py develop or any of
the package manager equivalents. Installing with develop in a
virtual environment like tox is recommended over this pattern.

	nose-style doctests are not collected and executed correctly,
also doctest fixtures don’t work.

	no nose-configuration is recognized.

	yield-based methods don’t support setup properly because
the setup method is always called in the same class instance.
There are no plans to fix this currently because yield-tests
are deprecated in pytest 3.0, with pytest.mark.parametrize
being the recommended alternative.

classic xunit-style setup

This section describes a classic and popular way how you can implement
fixtures (setup and teardown test state) on a per-module/class/function basis.

Note

While these setup/teardown methods are simple and familiar to those
coming from a unittest or nose background, you may also consider
using pytest’s more powerful fixture mechanism which leverages the concept of dependency injection, allowing
for a more modular and more scalable approach for managing test state,
especially for larger projects and for functional testing. You can
mix both fixture mechanisms in the same file but
test methods of unittest.TestCase subclasses
cannot receive fixture arguments.

Module level setup/teardown

If you have multiple test functions and test classes in a single
module you can optionally implement the following fixture methods
which will usually be called once for all the functions:

def setup_module(module):
 """ setup any state specific to the execution of the given module."""

def teardown_module(module):
 """ teardown any state that was previously setup with a setup_module
 method.
 """

As of pytest-3.0, the module parameter is optional.

Class level setup/teardown

Similarly, the following methods are called at class level before
and after all test methods of the class are called:

@classmethod
def setup_class(cls):
 """ setup any state specific to the execution of the given class (which
 usually contains tests).
 """

@classmethod
def teardown_class(cls):
 """ teardown any state that was previously setup with a call to
 setup_class.
 """

Method and function level setup/teardown

Similarly, the following methods are called around each method invocation:

def setup_method(self, method):
 """ setup any state tied to the execution of the given method in a
 class. setup_method is invoked for every test method of a class.
 """

def teardown_method(self, method):
 """ teardown any state that was previously setup with a setup_method
 call.
 """

As of pytest-3.0, the method parameter is optional.

If you would rather define test functions directly at module level
you can also use the following functions to implement fixtures:

def setup_function(function):
 """ setup any state tied to the execution of the given function.
 Invoked for every test function in the module.
 """

def teardown_function(function):
 """ teardown any state that was previously setup with a setup_function
 call.
 """

As of pytest-3.0, the function parameter is optional.

Remarks:

	It is possible for setup/teardown pairs to be invoked multiple times
per testing process.

	teardown functions are not called if the corresponding setup function existed
and failed/was skipped.

	Prior to pytest-4.2, xunit-style functions did not obey the scope rules of fixtures, so
it was possible, for example, for a setup_method to be called before a
session-scoped autouse fixture.

Now the xunit-style functions are integrated with the fixture mechanism and obey the proper
scope rules of fixtures involved in the call.

Installing and Using plugins

This section talks about installing and using third party plugins.
For writing your own plugins, please refer to Writing plugins.

Installing a third party plugin can be easily done with pip:

pip install pytest-NAME
pip uninstall pytest-NAME

If a plugin is installed, pytest automatically finds and integrates it,
there is no need to activate it.

Here is a little annotated list for some popular plugins:

	pytest-django [https://pypi.org/project/pytest-django/]: write tests
for django [https://www.djangoproject.com/] apps, using pytest integration.

	pytest-twisted [https://pypi.org/project/pytest-twisted/]: write tests
for twisted [http://twistedmatrix.com] apps, starting a reactor and
processing deferreds from test functions.

	pytest-cov [https://pypi.org/project/pytest-cov/]:
coverage reporting, compatible with distributed testing

	pytest-xdist [https://pypi.org/project/pytest-xdist/]:
to distribute tests to CPUs and remote hosts, to run in boxed
mode which allows to survive segmentation faults, to run in
looponfailing mode, automatically re-running failing tests
on file changes.

	pytest-instafail [https://pypi.org/project/pytest-instafail/]:
to report failures while the test run is happening.

	pytest-bdd [https://pypi.org/project/pytest-bdd/] and
pytest-konira [https://pypi.org/project/pytest-konira/]
to write tests using behaviour-driven testing.

	pytest-timeout [https://pypi.org/project/pytest-timeout/]:
to timeout tests based on function marks or global definitions.

	pytest-pep8 [https://pypi.org/project/pytest-pep8/]:
a --pep8 option to enable PEP8 compliance checking.

	pytest-flakes [https://pypi.org/project/pytest-flakes/]:
check source code with pyflakes.

	oejskit [https://pypi.org/project/oejskit/]:
a plugin to run javascript unittests in live browsers.

To see a complete list of all plugins with their latest testing
status against different pytest and Python versions, please visit
plugincompat [http://plugincompat.herokuapp.com/].

You may also discover more plugins through a pytest- pypi.org search [https://pypi.org/search/?q=pytest-].

Requiring/Loading plugins in a test module or conftest file

You can require plugins in a test module or a conftest file like this:

pytest_plugins = ("myapp.testsupport.myplugin",)

When the test module or conftest plugin is loaded the specified plugins
will be loaded as well.

Note

Requiring plugins using a pytest_plugins variable in non-root
conftest.py files is deprecated. See
full explanation
in the Writing plugins section.

Note

The name pytest_plugins is reserved and should not be used as a
name for a custom plugin module.

Finding out which plugins are active

If you want to find out which plugins are active in your
environment you can type:

pytest --trace-config

and will get an extended test header which shows activated plugins
and their names. It will also print local plugins aka
conftest.py files when they are loaded.

Deactivating / unregistering a plugin by name

You can prevent plugins from loading or unregister them:

pytest -p no:NAME

This means that any subsequent try to activate/load the named
plugin will not work.

If you want to unconditionally disable a plugin for a project, you can add
this option to your pytest.ini file:

[pytest]
addopts = -p no:NAME

Alternatively to disable it only in certain environments (for example in a
CI server), you can set PYTEST_ADDOPTS environment variable to
-p no:name.

See Finding out which plugins are active for how to obtain the name of a plugin.

Writing plugins

It is easy to implement local conftest plugins for your own project
or pip-installable plugins that can be used throughout many projects,
including third party projects. Please refer to Installing and Using plugins if you
only want to use but not write plugins.

A plugin contains one or multiple hook functions. Writing hooks
explains the basics and details of how you can write a hook function yourself.
pytest implements all aspects of configuration, collection, running and
reporting by calling well specified hooks of the following plugins:

	builtin plugins: loaded from pytest’s internal _pytest directory.

	external plugins: modules discovered through
setuptools entry points

	conftest.py plugins: modules auto-discovered in test directories

In principle, each hook call is a 1:N Python function call where N is the
number of registered implementation functions for a given specification.
All specifications and implementations follow the pytest_ prefix
naming convention, making them easy to distinguish and find.

Plugin discovery order at tool startup

pytest loads plugin modules at tool startup in the following way:

	by loading all builtin plugins

	by loading all plugins registered through setuptools entry points.

	by pre-scanning the command line for the -p name option
and loading the specified plugin before actual command line parsing.

	by loading all conftest.py files as inferred by the command line
invocation:

	if no test paths are specified use current dir as a test path

	if exists, load conftest.py and test*/conftest.py relative
to the directory part of the first test path.

Note that pytest does not find conftest.py files in deeper nested
sub directories at tool startup. It is usually a good idea to keep
your conftest.py file in the top level test or project root directory.

	by recursively loading all plugins specified by the
pytest_plugins variable in conftest.py files

conftest.py: local per-directory plugins

Local conftest.py plugins contain directory-specific hook
implementations. Hook Session and test running activities will
invoke all hooks defined in conftest.py files closer to the
root of the filesystem. Example of implementing the
pytest_runtest_setup hook so that is called for tests in the a
sub directory but not for other directories:

a/conftest.py:
 def pytest_runtest_setup(item):
 # called for running each test in 'a' directory
 print("setting up", item)

a/test_sub.py:
 def test_sub():
 pass

test_flat.py:
 def test_flat():
 pass

Here is how you might run it:

pytest test_flat.py --capture=no # will not show "setting up"
pytest a/test_sub.py --capture=no # will show "setting up"

Note

If you have conftest.py files which do not reside in a
python package directory (i.e. one containing an __init__.py) then
“import conftest” can be ambiguous because there might be other
conftest.py files as well on your PYTHONPATH or sys.path.
It is thus good practice for projects to either put conftest.py
under a package scope or to never import anything from a
conftest.py file.

See also: pytest import mechanisms and sys.path/PYTHONPATH.

Writing your own plugin

If you want to write a plugin, there are many real-life examples
you can copy from:

	a custom collection example plugin: A basic example for specifying tests in Yaml files

	builtin plugins which provide pytest’s own functionality

	many external plugins [http://plugincompat.herokuapp.com] providing additional features

All of these plugins implement hooks and/or fixtures
to extend and add functionality.

Note

Make sure to check out the excellent
cookiecutter-pytest-plugin [https://github.com/pytest-dev/cookiecutter-pytest-plugin]
project, which is a cookiecutter template [https://github.com/audreyr/cookiecutter]
for authoring plugins.

The template provides an excellent starting point with a working plugin,
tests running with tox, a comprehensive README file as well as a
pre-configured entry-point.

Also consider contributing your plugin to pytest-dev
once it has some happy users other than yourself.

Making your plugin installable by others

If you want to make your plugin externally available, you
may define a so-called entry point for your distribution so
that pytest finds your plugin module. Entry points are
a feature that is provided by setuptools [https://pypi.org/project/setuptools/]. pytest looks up
the pytest11 entrypoint to discover its
plugins and you can thus make your plugin available by defining
it in your setuptools-invocation:

sample ./setup.py file
from setuptools import setup

setup(
 name="myproject",
 packages=["myproject"],
 # the following makes a plugin available to pytest
 entry_points={"pytest11": ["name_of_plugin = myproject.pluginmodule"]},
 # custom PyPI classifier for pytest plugins
 classifiers=["Framework :: Pytest"],
)

If a package is installed this way, pytest will load
myproject.pluginmodule as a plugin which can define
hooks.

Note

Make sure to include Framework :: Pytest in your list of
PyPI classifiers [https://python-packaging-user-guide.readthedocs.io/distributing/#classifiers]
to make it easy for users to find your plugin.

Assertion Rewriting

One of the main features of pytest is the use of plain assert
statements and the detailed introspection of expressions upon
assertion failures. This is provided by “assertion rewriting” which
modifies the parsed AST before it gets compiled to bytecode. This is
done via a PEP 302 [https://www.python.org/dev/peps/pep-0302] import hook which gets installed early on when
pytest starts up and will perform this rewriting when modules get
imported. However since we do not want to test different bytecode
then you will run in production this hook only rewrites test modules
themselves as well as any modules which are part of plugins. Any
other imported module will not be rewritten and normal assertion
behaviour will happen.

If you have assertion helpers in other modules where you would need
assertion rewriting to be enabled you need to ask pytest
explicitly to rewrite this module before it gets imported.

	
register_assert_rewrite(*names)[source]

	Register one or more module names to be rewritten on import.

This function will make sure that this module or all modules inside
the package will get their assert statements rewritten.
Thus you should make sure to call this before the module is
actually imported, usually in your __init__.py if you are a plugin
using a package.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the given module names are not strings.

This is especially important when you write a pytest plugin which is
created using a package. The import hook only treats conftest.py
files and any modules which are listed in the pytest11 entrypoint
as plugins. As an example consider the following package:

pytest_foo/__init__.py
pytest_foo/plugin.py
pytest_foo/helper.py

With the following typical setup.py extract:

setup(..., entry_points={"pytest11": ["foo = pytest_foo.plugin"]}, ...)

In this case only pytest_foo/plugin.py will be rewritten. If the
helper module also contains assert statements which need to be
rewritten it needs to be marked as such, before it gets imported.
This is easiest by marking it for rewriting inside the
__init__.py module, which will always be imported first when a
module inside a package is imported. This way plugin.py can still
import helper.py normally. The contents of
pytest_foo/__init__.py will then need to look like this:

import pytest

pytest.register_assert_rewrite("pytest_foo.helper")

Requiring/Loading plugins in a test module or conftest file

You can require plugins in a test module or a conftest.py file like this:

pytest_plugins = ["name1", "name2"]

When the test module or conftest plugin is loaded the specified plugins
will be loaded as well. Any module can be blessed as a plugin, including internal
application modules:

pytest_plugins = "myapp.testsupport.myplugin"

pytest_plugins variables are processed recursively, so note that in the example above
if myapp.testsupport.myplugin also declares pytest_plugins, the contents
of the variable will also be loaded as plugins, and so on.

Note

Requiring plugins using a pytest_plugins variable in non-root
conftest.py files is deprecated.

This is important because conftest.py files implement per-directory
hook implementations, but once a plugin is imported, it will affect the
entire directory tree. In order to avoid confusion, defining
pytest_plugins in any conftest.py file which is not located in the
tests root directory is deprecated, and will raise a warning.

This mechanism makes it easy to share fixtures within applications or even
external applications without the need to create external plugins using
the setuptools’s entry point technique.

Plugins imported by pytest_plugins will also automatically be marked
for assertion rewriting (see pytest.register_assert_rewrite()).
However for this to have any effect the module must not be
imported already; if it was already imported at the time the
pytest_plugins statement is processed, a warning will result and
assertions inside the plugin will not be rewritten. To fix this you
can either call pytest.register_assert_rewrite() yourself before
the module is imported, or you can arrange the code to delay the
importing until after the plugin is registered.

Accessing another plugin by name

If a plugin wants to collaborate with code from
another plugin it can obtain a reference through
the plugin manager like this:

plugin = config.pluginmanager.get_plugin("name_of_plugin")

If you want to look at the names of existing plugins, use
the --trace-config option.

Registering custom markers

If your plugin uses any markers, you should register them so that they appear in
pytest’s help text and do not cause spurious warnings.
For example, the following plugin would register cool_marker and
mark_with for all users:

def pytest_configure(config):
 config.addinivalue_line("markers", "cool_marker: this one is for cool tests.")
 config.addinivalue_line(
 "markers", "mark_with(arg, arg2): this marker takes arguments."
)

Testing plugins

pytest comes with a plugin named pytester that helps you write tests for
your plugin code. The plugin is disabled by default, so you will have to enable
it before you can use it.

You can do so by adding the following line to a conftest.py file in your
testing directory:

content of conftest.py

pytest_plugins = ["pytester"]

Alternatively you can invoke pytest with the -p pytester command line
option.

This will allow you to use the testdir
fixture for testing your plugin code.

Let’s demonstrate what you can do with the plugin with an example. Imagine we
developed a plugin that provides a fixture hello which yields a function
and we can invoke this function with one optional parameter. It will return a
string value of Hello World! if we do not supply a value or Hello
{value}! if we do supply a string value.

-*- coding: utf-8 -*-

import pytest

def pytest_addoption(parser):
 group = parser.getgroup("helloworld")
 group.addoption(
 "--name",
 action="store",
 dest="name",
 default="World",
 help='Default "name" for hello().',
)

@pytest.fixture
def hello(request):
 name = request.config.getoption("name")

 def _hello(name=None):
 if not name:
 name = request.config.getoption("name")
 return "Hello {name}!".format(name=name)

 return _hello

Now the testdir fixture provides a convenient API for creating temporary
conftest.py files and test files. It also allows us to run the tests and
return a result object, with which we can assert the tests’ outcomes.

def test_hello(testdir):
 """Make sure that our plugin works."""

 # create a temporary conftest.py file
 testdir.makeconftest(
 """
 import pytest

 @pytest.fixture(params=[
 "Brianna",
 "Andreas",
 "Floris",
])
 def name(request):
 return request.param
 """
)

 # create a temporary pytest test file
 testdir.makepyfile(
 """
 def test_hello_default(hello):
 assert hello() == "Hello World!"

 def test_hello_name(hello, name):
 assert hello(name) == "Hello {0}!".format(name)
 """
)

 # run all tests with pytest
 result = testdir.runpytest()

 # check that all 4 tests passed
 result.assert_outcomes(passed=4)

additionally it is possible to copy examples for an example folder before running pytest on it

content of pytest.ini
[pytest]
pytester_example_dir = .

content of test_example.py

def test_plugin(testdir):
 testdir.copy_example("test_example.py")
 testdir.runpytest("-k", "test_example")

def test_example():
 pass

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 2 items

test_example.py .. [100%]

============================= warnings summary =============================
test_example.py::test_plugin
 $REGENDOC_TMPDIR/test_example.py:4: PytestExperimentalApiWarning: testdir.copy_example is an experimental api that may change over time
 testdir.copy_example("test_example.py")

-- Docs: https://docs.pytest.org/en/latest/warnings.html
=================== 2 passed, 1 warnings in 0.12 seconds ===================

For more information about the result object that runpytest() returns, and
the methods that it provides please check out the RunResult documentation.

Writing hook functions

hook function validation and execution

pytest calls hook functions from registered plugins for any
given hook specification. Let’s look at a typical hook function
for the pytest_collection_modifyitems(session, config,
items) hook which pytest calls after collection of all test items is
completed.

When we implement a pytest_collection_modifyitems function in our plugin
pytest will during registration verify that you use argument
names which match the specification and bail out if not.

Let’s look at a possible implementation:

def pytest_collection_modifyitems(config, items):
 # called after collection is completed
 # you can modify the ``items`` list
 ...

Here, pytest will pass in config (the pytest config object)
and items (the list of collected test items) but will not pass
in the session argument because we didn’t list it in the function
signature. This dynamic “pruning” of arguments allows pytest to
be “future-compatible”: we can introduce new hook named parameters without
breaking the signatures of existing hook implementations. It is one of
the reasons for the general long-lived compatibility of pytest plugins.

Note that hook functions other than pytest_runtest_* are not
allowed to raise exceptions. Doing so will break the pytest run.

firstresult: stop at first non-None result

Most calls to pytest hooks result in a list of results which contains
all non-None results of the called hook functions.

Some hook specifications use the firstresult=True option so that the hook
call only executes until the first of N registered functions returns a
non-None result which is then taken as result of the overall hook call.
The remaining hook functions will not be called in this case.

hookwrapper: executing around other hooks

pytest plugins can implement hook wrappers which wrap the execution
of other hook implementations. A hook wrapper is a generator function
which yields exactly once. When pytest invokes hooks it first executes
hook wrappers and passes the same arguments as to the regular hooks.

At the yield point of the hook wrapper pytest will execute the next hook
implementations and return their result to the yield point in the form of
a Result instance which encapsulates a result or
exception info. The yield point itself will thus typically not raise
exceptions (unless there are bugs).

Here is an example definition of a hook wrapper:

import pytest

@pytest.hookimpl(hookwrapper=True)
def pytest_pyfunc_call(pyfuncitem):
 do_something_before_next_hook_executes()

 outcome = yield
 # outcome.excinfo may be None or a (cls, val, tb) tuple

 res = outcome.get_result() # will raise if outcome was exception

 post_process_result(res)

 outcome.force_result(new_res) # to override the return value to the plugin system

Note that hook wrappers don’t return results themselves, they merely
perform tracing or other side effects around the actual hook implementations.
If the result of the underlying hook is a mutable object, they may modify
that result but it’s probably better to avoid it.

For more information, consult the pluggy documentation [http://pluggy.readthedocs.io/en/latest/#wrappers].

Hook function ordering / call example

For any given hook specification there may be more than one
implementation and we thus generally view hook execution as a
1:N function call where N is the number of registered functions.
There are ways to influence if a hook implementation comes before or
after others, i.e. the position in the N-sized list of functions:

Plugin 1
@pytest.hookimpl(tryfirst=True)
def pytest_collection_modifyitems(items):
 # will execute as early as possible
 ...

Plugin 2
@pytest.hookimpl(trylast=True)
def pytest_collection_modifyitems(items):
 # will execute as late as possible
 ...

Plugin 3
@pytest.hookimpl(hookwrapper=True)
def pytest_collection_modifyitems(items):
 # will execute even before the tryfirst one above!
 outcome = yield
 # will execute after all non-hookwrappers executed

Here is the order of execution:

	Plugin3’s pytest_collection_modifyitems called until the yield point
because it is a hook wrapper.

	Plugin1’s pytest_collection_modifyitems is called because it is marked
with tryfirst=True.

	Plugin2’s pytest_collection_modifyitems is called because it is marked
with trylast=True (but even without this mark it would come after
Plugin1).

	Plugin3’s pytest_collection_modifyitems then executing the code after the yield
point. The yield receives a Result instance which encapsulates
the result from calling the non-wrappers. Wrappers shall not modify the result.

It’s possible to use tryfirst and trylast also in conjunction with
hookwrapper=True in which case it will influence the ordering of hookwrappers
among each other.

Declaring new hooks

Plugins and conftest.py files may declare new hooks that can then be
implemented by other plugins in order to alter behaviour or interact with
the new plugin:

	
pytest_addhooks(pluginmanager)[source]

	called at plugin registration time to allow adding new hooks via a call to
pluginmanager.add_hookspecs(module_or_class, prefix).

	Parameters

	pluginmanager (_pytest.config.PytestPluginManager) – pytest plugin manager

Note

This hook is incompatible with hookwrapper=True.

Hooks are usually declared as do-nothing functions that contain only
documentation describing when the hook will be called and what return values
are expected.

For an example, see newhooks.py [https://github.com/pytest-dev/pytest-xdist/blob/974bd566c599dc6a9ea291838c6f226197208b46/xdist/newhooks.py] from xdist [https://github.com/pytest-dev/pytest-xdist].

Optionally using hooks from 3rd party plugins

Using new hooks from plugins as explained above might be a little tricky
because of the standard validation mechanism:
if you depend on a plugin that is not installed, validation will fail and
the error message will not make much sense to your users.

One approach is to defer the hook implementation to a new plugin instead of
declaring the hook functions directly in your plugin module, for example:

contents of myplugin.py

class DeferPlugin(object):
 """Simple plugin to defer pytest-xdist hook functions."""

 def pytest_testnodedown(self, node, error):
 """standard xdist hook function.
 """

def pytest_configure(config):
 if config.pluginmanager.hasplugin("xdist"):
 config.pluginmanager.register(DeferPlugin())

This has the added benefit of allowing you to conditionally install hooks
depending on which plugins are installed.

Logging

pytest captures log messages of level WARNING or above automatically and displays them in their own section
for each failed test in the same manner as captured stdout and stderr.

Running without options:

pytest

Shows failed tests like so:

----------------------- Captured stdlog call ----------------------
test_reporting.py 26 WARNING text going to logger
----------------------- Captured stdout call ----------------------
text going to stdout
----------------------- Captured stderr call ----------------------
text going to stderr
==================== 2 failed in 0.02 seconds =====================

By default each captured log message shows the module, line number, log level
and message.

If desired the log and date format can be specified to
anything that the logging module supports by passing specific formatting options:

pytest --log-format="%(asctime)s %(levelname)s %(message)s" \
 --log-date-format="%Y-%m-%d %H:%M:%S"

Shows failed tests like so:

----------------------- Captured stdlog call ----------------------
2010-04-10 14:48:44 WARNING text going to logger
----------------------- Captured stdout call ----------------------
text going to stdout
----------------------- Captured stderr call ----------------------
text going to stderr
==================== 2 failed in 0.02 seconds =====================

These options can also be customized through pytest.ini file:

[pytest]
log_format = %(asctime)s %(levelname)s %(message)s
log_date_format = %Y-%m-%d %H:%M:%S

Further it is possible to disable reporting of captured content (stdout,
stderr and logs) on failed tests completely with:

pytest --show-capture=no

caplog fixture

Inside tests it is possible to change the log level for the captured log
messages. This is supported by the caplog fixture:

def test_foo(caplog):
 caplog.set_level(logging.INFO)
 pass

By default the level is set on the root logger,
however as a convenience it is also possible to set the log level of any
logger:

def test_foo(caplog):
 caplog.set_level(logging.CRITICAL, logger='root.baz')
 pass

The log levels set are restored automatically at the end of the test.

It is also possible to use a context manager to temporarily change the log
level inside a with block:

def test_bar(caplog):
 with caplog.at_level(logging.INFO):
 pass

Again, by default the level of the root logger is affected but the level of any
logger can be changed instead with:

def test_bar(caplog):
 with caplog.at_level(logging.CRITICAL, logger='root.baz'):
 pass

Lastly all the logs sent to the logger during the test run are made available on
the fixture in the form of both the logging.LogRecord instances and the final log text.
This is useful for when you want to assert on the contents of a message:

def test_baz(caplog):
 func_under_test()
 for record in caplog.records:
 assert record.levelname != 'CRITICAL'
 assert 'wally' not in caplog.text

For all the available attributes of the log records see the
logging.LogRecord class.

You can also resort to record_tuples if all you want to do is to ensure,
that certain messages have been logged under a given logger name with a given
severity and message:

def test_foo(caplog):
 logging.getLogger().info('boo %s', 'arg')

 assert caplog.record_tuples == [
 ('root', logging.INFO, 'boo arg'),
]

You can call caplog.clear() to reset the captured log records in a test:

def test_something_with_clearing_records(caplog):
 some_method_that_creates_log_records()
 caplog.clear()
 your_test_method()
 assert ['Foo'] == [rec.message for rec in caplog.records]

The caplog.records attribute contains records from the current stage only, so
inside the setup phase it contains only setup logs, same with the call and
teardown phases.

To access logs from other stages, use the caplog.get_records(when) method. As an example,
if you want to make sure that tests which use a certain fixture never log any warnings, you can inspect
the records for the setup and call stages during teardown like so:

@pytest.fixture
def window(caplog):
 window = create_window()
 yield window
 for when in ("setup", "call"):
 messages = [
 x.message for x in caplog.get_records(when) if x.level == logging.WARNING
]
 if messages:
 pytest.fail(
 "warning messages encountered during testing: {}".format(messages)
)

The full API is available at _pytest.logging.LogCaptureFixture.

Live Logs

By setting the log_cli configuration option to true, pytest will output
logging records as they are emitted directly into the console.

You can specify the logging level for which log records with equal or higher
level are printed to the console by passing --log-cli-level. This setting
accepts the logging level names as seen in python’s documentation or an integer
as the logging level num.

Additionally, you can also specify --log-cli-format and
--log-cli-date-format which mirror and default to --log-format and
--log-date-format if not provided, but are applied only to the console
logging handler.

All of the CLI log options can also be set in the configuration INI file. The
option names are:

	log_cli_level

	log_cli_format

	log_cli_date_format

If you need to record the whole test suite logging calls to a file, you can pass
--log-file=/path/to/log/file. This log file is opened in write mode which
means that it will be overwritten at each run tests session.

You can also specify the logging level for the log file by passing
--log-file-level. This setting accepts the logging level names as seen in
python’s documentation(ie, uppercased level names) or an integer as the logging
level num.

Additionally, you can also specify --log-file-format and
--log-file-date-format which are equal to --log-format and
--log-date-format but are applied to the log file logging handler.

All of the log file options can also be set in the configuration INI file. The
option names are:

	log_file

	log_file_level

	log_file_format

	log_file_date_format

You can call set_log_path() to customize the log_file path dynamically. This functionality
is considered experimental.

Release notes

This feature was introduced as a drop-in replacement for the pytest-catchlog [https://pypi.org/project/pytest-catchlog/] plugin and they conflict
with each other. The backward compatibility API with pytest-capturelog
has been dropped when this feature was introduced, so if for that reason you
still need pytest-catchlog you can disable the internal feature by
adding to your pytest.ini:

[pytest]
 addopts=-p no:logging

Incompatible changes in pytest 3.4

This feature was introduced in 3.3 and some incompatible changes have been
made in 3.4 after community feedback:

	Log levels are no longer changed unless explicitly requested by the log_level configuration
or --log-level command-line options. This allows users to configure logger objects themselves.

	Live Logs is now disabled by default and can be enabled setting the
log_cli configuration option to true. When enabled, the verbosity is increased so logging for each
test is visible.

	Live Logs are now sent to sys.stdout and no longer require the -s command-line option
to work.

If you want to partially restore the logging behavior of version 3.3, you can add this options to your ini
file:

[pytest]
log_cli=true
log_level=NOTSET

More details about the discussion that lead to this changes can be read in
issue #3013 [https://github.com/pytest-dev/pytest/issues/3013].

Reference

This page contains the full reference to pytest’s API.

	Functions

	pytest.approx

	pytest.fail

	pytest.skip

	pytest.importorskip

	pytest.xfail

	pytest.exit

	pytest.main

	pytest.param

	pytest.raises

	pytest.deprecated_call

	pytest.register_assert_rewrite

	pytest.warns

	pytest.freeze_includes

	Marks

	pytest.mark.filterwarnings

	pytest.mark.parametrize

	pytest.mark.skip

	pytest.mark.skipif

	pytest.mark.usefixtures

	pytest.mark.xfail

	custom marks

	Fixtures

	@pytest.fixture

	config.cache

	capsys

	capsysbinary

	capfd

	capfdbinary

	doctest_namespace

	request

	pytestconfig

	record_property

	record_testsuite_property

	caplog

	monkeypatch

	testdir

	recwarn

	tmp_path

	tmp_path_factory

	tmpdir

	tmpdir_factory

	Hooks

	Bootstrapping hooks

	Initialization hooks

	Test running hooks

	Collection hooks

	Reporting hooks

	Debugging/Interaction hooks

	Objects

	CallInfo

	Class

	Collector

	Config

	ExceptionInfo

	FixtureDef

	FSCollector

	Function

	Item

	MarkDecorator

	MarkGenerator

	Mark

	Metafunc

	Module

	Node

	Parser

	PluginManager

	PytestPluginManager

	Session

	TestReport

	_Result

	Special Variables

	collect_ignore

	collect_ignore_glob

	pytest_plugins

	pytest_mark

	PYTEST_DONT_REWRITE (module docstring)

	Environment Variables

	PYTEST_ADDOPTS

	PYTEST_DEBUG

	PYTEST_PLUGINS

	PYTEST_DISABLE_PLUGIN_AUTOLOAD

	PYTEST_CURRENT_TEST

	Configuration Options

Functions

pytest.approx

	
approx(expected, rel=None, abs=None, nan_ok=False)[source]

	Assert that two numbers (or two sets of numbers) are equal to each other
within some tolerance.

Due to the intricacies of floating-point arithmetic [https://docs.python.org/3/tutorial/floatingpoint.html], numbers that we
would intuitively expect to be equal are not always so:

>>> 0.1 + 0.2 == 0.3
False

This problem is commonly encountered when writing tests, e.g. when making
sure that floating-point values are what you expect them to be. One way to
deal with this problem is to assert that two floating-point numbers are
equal to within some appropriate tolerance:

>>> abs((0.1 + 0.2) - 0.3) < 1e-6
True

However, comparisons like this are tedious to write and difficult to
understand. Furthermore, absolute comparisons like the one above are
usually discouraged because there’s no tolerance that works well for all
situations. 1e-6 is good for numbers around 1, but too small for
very big numbers and too big for very small ones. It’s better to express
the tolerance as a fraction of the expected value, but relative comparisons
like that are even more difficult to write correctly and concisely.

The approx class performs floating-point comparisons using a syntax
that’s as intuitive as possible:

>>> from pytest import approx
>>> 0.1 + 0.2 == approx(0.3)
True

The same syntax also works for sequences of numbers:

>>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
True

Dictionary values:

>>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
True

numpy arrays:

>>> import numpy as np
>>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6]))
True

And for a numpy array against a scalar:

>>> import numpy as np
>>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3)
True

By default, approx considers numbers within a relative tolerance of
1e-6 (i.e. one part in a million) of its expected value to be equal.
This treatment would lead to surprising results if the expected value was
0.0, because nothing but 0.0 itself is relatively close to 0.0.
To handle this case less surprisingly, approx also considers numbers
within an absolute tolerance of 1e-12 of its expected value to be
equal. Infinity and NaN are special cases. Infinity is only considered
equal to itself, regardless of the relative tolerance. NaN is not
considered equal to anything by default, but you can make it be equal to
itself by setting the nan_ok argument to True. (This is meant to
facilitate comparing arrays that use NaN to mean “no data”.)

Both the relative and absolute tolerances can be changed by passing
arguments to the approx constructor:

>>> 1.0001 == approx(1)
False
>>> 1.0001 == approx(1, rel=1e-3)
True
>>> 1.0001 == approx(1, abs=1e-3)
True

If you specify abs but not rel, the comparison will not consider
the relative tolerance at all. In other words, two numbers that are within
the default relative tolerance of 1e-6 will still be considered unequal
if they exceed the specified absolute tolerance. If you specify both
abs and rel, the numbers will be considered equal if either
tolerance is met:

>>> 1 + 1e-8 == approx(1)
True
>>> 1 + 1e-8 == approx(1, abs=1e-12)
False
>>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
True

If you’re thinking about using approx, then you might want to know how
it compares to other good ways of comparing floating-point numbers. All of
these algorithms are based on relative and absolute tolerances and should
agree for the most part, but they do have meaningful differences:

	math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0): True if the relative
tolerance is met w.r.t. either a or b or if the absolute
tolerance is met. Because the relative tolerance is calculated w.r.t.
both a and b, this test is symmetric (i.e. neither a nor
b is a “reference value”). You have to specify an absolute tolerance
if you want to compare to 0.0 because there is no tolerance by
default. Only available in python>=3.5. More information… [https://docs.python.org/3/library/math.html#math.isclose]

	numpy.isclose(a, b, rtol=1e-5, atol=1e-8): True if the difference
between a and b is less that the sum of the relative tolerance
w.r.t. b and the absolute tolerance. Because the relative tolerance
is only calculated w.r.t. b, this test is asymmetric and you can
think of b as the reference value. Support for comparing sequences
is provided by numpy.allclose. More information… [http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.isclose.html]

	unittest.TestCase.assertAlmostEqual(a, b): True if a and b
are within an absolute tolerance of 1e-7. No relative tolerance is
considered and the absolute tolerance cannot be changed, so this function
is not appropriate for very large or very small numbers. Also, it’s only
available in subclasses of unittest.TestCase and it’s ugly because it
doesn’t follow PEP8. More information… [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual]

	a == pytest.approx(b, rel=1e-6, abs=1e-12): True if the relative
tolerance is met w.r.t. b or if the absolute tolerance is met.
Because the relative tolerance is only calculated w.r.t. b, this test
is asymmetric and you can think of b as the reference value. In the
special case that you explicitly specify an absolute tolerance but not a
relative tolerance, only the absolute tolerance is considered.

Warning

Changed in version 3.2.

In order to avoid inconsistent behavior, TypeError is
raised for >, >=, < and <= comparisons.
The example below illustrates the problem:

assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10)
assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10)

In the second example one expects approx(0.1).__le__(0.1 + 1e-10)
to be called. But instead, approx(0.1).__lt__(0.1 + 1e-10) is used to
comparison. This is because the call hierarchy of rich comparisons
follows a fixed behavior. More information… [https://docs.python.org/3/reference/datamodel.html#object.__ge__]

pytest.fail

Tutorial: Skip and xfail: dealing with tests that cannot succeed

	
fail(msg='', pytrace=True)[source]

	Explicitly fail an executing test with the given message.

	Parameters

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – the message to show the user as reason for the failure.

	pytrace (bool [https://docs.python.org/3/library/functions.html#bool]) – if false the msg represents the full failure information and no
python traceback will be reported.

pytest.skip

	
skip(msg[, allow_module_level=False])[source]

	Skip an executing test with the given message.

This function should be called only during testing (setup, call or teardown) or
during collection by using the allow_module_level flag. This function can
be called in doctests as well.

	Parameters

	allow_module_level (bool [https://docs.python.org/3/library/functions.html#bool]) – allows this function to be called at
module level, skipping the rest of the module. Default to False.

Note

It is better to use the pytest.mark.skipif marker when possible to declare a test to be
skipped under certain conditions like mismatching platforms or
dependencies.
Similarly, use the # doctest: +SKIP directive (see doctest.SKIP [https://docs.python.org/3/library/doctest.html#doctest.SKIP])
to skip a doctest statically.

pytest.importorskip

	
importorskip(modname, minversion=None, reason=None)[source]

	Imports and returns the requested module modname, or skip the current test
if the module cannot be imported.

	Parameters

	
	modname (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the module to import

	minversion (str [https://docs.python.org/3/library/stdtypes.html#str]) – if given, the imported module __version__ attribute must be
at least this minimal version, otherwise the test is still skipped.

	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – if given, this reason is shown as the message when the module
cannot be imported.

pytest.xfail

	
xfail(reason='')[source]

	Imperatively xfail an executing test or setup functions with the given reason.

This function should be called only during testing (setup, call or teardown).

Note

It is better to use the pytest.mark.xfail marker when possible to declare a test to be
xfailed under certain conditions like known bugs or missing features.

pytest.exit

	
exit(msg, returncode=None)[source]

	Exit testing process.

	Parameters

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – message to display upon exit.

	returncode (int [https://docs.python.org/3/library/functions.html#int]) – return code to be used when exiting pytest.

pytest.main

	
main(args=None, plugins=None)[source]

	return exit code, after performing an in-process test run.

	Parameters

	
	args – list of command line arguments.

	plugins – list of plugin objects to be auto-registered during
initialization.

pytest.param

	
param(*values[, id][, marks])[source]

	Specify a parameter in pytest.mark.parametrize calls or
parametrized fixtures.

@pytest.mark.parametrize("test_input,expected", [
 ("3+5", 8),
 pytest.param("6*9", 42, marks=pytest.mark.xfail),
])
def test_eval(test_input, expected):
 assert eval(test_input) == expected

	Parameters

	
	values – variable args of the values of the parameter set, in order.

	marks – a single mark or a list of marks to be applied to this parameter set.

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id to attribute to this parameter set.

pytest.raises

Tutorial: Assertions about expected exceptions.

	
with raises(expected_exception: Exception[, match][, message]) as excinfo[source]

	Assert that a code block/function call raises expected_exception
or raise a failure exception otherwise.

	Parameters

	match – if specified, a string containing a regular expression,
or a regular expression object, that is tested against the string
representation of the exception using re.search. To match a literal
string that may contain special characters [https://docs.python.org/3/library/re.html#regular-expression-syntax], the pattern can
first be escaped with re.escape.

	Parameters

	message – (deprecated since 4.1) if specified, provides a custom failure message
if the exception is not raised. See the deprecation docs for a workaround.

Use pytest.raises as a context manager, which will capture the exception of the given
type:

>>> with raises(ZeroDivisionError):
... 1/0

If the code block does not raise the expected exception (ZeroDivisionError in the example
above), or no exception at all, the check will fail instead.

You can also use the keyword argument match to assert that the
exception matches a text or regex:

>>> with raises(ValueError, match='must be 0 or None'):
... raise ValueError("value must be 0 or None")

>>> with raises(ValueError, match=r'must be \d+$'):
... raise ValueError("value must be 42")

The context manager produces an ExceptionInfo object which can be used to inspect the
details of the captured exception:

>>> with raises(ValueError) as exc_info:
... raise ValueError("value must be 42")
>>> assert exc_info.type is ValueError
>>> assert exc_info.value.args[0] == "value must be 42"

Deprecated since version 4.1: In the context manager form you may use the keyword argument
message to specify a custom failure message that will be displayed
in case the pytest.raises check fails. This has been deprecated as it
is considered error prone as users often mean to use match instead.
See the deprecation docs for a workaround.

Note

When using pytest.raises as a context manager, it’s worthwhile to
note that normal context manager rules apply and that the exception
raised must be the final line in the scope of the context manager.
Lines of code after that, within the scope of the context manager will
not be executed. For example:

>>> value = 15
>>> with raises(ValueError) as exc_info:
... if value > 10:
... raise ValueError("value must be <= 10")
... assert exc_info.type is ValueError # this will not execute

Instead, the following approach must be taken (note the difference in
scope):

>>> with raises(ValueError) as exc_info:
... if value > 10:
... raise ValueError("value must be <= 10")
...
>>> assert exc_info.type is ValueError

Using with pytest.mark.parametrize

When using pytest.mark.parametrize
it is possible to parametrize tests such that
some runs raise an exception and others do not.

See Parametrizing conditional raising for an example.

Legacy form

It is possible to specify a callable by passing a to-be-called lambda:

>>> raises(ZeroDivisionError, lambda: 1/0)
<ExceptionInfo ...>

or you can specify an arbitrary callable with arguments:

>>> def f(x): return 1/x
...
>>> raises(ZeroDivisionError, f, 0)
<ExceptionInfo ...>
>>> raises(ZeroDivisionError, f, x=0)
<ExceptionInfo ...>

The form above is fully supported but discouraged for new code because the
context manager form is regarded as more readable and less error-prone.

Note

Similar to caught exception objects in Python, explicitly clearing
local references to returned ExceptionInfo objects can
help the Python interpreter speed up its garbage collection.

Clearing those references breaks a reference cycle
(ExceptionInfo –> caught exception –> frame stack raising
the exception –> current frame stack –> local variables –>
ExceptionInfo) which makes Python keep all objects referenced
from that cycle (including all local variables in the current
frame) alive until the next cyclic garbage collection run. See the
official Python try statement documentation for more detailed
information.

pytest.deprecated_call

Tutorial: Ensuring code triggers a deprecation warning.

	
with deprecated_call()[source]

	context manager that can be used to ensure a block of code triggers a
DeprecationWarning or PendingDeprecationWarning:

>>> import warnings
>>> def api_call_v2():
... warnings.warn('use v3 of this api', DeprecationWarning)
... return 200

>>> with deprecated_call():
... assert api_call_v2() == 200

deprecated_call can also be used by passing a function and *args and *kwargs,
in which case it will ensure calling func(*args, **kwargs) produces one of the warnings
types above.

pytest.register_assert_rewrite

Tutorial: Assertion Rewriting.

	
register_assert_rewrite(*names)[source]

	Register one or more module names to be rewritten on import.

This function will make sure that this module or all modules inside
the package will get their assert statements rewritten.
Thus you should make sure to call this before the module is
actually imported, usually in your __init__.py if you are a plugin
using a package.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the given module names are not strings.

pytest.warns

Tutorial: Asserting warnings with the warns function

	
with warns(expected_warning: Exception[, match])[source]

	Assert that code raises a particular class of warning.

Specifically, the parameter expected_warning can be a warning class or
sequence of warning classes, and the inside the with block must issue a warning of that class or
classes.

This helper produces a list of warnings.WarningMessage objects,
one for each warning raised.

This function can be used as a context manager, or any of the other ways
pytest.raises can be used:

>>> with warns(RuntimeWarning):
... warnings.warn("my warning", RuntimeWarning)

In the context manager form you may use the keyword argument match to assert
that the exception matches a text or regex:

>>> with warns(UserWarning, match='must be 0 or None'):
... warnings.warn("value must be 0 or None", UserWarning)

>>> with warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("value must be 42", UserWarning)

>>> with warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("this is not here", UserWarning)
Traceback (most recent call last):
 ...
Failed: DID NOT WARN. No warnings of type ...UserWarning... was emitted...

pytest.freeze_includes

Tutorial: Freezing pytest.

	
freeze_includes()[source]

	Returns a list of module names used by pytest that should be
included by cx_freeze.

Marks

Marks can be used apply meta data to test functions (but not fixtures), which can then be accessed by
fixtures or plugins.

pytest.mark.filterwarnings

Tutorial: @pytest.mark.filterwarnings.

Add warning filters to marked test items.

	
pytest.mark.filterwarnings(filter)

	
	Parameters

	filter (str [https://docs.python.org/3/library/stdtypes.html#str]) – A warning specification string, which is composed of contents of the tuple (action, message, category, module, lineno)
as specified in The Warnings filter [https://docs.python.org/3/library/warnings.html#warning-filter] section of
the Python documentation, separated by ":". Optional fields can be omitted.
Module names passed for filtering are not regex-escaped.

For example:

@pytest.mark.warnings("ignore:.*usage will be deprecated.*:DeprecationWarning")
def test_foo():
 ...

pytest.mark.parametrize

Tutorial: Parametrizing fixtures and test functions.

	
Metafunc.parametrize(argnames, argvalues, indirect=False, ids=None, scope=None)[source]

	Add new invocations to the underlying test function using the list
of argvalues for the given argnames. Parametrization is performed
during the collection phase. If you need to setup expensive resources
see about setting indirect to do it rather at test setup time.

	Parameters

	
	argnames – a comma-separated string denoting one or more argument
names, or a list/tuple of argument strings.

	argvalues – The list of argvalues determines how often a
test is invoked with different argument values. If only one
argname was specified argvalues is a list of values. If N
argnames were specified, argvalues must be a list of N-tuples,
where each tuple-element specifies a value for its respective
argname.

	indirect – The list of argnames or boolean. A list of arguments’
names (subset of argnames). If True the list contains all names from
the argnames. Each argvalue corresponding to an argname in this list will
be passed as request.param to its respective argname fixture
function so that it can perform more expensive setups during the
setup phase of a test rather than at collection time.

	ids – list of string ids, or a callable.
If strings, each is corresponding to the argvalues so that they are
part of the test id. If None is given as id of specific test, the
automatically generated id for that argument will be used.
If callable, it should take one argument (a single argvalue) and return
a string or return None. If None, the automatically generated id for that
argument will be used.
If no ids are provided they will be generated automatically from
the argvalues.

	scope – if specified it denotes the scope of the parameters.
The scope is used for grouping tests by parameter instances.
It will also override any fixture-function defined scope, allowing
to set a dynamic scope using test context or configuration.

pytest.mark.skip

Tutorial: Skipping test functions.

Unconditionally skip a test function.

	
pytest.mark.skip(*, reason=None)

	
	Parameters

	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reason why the test function is being skipped.

pytest.mark.skipif

Tutorial: Skipping test functions.

Skip a test function if a condition is True.

	
pytest.mark.skipif(condition, *, reason=None)

	
	Parameters

	
	condition (bool [https://docs.python.org/3/library/functions.html#bool] or str [https://docs.python.org/3/library/stdtypes.html#str]) – True/False if the condition should be skipped or a condition string.

	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reason why the test function is being skipped.

pytest.mark.usefixtures

Tutorial: Using fixtures from classes, modules or projects.

Mark a test function as using the given fixture names.

Warning

This mark has no effect when applied
to a fixture function.

	
pytest.mark.usefixtures(*names)

	
	Parameters

	args – the names of the fixture to use, as strings

pytest.mark.xfail

Tutorial: XFail: mark test functions as expected to fail.

Marks a test function as expected to fail.

	
pytest.mark.xfail(condition=None, *, reason=None, raises=None, run=True, strict=False)

	
	Parameters

	
	condition (bool [https://docs.python.org/3/library/functions.html#bool] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Condition for marking the test function as xfail (True/False or a
condition string).

	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reason why the test function is marked as xfail.

	raises (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Exception subclass expected to be raised by the test function; other exceptions will fail the test.

	run (bool [https://docs.python.org/3/library/functions.html#bool]) – If the test function should actually be executed. If False, the function will always xfail and will
not be executed (useful if a function is segfaulting).

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) –
	If False (the default) the function will be shown in the terminal output as xfailed if it fails
and as xpass if it passes. In both cases this will not cause the test suite to fail as a whole. This
is particularly useful to mark flaky tests (tests that fail at random) to be tackled later.

	If True, the function will be shown in the terminal output as xfailed if it fails, but if it
unexpectedly passes then it will fail the test suite. This is particularly useful to mark functions
that are always failing and there should be a clear indication if they unexpectedly start to pass (for example
a new release of a library fixes a known bug).

custom marks

Marks are created dynamically using the factory object pytest.mark and applied as a decorator.

For example:

@pytest.mark.timeout(10, "slow", method="thread")
def test_function():
 ...

Will create and attach a Mark object to the collected
Item, which can then be accessed by fixtures or hooks with
Node.iter_markers. The mark object will have the following attributes:

mark.args == (10, "slow")
mark.kwargs == {"method": "thread"}

Fixtures

Tutorial: pytest fixtures: explicit, modular, scalable.

Fixtures are requested by test functions or other fixtures by declaring them as argument names.

Example of a test requiring a fixture:

def test_output(capsys):
 print("hello")
 out, err = capsys.readouterr()
 assert out == "hello\n"

Example of a fixture requiring another fixture:

@pytest.fixture
def db_session(tmpdir):
 fn = tmpdir / "db.file"
 return connect(str(fn))

For more details, consult the full fixtures docs.

@pytest.fixture

	
@fixture(scope='function', params=None, autouse=False, ids=None, name=None)[source]

	Decorator to mark a fixture factory function.

This decorator can be used, with or without parameters, to define a
fixture function.

The name of the fixture function can later be referenced to cause its
invocation ahead of running tests: test
modules or classes can use the pytest.mark.usefixtures(fixturename)
marker.

Test functions can directly use fixture names as input
arguments in which case the fixture instance returned from the fixture
function will be injected.

Fixtures can provide their values to test functions using return or yield
statements. When using yield the code block after the yield statement is executed
as teardown code regardless of the test outcome, and must yield exactly once.

	Parameters

	
	scope – the scope for which this fixture is shared, one of
"function" (default), "class", "module",
"package" or "session".

"package" is considered experimental at this time.

	params – an optional list of parameters which will cause multiple
invocations of the fixture function and all of the tests
using it.
The current parameter is available in request.param.

	autouse – if True, the fixture func is activated for all tests that
can see it. If False (the default) then an explicit
reference is needed to activate the fixture.

	ids – list of string ids each corresponding to the params
so that they are part of the test id. If no ids are provided
they will be generated automatically from the params.

	name – the name of the fixture. This defaults to the name of the
decorated function. If a fixture is used in the same module in
which it is defined, the function name of the fixture will be
shadowed by the function arg that requests the fixture; one way
to resolve this is to name the decorated function
fixture_<fixturename> and then use
@pytest.fixture(name='<fixturename>').

config.cache

Tutorial: Cache: working with cross-testrun state.

The config.cache object allows other plugins and fixtures
to store and retrieve values across test runs. To access it from fixtures
request pytestconfig into your fixture and get it with pytestconfig.cache.

Under the hood, the cache plugin uses the simple
dumps/loads API of the json [https://docs.python.org/3/library/json.html#module-json] stdlib module.

	
Cache.get(key, default)[source]

	return cached value for the given key. If no value
was yet cached or the value cannot be read, the specified
default is returned.

	Parameters

	
	key – must be a / separated value. Usually the first
name is the name of your plugin or your application.

	default – must be provided in case of a cache-miss or
invalid cache values.

	
Cache.set(key, value)[source]

	save value for the given key.

	Parameters

	
	key – must be a / separated value. Usually the first
name is the name of your plugin or your application.

	value – must be of any combination of basic
python types, including nested types
like e. g. lists of dictionaries.

	
Cache.makedir(name)[source]

	return a directory path object with the given name. If the
directory does not yet exist, it will be created. You can use it
to manage files likes e. g. store/retrieve database
dumps across test sessions.

	Parameters

	name – must be a string not containing a / separator.
Make sure the name contains your plugin or application
identifiers to prevent clashes with other cache users.

capsys

Tutorial: Capturing of the stdout/stderr output.

	
capsys()[source]

	Enable text capturing of writes to sys.stdout and sys.stderr.

The captured output is made available via capsys.readouterr() method
calls, which return a (out, err) namedtuple.
out and err will be text objects.

Returns an instance of CaptureFixture.

Example:

def test_output(capsys):
 print("hello")
 captured = capsys.readouterr()
 assert captured.out == "hello\n"

	
class CaptureFixture[source]

	Object returned by capsys(), capsysbinary(), capfd() and capfdbinary()
fixtures.

	
readouterr()[source]

	Read and return the captured output so far, resetting the internal buffer.

	Returns

	captured content as a namedtuple with out and err string attributes

	
with disabled()[source]

	Temporarily disables capture while inside the ‘with’ block.

capsysbinary

Tutorial: Capturing of the stdout/stderr output.

	
capsysbinary()[source]

	Enable bytes capturing of writes to sys.stdout and sys.stderr.

The captured output is made available via capsysbinary.readouterr()
method calls, which return a (out, err) namedtuple.
out and err will be bytes objects.

Returns an instance of CaptureFixture.

Example:

def test_output(capsysbinary):
 print("hello")
 captured = capsysbinary.readouterr()
 assert captured.out == b"hello\n"

capfd

Tutorial: Capturing of the stdout/stderr output.

	
capfd()[source]

	Enable text capturing of writes to file descriptors 1 and 2.

The captured output is made available via capfd.readouterr() method
calls, which return a (out, err) namedtuple.
out and err will be text objects.

Returns an instance of CaptureFixture.

Example:

def test_system_echo(capfd):
 os.system('echo "hello"')
 captured = capsys.readouterr()
 assert captured.out == "hello\n"

capfdbinary

Tutorial: Capturing of the stdout/stderr output.

	
capfdbinary()[source]

	Enable bytes capturing of writes to file descriptors 1 and 2.

The captured output is made available via capfd.readouterr() method
calls, which return a (out, err) namedtuple.
out and err will be byte objects.

Returns an instance of CaptureFixture.

Example:

def test_system_echo(capfdbinary):
 os.system('echo "hello"')
 captured = capfdbinary.readouterr()
 assert captured.out == b"hello\n"

doctest_namespace

Tutorial: Doctest integration for modules and test files.

	
doctest_namespace()[source]

	Fixture that returns a dict [https://docs.python.org/3/library/stdtypes.html#dict] that will be injected into the namespace of doctests.

Usually this fixture is used in conjunction with another autouse fixture:

@pytest.fixture(autouse=True)
def add_np(doctest_namespace):
 doctest_namespace["np"] = numpy

For more details: ‘doctest_namespace’ fixture.

request

Tutorial: Pass different values to a test function, depending on command line options.

The request fixture is a special fixture providing information of the requesting test function.

	
class FixtureRequest[source]

	A request for a fixture from a test or fixture function.

A request object gives access to the requesting test context
and has an optional param attribute in case
the fixture is parametrized indirectly.

	
fixturename = None

	fixture for which this request is being performed

	
scope = None

	Scope string, one of “function”, “class”, “module”, “session”

	
fixturenames

	names of all active fixtures in this request

	
node

	underlying collection node (depends on current request scope)

	
config

	the pytest config object associated with this request.

	
function

	test function object if the request has a per-function scope.

	
cls

	class (can be None) where the test function was collected.

	
instance

	instance (can be None) on which test function was collected.

	
module

	python module object where the test function was collected.

	
fspath

	the file system path of the test module which collected this test.

	
keywords

	keywords/markers dictionary for the underlying node.

	
session

	pytest session object.

	
addfinalizer(finalizer)[source]

	add finalizer/teardown function to be called after the
last test within the requesting test context finished
execution.

	
applymarker(marker)[source]

	Apply a marker to a single test function invocation.
This method is useful if you don’t want to have a keyword/marker
on all function invocations.

	Parameters

	marker – a _pytest.mark.MarkDecorator object
created by a call to pytest.mark.NAME(...).

	
raiseerror(msg)[source]

	raise a FixtureLookupError with the given message.

	
getfixturevalue(argname)[source]

	Dynamically run a named fixture function.

Declaring fixtures via function argument is recommended where possible.
But if you can only decide whether to use another fixture at test
setup time, you may use this function to retrieve it inside a fixture
or test function body.

	
getfuncargvalue(argname)[source]

	Deprecated, use getfixturevalue.

pytestconfig

	
pytestconfig()[source]

	Session-scoped fixture that returns the _pytest.config.Config object.

Example:

def test_foo(pytestconfig):
 if pytestconfig.getoption("verbose") > 0:
 ...

record_property

Tutorial: record_property.

	
record_property()[source]

	Add an extra properties the calling test.
User properties become part of the test report and are available to the
configured reporters, like JUnit XML.
The fixture is callable with (name, value), with value being automatically
xml-encoded.

Example:

def test_function(record_property):
 record_property("example_key", 1)

record_testsuite_property

Tutorial: record_testsuite_property.

	
record_testsuite_property()[source]

	Records a new <property> tag as child of the root <testsuite>. This is suitable to
writing global information regarding the entire test suite, and is compatible with xunit2 JUnit family.

This is a session-scoped fixture which is called with (name, value). Example:

def test_foo(record_testsuite_property):
 record_testsuite_property("ARCH", "PPC")
 record_testsuite_property("STORAGE_TYPE", "CEPH")

name must be a string, value will be converted to a string and properly xml-escaped.

caplog

Tutorial: Logging.

	
caplog()[source]

	Access and control log capturing.

Captured logs are available through the following properties/methods:

* caplog.text -> string containing formatted log output
* caplog.records -> list of logging.LogRecord instances
* caplog.record_tuples -> list of (logger_name, level, message) tuples
* caplog.clear() -> clear captured records and formatted log output string

This returns a _pytest.logging.LogCaptureFixture instance.

	
class LogCaptureFixture(item)[source]

	Provides access and control of log capturing.

	
handler

	
	Return type

	LogCaptureHandler

	
get_records(when)[source]

	Get the logging records for one of the possible test phases.

	Parameters

	when (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which test phase to obtain the records from. Valid values are: “setup”, “call” and “teardown”.

	Return type

	List[logging.LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord]]

	Returns

	the list of captured records at the given stage

New in version 3.4.

	
text

	Returns the formatted log text.

	
records

	Returns the list of log records.

	
record_tuples

	Returns a list of a stripped down version of log records intended
for use in assertion comparison.

The format of the tuple is:

(logger_name, log_level, message)

	
messages

	Returns a list of format-interpolated log messages.

Unlike ‘records’, which contains the format string and parameters for interpolation, log messages in this list
are all interpolated.
Unlike ‘text’, which contains the output from the handler, log messages in this list are unadorned with
levels, timestamps, etc, making exact comparisons more reliable.

Note that traceback or stack info (from logging.exception() [https://docs.python.org/3/library/logging.html#logging.exception] or the exc_info or stack_info arguments
to the logging functions) is not included, as this is added by the formatter in the handler.

New in version 3.7.

	
clear()[source]

	Reset the list of log records and the captured log text.

	
set_level(level, logger=None)[source]

	Sets the level for capturing of logs. The level will be restored to its previous value at the end of
the test.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int]) – the logger to level.

	logger (str [https://docs.python.org/3/library/stdtypes.html#str]) – the logger to update the level. If not given, the root logger level is updated.

Changed in version 3.4: The levels of the loggers changed by this function will be restored to their initial values at the
end of the test.

	
with at_level(level, logger=None)[source]

	Context manager that sets the level for capturing of logs. After the end of the ‘with’ statement the
level is restored to its original value.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int]) – the logger to level.

	logger (str [https://docs.python.org/3/library/stdtypes.html#str]) – the logger to update the level. If not given, the root logger level is updated.

monkeypatch

Tutorial: Monkeypatching/mocking modules and environments.

	
monkeypatch()[source]

	The returned monkeypatch fixture provides these
helper methods to modify objects, dictionaries or os.environ:

monkeypatch.setattr(obj, name, value, raising=True)
monkeypatch.delattr(obj, name, raising=True)
monkeypatch.setitem(mapping, name, value)
monkeypatch.delitem(obj, name, raising=True)
monkeypatch.setenv(name, value, prepend=False)
monkeypatch.delenv(name, raising=True)
monkeypatch.syspath_prepend(path)
monkeypatch.chdir(path)

All modifications will be undone after the requesting
test function or fixture has finished. The raising
parameter determines if a KeyError or AttributeError
will be raised if the set/deletion operation has no target.

This returns a MonkeyPatch instance.

	
class MonkeyPatch[source]

	Object returned by the monkeypatch fixture keeping a record of setattr/item/env/syspath changes.

	
with context()[source]

	Context manager that returns a new MonkeyPatch object which
undoes any patching done inside the with block upon exit:

import functools
def test_partial(monkeypatch):
 with monkeypatch.context() as m:
 m.setattr(functools, "partial", 3)

Useful in situations where it is desired to undo some patches before the test ends,
such as mocking stdlib functions that might break pytest itself if mocked (for examples
of this see #3290 [https://github.com/pytest-dev/pytest/issues/3290].

	
setattr(target, name, value=<notset>, raising=True)[source]

	Set attribute value on target, memorizing the old value.
By default raise AttributeError if the attribute did not exist.

For convenience you can specify a string as target which
will be interpreted as a dotted import path, with the last part
being the attribute name. Example:
monkeypatch.setattr("os.getcwd", lambda: "/")
would set the getcwd function of the os module.

The raising value determines if the setattr should fail
if the attribute is not already present (defaults to True
which means it will raise).

	
delattr(target, name=<notset>, raising=True)[source]

	Delete attribute name from target, by default raise
AttributeError it the attribute did not previously exist.

If no name is specified and target is a string
it will be interpreted as a dotted import path with the
last part being the attribute name.

If raising is set to False, no exception will be raised if the
attribute is missing.

	
setitem(dic, name, value)[source]

	Set dictionary entry name to value.

	
delitem(dic, name, raising=True)[source]

	Delete name from dict. Raise KeyError if it doesn’t exist.

If raising is set to False, no exception will be raised if the
key is missing.

	
setenv(name, value, prepend=None)[source]

	Set environment variable name to value. If prepend
is a character, read the current environment variable value
and prepend the value adjoined with the prepend character.

	
delenv(name, raising=True)[source]

	Delete name from the environment. Raise KeyError if it does
not exist.

If raising is set to False, no exception will be raised if the
environment variable is missing.

	
syspath_prepend(path)[source]

	Prepend path to sys.path list of import locations.

	
chdir(path)[source]

	Change the current working directory to the specified path.
Path can be a string or a py.path.local object.

	
undo()[source]

	Undo previous changes. This call consumes the
undo stack. Calling it a second time has no effect unless
you do more monkeypatching after the undo call.

There is generally no need to call undo(), since it is
called automatically during tear-down.

Note that the same monkeypatch fixture is used across a
single test function invocation. If monkeypatch is used both by
the test function itself and one of the test fixtures,
calling undo() will undo all of the changes made in
both functions.

testdir

This fixture provides a Testdir instance useful for black-box testing of test files, making it ideal to
test plugins.

To use it, include in your top-most conftest.py file:

pytest_plugins = 'pytester'

	
class Testdir[source]

	Temporary test directory with tools to test/run pytest itself.

This is based on the tmpdir fixture but provides a number of methods
which aid with testing pytest itself. Unless chdir() is used all
methods will use tmpdir as their current working directory.

Attributes:

	Tmpdir

	The py.path.local instance of the temporary directory.

	Plugins

	A list of plugins to use with parseconfig() and
runpytest(). Initially this is an empty list but plugins can
be added to the list. The type of items to add to the list depends on
the method using them so refer to them for details.

	
CLOSE_STDIN

	alias of builtins.object

	
exception TimeoutExpired[source]

	

	
finalize()[source]

	Clean up global state artifacts.

Some methods modify the global interpreter state and this tries to
clean this up. It does not remove the temporary directory however so
it can be looked at after the test run has finished.

	
make_hook_recorder(pluginmanager)[source]

	Create a new HookRecorder for a PluginManager.

	
chdir()[source]

	Cd into the temporary directory.

This is done automatically upon instantiation.

	
makefile(ext, *args, **kwargs)[source]

	Create new file(s) in the testdir.

	Parameters

	
	ext (str [https://docs.python.org/3/library/stdtypes.html#str]) – The extension the file(s) should use, including the dot, e.g. .py.

	args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – All args will be treated as strings and joined using newlines.
The result will be written as contents to the file. The name of the
file will be based on the test function requesting this fixture.

	kwargs – Each keyword is the name of a file, while the value of it will
be written as contents of the file.

Examples:

testdir.makefile(".txt", "line1", "line2")

testdir.makefile(".ini", pytest="[pytest]\naddopts=-rs\n")

	
makeconftest(source)[source]

	Write a contest.py file with ‘source’ as contents.

	
makeini(source)[source]

	Write a tox.ini file with ‘source’ as contents.

	
getinicfg(source)[source]

	Return the pytest section from the tox.ini config file.

	
makepyfile(*args, **kwargs)[source]

	Shortcut for .makefile() with a .py extension.

	
maketxtfile(*args, **kwargs)[source]

	Shortcut for .makefile() with a .txt extension.

	
syspathinsert(path=None)[source]

	Prepend a directory to sys.path, defaults to tmpdir.

This is undone automatically when this object dies at the end of each
test.

	
mkdir(name)[source]

	Create a new (sub)directory.

	
mkpydir(name)[source]

	Create a new python package.

This creates a (sub)directory with an empty __init__.py file so it
gets recognised as a python package.

	
class Session(config)

	
	
exception Failed

	signals a stop as failed test run.

	
exception Interrupted

	signals an interrupted test run.

	
for ... in collect()

	returns a list of children (items and collectors)
for this collection node.

	
getnode(config, arg)[source]

	Return the collection node of a file.

	Parameters

	
	config – _pytest.config.Config instance, see
parseconfig() and parseconfigure() to create the
configuration

	arg – a py.path.local instance of the file

	
getpathnode(path)[source]

	Return the collection node of a file.

This is like getnode() but uses parseconfigure() to
create the (configured) pytest Config instance.

	Parameters

	path – a py.path.local instance of the file

	
genitems(colitems)[source]

	Generate all test items from a collection node.

This recurses into the collection node and returns a list of all the
test items contained within.

	
runitem(source)[source]

	Run the “test_func” Item.

The calling test instance (class containing the test method) must
provide a .getrunner() method which should return a runner which
can run the test protocol for a single item, e.g.
_pytest.runner.runtestprotocol().

	
inline_runsource(source, *cmdlineargs)[source]

	Run a test module in process using pytest.main().

This run writes “source” into a temporary file and runs
pytest.main() on it, returning a HookRecorder instance
for the result.

	Parameters

	
	source – the source code of the test module

	cmdlineargs – any extra command line arguments to use

	Returns

	HookRecorder instance of the result

	
inline_genitems(*args)[source]

	Run pytest.main(['--collectonly']) in-process.

Runs the pytest.main() function to run all of pytest inside
the test process itself like inline_run(), but returns a
tuple of the collected items and a HookRecorder instance.

	
inline_run(*args, **kwargs)[source]

	Run pytest.main() in-process, returning a HookRecorder.

Runs the pytest.main() function to run all of pytest inside
the test process itself. This means it can return a
HookRecorder instance which gives more detailed results
from that run than can be done by matching stdout/stderr from
runpytest().

	Parameters

	
	args – command line arguments to pass to pytest.main()

	plugins – (keyword-only) extra plugin instances the
pytest.main() instance should use

	Returns

	a HookRecorder instance

	
runpytest_inprocess(*args, **kwargs)[source]

	Return result of running pytest in-process, providing a similar
interface to what self.runpytest() provides.

	
runpytest(*args, **kwargs)[source]

	Run pytest inline or in a subprocess, depending on the command line
option “–runpytest” and return a RunResult.

	
parseconfig(*args)[source]

	Return a new pytest Config instance from given commandline args.

This invokes the pytest bootstrapping code in _pytest.config to create
a new _pytest.core.PluginManager and call the
pytest_cmdline_parse hook to create a new
_pytest.config.Config instance.

If plugins has been populated they should be plugin modules
to be registered with the PluginManager.

	
parseconfigure(*args)[source]

	Return a new pytest configured Config instance.

This returns a new _pytest.config.Config instance like
parseconfig(), but also calls the pytest_configure hook.

	
getitem(source, funcname='test_func')[source]

	Return the test item for a test function.

This writes the source to a python file and runs pytest’s collection on
the resulting module, returning the test item for the requested
function name.

	Parameters

	
	source – the module source

	funcname – the name of the test function for which to return a
test item

	
getitems(source)[source]

	Return all test items collected from the module.

This writes the source to a python file and runs pytest’s collection on
the resulting module, returning all test items contained within.

	
getmodulecol(source, configargs=(), withinit=False)[source]

	Return the module collection node for source.

This writes source to a file using makepyfile() and then
runs the pytest collection on it, returning the collection node for the
test module.

	Parameters

	
	source – the source code of the module to collect

	configargs – any extra arguments to pass to
parseconfigure()

	withinit – whether to also write an __init__.py file to the
same directory to ensure it is a package

	
collect_by_name(modcol, name)[source]

	Return the collection node for name from the module collection.

This will search a module collection node for a collection node
matching the given name.

	Parameters

	
	modcol – a module collection node; see getmodulecol()

	name – the name of the node to return

	
popen(cmdargs, stdout=-1, stderr=-1, stdin=<class 'object'>, **kw)[source]

	Invoke subprocess.Popen.

This calls subprocess.Popen making sure the current working directory
is in the PYTHONPATH.

You probably want to use run() instead.

	
run(*cmdargs, **kwargs)[source]

	Run a command with arguments.

Run a process using subprocess.Popen saving the stdout and stderr.

	Parameters

	
	args – the sequence of arguments to pass to subprocess.Popen()

	timeout – the period in seconds after which to timeout and raise
Testdir.TimeoutExpired

	stdin – optional standard input. Bytes are being send, closing
the pipe, otherwise it is passed through to popen.
Defaults to CLOSE_STDIN, which translates to using a pipe
(subprocess.PIPE) that gets closed.

Returns a RunResult.

	
runpython(script)[source]

	Run a python script using sys.executable as interpreter.

Returns a RunResult.

	
runpython_c(command)[source]

	Run python -c “command”, return a RunResult.

	
runpytest_subprocess(*args, **kwargs)[source]

	Run pytest as a subprocess with given arguments.

Any plugins added to the plugins list will be added using the
-p command line option. Additionally --basetemp is used to put
any temporary files and directories in a numbered directory prefixed
with “runpytest-” to not conflict with the normal numbered pytest
location for temporary files and directories.

	Parameters

	
	args – the sequence of arguments to pass to the pytest subprocess

	timeout – the period in seconds after which to timeout and raise
Testdir.TimeoutExpired

Returns a RunResult.

	
spawn_pytest(string, expect_timeout=10.0)[source]

	Run pytest using pexpect.

This makes sure to use the right pytest and sets up the temporary
directory locations.

The pexpect child is returned.

	
spawn(cmd, expect_timeout=10.0)[source]

	Run a command using pexpect.

The pexpect child is returned.

	
class RunResult[source]

	The result of running a command.

Attributes:

	Ret

	the return value

	Outlines

	list of lines captured from stdout

	Errlines

	list of lines captures from stderr

	Stdout

	LineMatcher of stdout, use stdout.str() to
reconstruct stdout or the commonly used stdout.fnmatch_lines()
method

	Stderr

	LineMatcher of stderr

	Duration

	duration in seconds

	
parseoutcomes()[source]

	Return a dictionary of outcomestring->num from parsing the terminal
output that the test process produced.

	
assert_outcomes(passed=0, skipped=0, failed=0, error=0, xpassed=0, xfailed=0)[source]

	Assert that the specified outcomes appear with the respective
numbers (0 means it didn’t occur) in the text output from a test run.

	
class LineMatcher[source]

	Flexible matching of text.

This is a convenience class to test large texts like the output of
commands.

The constructor takes a list of lines without their trailing newlines, i.e.
text.splitlines().

	
str()[source]

	Return the entire original text.

	
fnmatch_lines_random(lines2)[source]

	Check lines exist in the output using in any order.

Lines are checked using fnmatch.fnmatch. The argument is a list of
lines which have to occur in the output, in any order.

	
re_match_lines_random(lines2)[source]

	Check lines exist in the output using re.match, in any order.

The argument is a list of lines which have to occur in the output, in
any order.

	
get_lines_after(fnline)[source]

	Return all lines following the given line in the text.

The given line can contain glob wildcards.

	
fnmatch_lines(lines2)[source]

	Search captured text for matching lines using fnmatch.fnmatch.

The argument is a list of lines which have to match and can use glob
wildcards. If they do not match a pytest.fail() is called. The
matches and non-matches are also printed on stdout.

	
re_match_lines(lines2)[source]

	Search captured text for matching lines using re.match.

The argument is a list of lines which have to match using re.match.
If they do not match a pytest.fail() is called.

The matches and non-matches are also printed on stdout.

recwarn

Tutorial: Asserting warnings with the warns function

	
recwarn()[source]

	Return a WarningsRecorder instance that records all warnings emitted by test functions.

See http://docs.python.org/library/warnings.html for information
on warning categories.

	
class WarningsRecorder[source]

	A context manager to record raised warnings.

Adapted from warnings.catch_warnings.

	
list

	The list of recorded warnings.

	
pop(cls=<class 'Warning'>)[source]

	Pop the first recorded warning, raise exception if not exists.

	
clear()[source]

	Clear the list of recorded warnings.

Each recorded warning is an instance of warnings.WarningMessage.

Note

RecordedWarning was changed from a plain class to a namedtuple in pytest 3.1

Note

DeprecationWarning and PendingDeprecationWarning are treated
differently; see Ensuring code triggers a deprecation warning.

tmp_path

Tutorial: Temporary directories and files

	
tmp_path()[source]

	Return a temporary directory path object
which is unique to each test function invocation,
created as a sub directory of the base temporary
directory. The returned object is a pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]
object.

Note

in python < 3.6 this is a pathlib2.Path

tmp_path_factory

Tutorial: The tmp_path_factory fixture

tmp_path_factory instances have the following methods:

	
TempPathFactory.mktemp(basename, numbered=True)[source]

	makes a temporary directory managed by the factory

	
TempPathFactory.getbasetemp()[source]

	return base temporary directory.

tmpdir

Tutorial: Temporary directories and files

	
tmpdir()[source]

	Return a temporary directory path object
which is unique to each test function invocation,
created as a sub directory of the base temporary
directory. The returned object is a py.path.local [https://py.readthedocs.io/en/latest/path.html]
path object.

tmpdir_factory

Tutorial: The ‘tmpdir_factory’ fixture

tmpdir_factory instances have the following methods:

	
TempdirFactory.mktemp(basename, numbered=True)[source]

	Create a subdirectory of the base temporary directory and return it.
If numbered, ensure the directory is unique by adding a number
prefix greater than any existing one.

	
TempdirFactory.getbasetemp()[source]

	backward compat wrapper for _tmppath_factory.getbasetemp

Hooks

Tutorial: Writing plugins.

Reference to all hooks which can be implemented by conftest.py files and plugins.

Bootstrapping hooks

Bootstrapping hooks called for plugins registered early enough (internal and setuptools plugins).

	
pytest_load_initial_conftests(early_config, parser, args)[source]

	implements the loading of initial conftest files ahead
of command line option parsing.

Note

This hook will not be called for conftest.py files, only for setuptools plugins.

	Parameters

	
	early_config (_pytest.config.Config) – pytest config object

	args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – list of arguments passed on the command line

	parser (_pytest.config.Parser) – to add command line options

	
pytest_cmdline_preparse(config, args)[source]

	(Deprecated) modify command line arguments before option parsing.

This hook is considered deprecated and will be removed in a future pytest version. Consider
using pytest_load_initial_conftests() instead.

Note

This hook will not be called for conftest.py files, only for setuptools plugins.

	Parameters

	
	config (_pytest.config.Config) – pytest config object

	args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – list of arguments passed on the command line

	
pytest_cmdline_parse(pluginmanager, args)[source]

	return initialized config object, parsing the specified args.

Stops at first non-None result, see firstresult: stop at first non-None result

Note

This hook will only be called for plugin classes passed to the plugins arg when using pytest.main to
perform an in-process test run.

	Parameters

	
	pluginmanager (_pytest.config.PytestPluginManager) – pytest plugin manager

	args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – list of arguments passed on the command line

	
pytest_cmdline_main(config)[source]

	called for performing the main command line action. The default
implementation will invoke the configure hooks and runtest_mainloop.

Note

This hook will not be called for conftest.py files, only for setuptools plugins.

Stops at first non-None result, see firstresult: stop at first non-None result

	Parameters

	config (_pytest.config.Config) – pytest config object

Initialization hooks

Initialization hooks called for plugins and conftest.py files.

	
pytest_addoption(parser)[source]

	register argparse-style options and ini-style config values,
called once at the beginning of a test run.

Note

This function should be implemented only in plugins or conftest.py
files situated at the tests root directory due to how pytest
discovers plugins during startup.

	Parameters

	parser (_pytest.config.Parser) – To add command line options, call
parser.addoption(...).
To add ini-file values call parser.addini(...).

Options can later be accessed through the
config object, respectively:

	config.getoption(name) to
retrieve the value of a command line option.

	config.getini(name) to retrieve
a value read from an ini-style file.

The config object is passed around on many internal objects via the .config
attribute or can be retrieved as the pytestconfig fixture.

Note

This hook is incompatible with hookwrapper=True.

	
pytest_addhooks(pluginmanager)[source]

	called at plugin registration time to allow adding new hooks via a call to
pluginmanager.add_hookspecs(module_or_class, prefix).

	Parameters

	pluginmanager (_pytest.config.PytestPluginManager) – pytest plugin manager

Note

This hook is incompatible with hookwrapper=True.

	
pytest_configure(config)[source]

	Allows plugins and conftest files to perform initial configuration.

This hook is called for every plugin and initial conftest file
after command line options have been parsed.

After that, the hook is called for other conftest files as they are
imported.

Note

This hook is incompatible with hookwrapper=True.

	Parameters

	config (_pytest.config.Config) – pytest config object

	
pytest_unconfigure(config)[source]

	called before test process is exited.

	Parameters

	config (_pytest.config.Config) – pytest config object

	
pytest_sessionstart(session)[source]

	called after the Session object has been created and before performing collection
and entering the run test loop.

	Parameters

	session (_pytest.main.Session) – the pytest session object

	
pytest_sessionfinish(session, exitstatus)[source]

	called after whole test run finished, right before returning the exit status to the system.

	Parameters

	
	session (_pytest.main.Session) – the pytest session object

	exitstatus (int [https://docs.python.org/3/library/functions.html#int]) – the status which pytest will return to the system

	
pytest_plugin_registered(plugin, manager)[source]

	a new pytest plugin got registered.

	Parameters

	
	plugin – the plugin module or instance

	manager (_pytest.config.PytestPluginManager) – pytest plugin manager

Note

This hook is incompatible with hookwrapper=True.

Test running hooks

All runtest related hooks receive a pytest.Item object.

	
pytest_runtestloop(session)[source]

	called for performing the main runtest loop
(after collection finished).

Stops at first non-None result, see firstresult: stop at first non-None result

	Parameters

	session (_pytest.main.Session) – the pytest session object

	
pytest_runtest_protocol(item, nextitem)[source]

	implements the runtest_setup/call/teardown protocol for
the given test item, including capturing exceptions and calling
reporting hooks.

	Parameters

	
	item – test item for which the runtest protocol is performed.

	nextitem – the scheduled-to-be-next test item (or None if this
is the end my friend). This argument is passed on to
pytest_runtest_teardown().

	Return boolean

	True if no further hook implementations should be invoked.

Stops at first non-None result, see firstresult: stop at first non-None result

	
pytest_runtest_logstart(nodeid, location)[source]

	signal the start of running a single test item.

This hook will be called before pytest_runtest_setup(), pytest_runtest_call() and
pytest_runtest_teardown() hooks.

	Parameters

	
	nodeid (str [https://docs.python.org/3/library/stdtypes.html#str]) – full id of the item

	location – a triple of (filename, linenum, testname)

	
pytest_runtest_logfinish(nodeid, location)[source]

	signal the complete finish of running a single test item.

This hook will be called after pytest_runtest_setup(), pytest_runtest_call() and
pytest_runtest_teardown() hooks.

	Parameters

	
	nodeid (str [https://docs.python.org/3/library/stdtypes.html#str]) – full id of the item

	location – a triple of (filename, linenum, testname)

	
pytest_runtest_setup(item)[source]

	called before pytest_runtest_call(item).

	
pytest_runtest_call(item)[source]

	called to execute the test item.

	
pytest_runtest_teardown(item, nextitem)[source]

	called after pytest_runtest_call.

	Parameters

	nextitem – the scheduled-to-be-next test item (None if no further
test item is scheduled). This argument can be used to
perform exact teardowns, i.e. calling just enough finalizers
so that nextitem only needs to call setup-functions.

	
pytest_runtest_makereport(item, call)[source]

	return a _pytest.runner.TestReport object
for the given pytest.Item and
_pytest.runner.CallInfo.

Stops at first non-None result, see firstresult: stop at first non-None result

For deeper understanding you may look at the default implementation of
these hooks in _pytest.runner and maybe also
in _pytest.pdb which interacts with _pytest.capture
and its input/output capturing in order to immediately drop
into interactive debugging when a test failure occurs.

The _pytest.terminal reported specifically uses
the reporting hook to print information about a test run.

	
pytest_pyfunc_call(pyfuncitem)[source]

	call underlying test function.

Stops at first non-None result, see firstresult: stop at first non-None result

Collection hooks

pytest calls the following hooks for collecting files and directories:

	
pytest_collection(session)[source]

	Perform the collection protocol for the given session.

Stops at first non-None result, see firstresult: stop at first non-None result.

	Parameters

	session (_pytest.main.Session) – the pytest session object

	
pytest_ignore_collect(path, config)[source]

	return True to prevent considering this path for collection.
This hook is consulted for all files and directories prior to calling
more specific hooks.

Stops at first non-None result, see firstresult: stop at first non-None result

	Parameters

	
	path – a py.path.local - the path to analyze

	config (_pytest.config.Config) – pytest config object

	
pytest_collect_directory(path, parent)[source]

	called before traversing a directory for collection files.

Stops at first non-None result, see firstresult: stop at first non-None result

	Parameters

	path – a py.path.local - the path to analyze

	
pytest_collect_file(path, parent)[source]

	return collection Node or None for the given path. Any new node
needs to have the specified parent as a parent.

	Parameters

	path – a py.path.local - the path to collect

	
pytest_pycollect_makemodule(path, parent)[source]

	return a Module collector or None for the given path.
This hook will be called for each matching test module path.
The pytest_collect_file hook needs to be used if you want to
create test modules for files that do not match as a test module.

Stops at first non-None result, see firstresult: stop at first non-None result

	Parameters

	path – a py.path.local - the path of module to collect

For influencing the collection of objects in Python modules
you can use the following hook:

	
pytest_pycollect_makeitem(collector, name, obj)[source]

	return custom item/collector for a python object in a module, or None.

Stops at first non-None result, see firstresult: stop at first non-None result

	
pytest_generate_tests(metafunc)[source]

	generate (multiple) parametrized calls to a test function.

	
pytest_make_parametrize_id(config, val, argname)[source]

	Return a user-friendly string representation of the given val that will be used
by @pytest.mark.parametrize calls. Return None if the hook doesn’t know about val.
The parameter name is available as argname, if required.

Stops at first non-None result, see firstresult: stop at first non-None result

	Parameters

	
	config (_pytest.config.Config) – pytest config object

	val – the parametrized value

	argname (str [https://docs.python.org/3/library/stdtypes.html#str]) – the automatic parameter name produced by pytest

After collection is complete, you can modify the order of
items, delete or otherwise amend the test items:

	
pytest_collection_modifyitems(session, config, items)[source]

	called after collection has been performed, may filter or re-order
the items in-place.

	Parameters

	
	session (_pytest.main.Session) – the pytest session object

	config (_pytest.config.Config) – pytest config object

	items (List[_pytest.nodes.Item]) – list of item objects

	
pytest_collection_finish(session)[source]

	called after collection has been performed and modified.

	Parameters

	session (_pytest.main.Session) – the pytest session object

Reporting hooks

Session related reporting hooks:

	
pytest_collectstart(collector)[source]

	collector starts collecting.

	
pytest_make_collect_report(collector)[source]

	perform collector.collect() and return a CollectReport.

Stops at first non-None result, see firstresult: stop at first non-None result

	
pytest_itemcollected(item)[source]

	we just collected a test item.

	
pytest_collectreport(report)[source]

	collector finished collecting.

	
pytest_deselected(items)[source]

	called for test items deselected, e.g. by keyword.

	
pytest_report_header(config, startdir)[source]

	return a string or list of strings to be displayed as header info for terminal reporting.

	Parameters

	
	config (_pytest.config.Config) – pytest config object

	startdir – py.path object with the starting dir

Note

This function should be implemented only in plugins or conftest.py
files situated at the tests root directory due to how pytest
discovers plugins during startup.

	
pytest_report_collectionfinish(config, startdir, items)[source]

	
New in version 3.2.

return a string or list of strings to be displayed after collection has finished successfully.

This strings will be displayed after the standard “collected X items” message.

	Parameters

	
	config (_pytest.config.Config) – pytest config object

	startdir – py.path object with the starting dir

	items – list of pytest items that are going to be executed; this list should not be modified.

	
pytest_report_teststatus(report, config)[source]

	return result-category, shortletter and verbose word for reporting.

	Parameters

	config (_pytest.config.Config) – pytest config object

Stops at first non-None result, see firstresult: stop at first non-None result

	
pytest_terminal_summary(terminalreporter, exitstatus, config)[source]

	Add a section to terminal summary reporting.

	Parameters

	
	terminalreporter (_pytest.terminal.TerminalReporter) – the internal terminal reporter object

	exitstatus (int [https://docs.python.org/3/library/functions.html#int]) – the exit status that will be reported back to the OS

	config (_pytest.config.Config) – pytest config object

New in version 4.2: The config parameter.

	
pytest_fixture_setup(fixturedef, request)[source]

	performs fixture setup execution.

	Returns

	The return value of the call to the fixture function

Stops at first non-None result, see firstresult: stop at first non-None result

Note

If the fixture function returns None, other implementations of
this hook function will continue to be called, according to the
behavior of the firstresult: stop at first non-None result option.

	
pytest_fixture_post_finalizer(fixturedef, request)[source]

	called after fixture teardown, but before the cache is cleared so
the fixture result cache fixturedef.cached_result can
still be accessed.

	
pytest_warning_captured(warning_message, when, item)[source]

	Process a warning captured by the internal pytest warnings plugin.

	Parameters

	
	warning_message (warnings.WarningMessage) – The captured warning. This is the same object produced by warnings.catch_warnings(), and contains
the same attributes as the parameters of warnings.showwarning() [https://docs.python.org/3/library/warnings.html#warnings.showwarning].

	when (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates when the warning was captured. Possible values:

	"config": during pytest configuration/initialization stage.

	"collect": during test collection.

	"runtest": during test execution.

	item (pytest.Item|None) – DEPRECATED: This parameter is incompatible with pytest-xdist, and will always receive None
in a future release.

The item being executed if when is "runtest", otherwise None.

And here is the central hook for reporting about
test execution:

	
pytest_runtest_logreport(report)[source]

	process a test setup/call/teardown report relating to
the respective phase of executing a test.

You can also use this hook to customize assertion representation for some
types:

	
pytest_assertrepr_compare(config, op, left, right)[source]

	return explanation for comparisons in failing assert expressions.

Return None for no custom explanation, otherwise return a list
of strings. The strings will be joined by newlines but any newlines
in a string will be escaped. Note that all but the first line will
be indented slightly, the intention is for the first line to be a summary.

	Parameters

	config (_pytest.config.Config) – pytest config object

Debugging/Interaction hooks

There are few hooks which can be used for special
reporting or interaction with exceptions:

	
pytest_internalerror(excrepr, excinfo)[source]

	called for internal errors.

	
pytest_keyboard_interrupt(excinfo)[source]

	called for keyboard interrupt.

	
pytest_exception_interact(node, call, report)[source]

	called when an exception was raised which can potentially be
interactively handled.

This hook is only called if an exception was raised
that is not an internal exception like skip.Exception.

	
pytest_enter_pdb(config, pdb)[source]

	called upon pdb.set_trace(), can be used by plugins to take special
action just before the python debugger enters in interactive mode.

	Parameters

	
	config (_pytest.config.Config) – pytest config object

	pdb (pdb.Pdb [https://docs.python.org/3/library/pdb.html#pdb.Pdb]) – Pdb instance

Objects

Full reference to objects accessible from fixtures or hooks.

CallInfo

	
class CallInfo[source]

	Result/Exception info a function invocation.

Class

	
class Class[source]

	Bases: _pytest.python.PyCollector

Collector for test methods.

	
collect()[source]

	returns a list of children (items and collectors)
for this collection node.

Collector

	
class Collector[source]

	Bases: _pytest.nodes.Node

Collector instances create children through collect()
and thus iteratively build a tree.

	
exception CollectError[source]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

an error during collection, contains a custom message.

	
collect()[source]

	returns a list of children (items and collectors)
for this collection node.

	
repr_failure(excinfo)[source]

	represent a collection failure.

Config

	
class Config[source]

	Access to configuration values, pluginmanager and plugin hooks.

	Variables

	
	pluginmanager (PytestPluginManager) – the plugin manager handles plugin registration and hook invocation.

	option (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – access to command line option as attributes.

	invocation_params (InvocationParams) – Object containing the parameters regarding the pytest.main
invocation.
Contains the followinig read-only attributes:
* args: list of command-line arguments as passed to pytest.main().
* plugins: list of extra plugins, might be None
* dir: directory where pytest.main() was invoked from.

	
class InvocationParams(args, plugins, dir)[source]

	Holds parameters passed during pytest.main()

Note

Currently the environment variable PYTEST_ADDOPTS is also handled by
pytest implicitly, not being part of the invocation.

Plugins accessing InvocationParams must be aware of that.

	
option = None

	access to command line option as attributes.
(deprecated), use getoption() instead

	
pluginmanager = None

	a pluginmanager instance

	
invocation_dir

	Backward compatibility

	
add_cleanup(func)[source]

	Add a function to be called when the config object gets out of
use (usually coninciding with pytest_unconfigure).

	
classmethod fromdictargs(option_dict, args)[source]

	constructor useable for subprocesses.

	
addinivalue_line(name, line)[source]

	add a line to an ini-file option. The option must have been
declared but might not yet be set in which case the line becomes the
the first line in its value.

	
getini(name)[source]

	return configuration value from an ini file. If the
specified name hasn’t been registered through a prior
parser.addini
call (usually from a plugin), a ValueError is raised.

	
getoption(name, default=<NOTSET>, skip=False)[source]

	return command line option value.

	Parameters

	
	name – name of the option. You may also specify
the literal --OPT option instead of the “dest” option name.

	default – default value if no option of that name exists.

	skip – if True raise pytest.skip if option does not exists
or has a None value.

	
getvalue(name, path=None)[source]

	(deprecated, use getoption())

	
getvalueorskip(name, path=None)[source]

	(deprecated, use getoption(skip=True))

ExceptionInfo

	
class ExceptionInfo(excinfo, striptext='', traceback=None)[source]

	wraps sys.exc_info() objects and offers
help for navigating the traceback.

	
classmethod from_current(exprinfo=None)[source]

	returns an ExceptionInfo matching the current traceback

Warning

Experimental API

	Parameters

	exprinfo – a text string helping to determine if we should
strip AssertionError from the output, defaults
to the exception message/__str__()

	
classmethod for_later()[source]

	return an unfilled ExceptionInfo

	
type

	the exception class

	
value

	the exception value

	
tb

	the exception raw traceback

	
typename

	the type name of the exception

	
traceback

	the traceback

	
exconly(tryshort=False)[source]

	return the exception as a string

when ‘tryshort’ resolves to True, and the exception is a
_pytest._code._AssertionError, only the actual exception part of
the exception representation is returned (so ‘AssertionError: ‘ is
removed from the beginning)

	
errisinstance(exc)[source]

	return True if the exception is an instance of exc

	
getrepr(showlocals=False, style='long', abspath=False, tbfilter=True, funcargs=False, truncate_locals=True, chain=True)[source]

	Return str()able representation of this exception info.

	Parameters

	
	showlocals (bool [https://docs.python.org/3/library/functions.html#bool]) – Show locals per traceback entry.
Ignored if style=="native".

	style (str [https://docs.python.org/3/library/stdtypes.html#str]) – long|short|no|native traceback style

	abspath (bool [https://docs.python.org/3/library/functions.html#bool]) – If paths should be changed to absolute or left unchanged.

	tbfilter (bool [https://docs.python.org/3/library/functions.html#bool]) – Hide entries that contain a local variable __tracebackhide__==True.
Ignored if style=="native".

	funcargs (bool [https://docs.python.org/3/library/functions.html#bool]) – Show fixtures (“funcargs” for legacy purposes) per traceback entry.

	truncate_locals (bool [https://docs.python.org/3/library/functions.html#bool]) – With showlocals==True, make sure locals can be safely represented as strings.

	chain (bool [https://docs.python.org/3/library/functions.html#bool]) – if chained exceptions in Python 3 should be shown.

Changed in version 3.9: Added the chain parameter.

	
match(regexp)[source]

	Check whether the regular expression ‘regexp’ is found in the string
representation of the exception using re.search. If it matches
then True is returned (so that it is possible to write
assert excinfo.match()). If it doesn’t match an AssertionError is
raised.

FixtureDef

	
class FixtureDef[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A container for a factory definition.

FSCollector

	
class FSCollector[source]

	Bases: _pytest.nodes.Collector

Function

	
class Function[source]

	Bases: _pytest.python.FunctionMixin, _pytest.nodes.Item, _pytest.compat.FuncargnamesCompatAttr

a Function Item is responsible for setting up and executing a
Python test function.

	
originalname = None

	original function name, without any decorations (for example
parametrization adds a "[...]" suffix to function names).

New in version 3.0.

	
function

	underlying python ‘function’ object

	
runtest()[source]

	execute the underlying test function.

	
setup()[source]

	perform setup for this test function.

Item

	
class Item[source]

	Bases: _pytest.nodes.Node

a basic test invocation item. Note that for a single function
there might be multiple test invocation items.

	
user_properties = None

	user properties is a list of tuples (name, value) that holds user
defined properties for this test.

	
add_report_section(when, key, content)[source]

	Adds a new report section, similar to what’s done internally to add stdout and
stderr captured output:

item.add_report_section("call", "stdout", "report section contents")

	Parameters

	
	when (str [https://docs.python.org/3/library/stdtypes.html#str]) – One of the possible capture states, "setup", "call", "teardown".

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the section, can be customized at will. Pytest uses "stdout" and
"stderr" internally.

	content (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full contents as a string.

MarkDecorator

	
class MarkDecorator(mark)[source]

	A decorator for test functions and test classes. When applied
it will create MarkInfo objects which may be
retrieved by hooks as item keywords.
MarkDecorator instances are often created like this:

mark1 = pytest.mark.NAME # simple MarkDecorator
mark2 = pytest.mark.NAME(name1=value) # parametrized MarkDecorator

and can then be applied as decorators to test functions:

@mark2
def test_function():
 pass

	When a MarkDecorator instance is called it does the following:

	
	If called with a single class as its only positional argument and no
additional keyword arguments, it attaches itself to the class so it
gets applied automatically to all test cases found in that class.

	If called with a single function as its only positional argument and
no additional keyword arguments, it attaches a MarkInfo object to the
function, containing all the arguments already stored internally in
the MarkDecorator.

	When called in any other case, it performs a ‘fake construction’ call,
i.e. it returns a new MarkDecorator instance with the original
MarkDecorator’s content updated with the arguments passed to this
call.

Note: The rules above prevent MarkDecorator objects from storing only a
single function or class reference as their positional argument with no
additional keyword or positional arguments.

	
name

	alias for mark.name

	
args

	alias for mark.args

	
kwargs

	alias for mark.kwargs

	
with_args(*args, **kwargs)[source]

	return a MarkDecorator with extra arguments added

unlike call this can be used even if the sole argument is a callable/class

	Returns

	MarkDecorator

MarkGenerator

	
class MarkGenerator[source]

	Factory for MarkDecorator objects - exposed as
a pytest.mark singleton instance. Example:

import pytest
@pytest.mark.slowtest
def test_function():
 pass

will set a ‘slowtest’ MarkInfo object
on the test_function object.

Mark

	
class Mark(name: str, args, kwargs)[source]

	
	
name = None

	name of the mark

	
args = None

	positional arguments of the mark decorator

	
kwargs = None

	keyword arguments of the mark decorator

	
combined_with(other)[source]

	
	Parameters

	other (Mark) – the mark to combine with

	Return type

	Mark

combines by appending args and merging the mappings

Metafunc

	
class Metafunc(definition, fixtureinfo, config, cls=None, module=None)[source]

	Metafunc objects are passed to the pytest_generate_tests hook.
They help to inspect a test function and to generate tests according to
test configuration or values specified in the class or module where a
test function is defined.

	
config = None

	access to the _pytest.config.Config object for the test session

	
module = None

	the module object where the test function is defined in.

	
function = None

	underlying python test function

	
fixturenames = None

	set of fixture names required by the test function

	
cls = None

	class object where the test function is defined in or None.

	
parametrize(argnames, argvalues, indirect=False, ids=None, scope=None)[source]

	Add new invocations to the underlying test function using the list
of argvalues for the given argnames. Parametrization is performed
during the collection phase. If you need to setup expensive resources
see about setting indirect to do it rather at test setup time.

	Parameters

	
	argnames – a comma-separated string denoting one or more argument
names, or a list/tuple of argument strings.

	argvalues – The list of argvalues determines how often a
test is invoked with different argument values. If only one
argname was specified argvalues is a list of values. If N
argnames were specified, argvalues must be a list of N-tuples,
where each tuple-element specifies a value for its respective
argname.

	indirect – The list of argnames or boolean. A list of arguments’
names (subset of argnames). If True the list contains all names from
the argnames. Each argvalue corresponding to an argname in this list will
be passed as request.param to its respective argname fixture
function so that it can perform more expensive setups during the
setup phase of a test rather than at collection time.

	ids – list of string ids, or a callable.
If strings, each is corresponding to the argvalues so that they are
part of the test id. If None is given as id of specific test, the
automatically generated id for that argument will be used.
If callable, it should take one argument (a single argvalue) and return
a string or return None. If None, the automatically generated id for that
argument will be used.
If no ids are provided they will be generated automatically from
the argvalues.

	scope – if specified it denotes the scope of the parameters.
The scope is used for grouping tests by parameter instances.
It will also override any fixture-function defined scope, allowing
to set a dynamic scope using test context or configuration.

Module

	
class Module[source]

	Bases: _pytest.nodes.File, _pytest.python.PyCollector

Collector for test classes and functions.

	
collect()[source]

	returns a list of children (items and collectors)
for this collection node.

Node

	
class Node[source]

	base class for Collector and Item the test collection tree.
Collector subclasses have children, Items are terminal nodes.

	
name = None

	a unique name within the scope of the parent node

	
parent = None

	the parent collector node.

	
config = None

	the pytest config object

	
session = None

	the session this node is part of

	
fspath = None

	filesystem path where this node was collected from (can be None)

	
keywords = None

	keywords/markers collected from all scopes

	
own_markers = None

	the marker objects belonging to this node

	
extra_keyword_matches = None

	allow adding of extra keywords to use for matching

	
ihook

	fspath sensitive hook proxy used to call pytest hooks

	
warn(warning)[source]

	Issue a warning for this item.

Warnings will be displayed after the test session, unless explicitly suppressed

	Parameters

	warning (Warning [https://docs.python.org/3/library/exceptions.html#Warning]) – the warning instance to issue. Must be a subclass of PytestWarning.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if warning instance is not a subclass of PytestWarning.

Example usage:

node.warn(PytestWarning("some message"))

	
nodeid

	a ::-separated string denoting its collection tree address.

	
listchain()[source]

	return list of all parent collectors up to self,
starting from root of collection tree.

	
add_marker(marker, append=True)[source]

	dynamically add a marker object to the node.

	Parameters

	marker (str or pytest.mark.* object) – append=True whether to append the marker,
if False insert at position 0.

	
iter_markers(name=None)[source]

	
	Parameters

	name – if given, filter the results by the name attribute

iterate over all markers of the node

	
for ... in iter_markers_with_node(name=None)[source]

	
	Parameters

	name – if given, filter the results by the name attribute

iterate over all markers of the node
returns sequence of tuples (node, mark)

	
get_closest_marker(name, default=None)[source]

	return the first marker matching the name, from closest (for example function) to farther level (for example
module level).

	Parameters

	
	default – fallback return value of no marker was found

	name – name to filter by

	
listextrakeywords()[source]

	Return a set of all extra keywords in self and any parents.

	
addfinalizer(fin)[source]

	register a function to be called when this node is finalized.

This method can only be called when this node is active
in a setup chain, for example during self.setup().

	
getparent(cls)[source]

	get the next parent node (including ourself)
which is an instance of the given class

Parser

	
class Parser[source]

	Parser for command line arguments and ini-file values.

	Variables

	extra_info – dict of generic param -> value to display in case
there’s an error processing the command line arguments.

	
getgroup(name, description='', after=None)[source]

	get (or create) a named option Group.

	Name

	name of the option group.

	Description

	long description for –help output.

	After

	name of other group, used for ordering –help output.

The returned group object has an addoption method with the same
signature as parser.addoption but will be shown in the
respective group in the output of pytest. --help.

	
addoption(*opts, **attrs)[source]

	register a command line option.

	Opts

	option names, can be short or long options.

	Attrs

	same attributes which the add_option() function of the
argparse library [http://docs.python.org/2/library/argparse.html]
accepts.

After command line parsing options are available on the pytest config
object via config.option.NAME where NAME is usually set
by passing a dest attribute, for example
addoption("--long", dest="NAME", ...).

	
parse_known_args(args, namespace=None)[source]

	parses and returns a namespace object with known arguments at this
point.

	
parse_known_and_unknown_args(args, namespace=None)[source]

	parses and returns a namespace object with known arguments, and
the remaining arguments unknown at this point.

	
addini(name, help, type=None, default=None)[source]

	register an ini-file option.

	Name

	name of the ini-variable

	Type

	type of the variable, can be pathlist, args, linelist
or bool.

	Default

	default value if no ini-file option exists but is queried.

The value of ini-variables can be retrieved via a call to
config.getini(name).

PluginManager

	
class PluginManager[source]

	Core PluginManager class which manages registration
of plugin objects and 1:N hook calling.

You can register new hooks by calling add_hookspecs(module_or_class).
You can register plugin objects (which contain hooks) by calling
register(plugin). The PluginManager
is initialized with a prefix that is searched for in the names of the dict
of registered plugin objects.

For debugging purposes you can call PluginManager.enable_tracing()
which will subsequently send debug information to the trace helper.

	
register(plugin, name=None)[source]

	Register a plugin and return its canonical name or None if the name
is blocked from registering. Raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if the plugin
is already registered.

	
unregister(plugin=None, name=None)[source]

	unregister a plugin object and all its contained hook implementations
from internal data structures.

	
set_blocked(name)[source]

	block registrations of the given name, unregister if already registered.

	
is_blocked(name)[source]

	return True if the given plugin name is blocked.

	
add_hookspecs(module_or_class)[source]

	add new hook specifications defined in the given module_or_class.
Functions are recognized if they have been decorated accordingly.

	
get_plugins()[source]

	return the set of registered plugins.

	
is_registered(plugin)[source]

	Return True if the plugin is already registered.

	
get_canonical_name(plugin)[source]

	Return canonical name for a plugin object. Note that a plugin
may be registered under a different name which was specified
by the caller of register(plugin, name).
To obtain the name of an registered plugin use get_name(plugin) instead.

	
get_plugin(name)[source]

	Return a plugin or None for the given name.

	
has_plugin(name)[source]

	Return True if a plugin with the given name is registered.

	
get_name(plugin)[source]

	Return name for registered plugin or None if not registered.

	
check_pending()[source]

	Verify that all hooks which have not been verified against
a hook specification are optional, otherwise raise PluginValidationError.

	
load_setuptools_entrypoints(group, name=None)[source]

	Load modules from querying the specified setuptools group.

	Parameters

	
	group (str [https://docs.python.org/3/library/stdtypes.html#str]) – entry point group to load plugins

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – if given, loads only plugins with the given name.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	return the number of loaded plugins by this call.

	
list_plugin_distinfo()[source]

	return list of distinfo/plugin tuples for all setuptools registered
plugins.

	
list_name_plugin()[source]

	return list of name/plugin pairs.

	
get_hookcallers(plugin)[source]

	get all hook callers for the specified plugin.

	
add_hookcall_monitoring(before, after)[source]

	add before/after tracing functions for all hooks
and return an undo function which, when called,
will remove the added tracers.

before(hook_name, hook_impls, kwargs) will be called ahead
of all hook calls and receive a hookcaller instance, a list
of HookImpl instances and the keyword arguments for the hook call.

after(outcome, hook_name, hook_impls, kwargs) receives the
same arguments as before but also a pluggy.callers._Result object
which represents the result of the overall hook call.

	
enable_tracing()[source]

	enable tracing of hook calls and return an undo function.

	
subset_hook_caller(name, remove_plugins)[source]

	Return a new hooks._HookCaller instance for the named method
which manages calls to all registered plugins except the
ones from remove_plugins.

PytestPluginManager

	
class PytestPluginManager[source]

	Bases: pluggy.manager.PluginManager

Overwrites pluggy.PluginManager to add pytest-specific
functionality:

	loading plugins from the command line, PYTEST_PLUGINS env variable and
pytest_plugins global variables found in plugins being loaded;

	conftest.py loading during start-up;

	
addhooks(module_or_class)[source]

	
Deprecated since version 2.8.

Use pluggy.PluginManager.add_hookspecs
instead.

	
parse_hookimpl_opts(plugin, name)[source]

	

	
parse_hookspec_opts(module_or_class, name)[source]

	

	
register(plugin, name=None)[source]

	Register a plugin and return its canonical name or None if the name
is blocked from registering. Raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if the plugin
is already registered.

	
getplugin(name)[source]

	

	
hasplugin(name)[source]

	Return True if the plugin with the given name is registered.

	
pytest_configure(config)[source]

	

	
consider_preparse(args)[source]

	

	
consider_pluginarg(arg)[source]

	

	
consider_conftest(conftestmodule)[source]

	

	
consider_env()[source]

	

	
consider_module(mod)[source]

	

	
import_plugin(modname, consider_entry_points=False)[source]

	Imports a plugin with modname. If consider_entry_points is True, entry point
names are also considered to find a plugin.

Session

	
class Session[source]

	Bases: _pytest.nodes.FSCollector

	
exception Interrupted

	Bases: KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt]

signals an interrupted test run.

	
exception Failed

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

signals a stop as failed test run.

	
for ... in collect()[source]

	returns a list of children (items and collectors)
for this collection node.

TestReport

	
class TestReport[source]

	Basic test report object (also used for setup and teardown calls if
they fail).

	
nodeid = None

	normalized collection node id

	
location = None

	a (filesystempath, lineno, domaininfo) tuple indicating the
actual location of a test item - it might be different from the
collected one e.g. if a method is inherited from a different module.

	
keywords = None

	a name -> value dictionary containing all keywords and
markers associated with a test invocation.

	
outcome = None

	test outcome, always one of “passed”, “failed”, “skipped”.

	
longrepr = None

	None or a failure representation.

	
when = None

	one of ‘setup’, ‘call’, ‘teardown’ to indicate runtest phase.

	
user_properties = None

	user properties is a list of tuples (name, value) that holds user
defined properties of the test

	
sections = None

	list of pairs (str, str) of extra information which needs to
marshallable. Used by pytest to add captured text
from stdout and stderr, but may be used by other plugins
to add arbitrary information to reports.

	
duration = None

	time it took to run just the test

	
classmethod from_item_and_call(item, call)[source]

	Factory method to create and fill a TestReport with standard item and call info.

	
caplog

	Return captured log lines, if log capturing is enabled

New in version 3.5.

	
capstderr

	Return captured text from stderr, if capturing is enabled

New in version 3.0.

	
capstdout

	Return captured text from stdout, if capturing is enabled

New in version 3.0.

	
count_towards_summary

	Experimental

Returns True if this report should be counted towards the totals shown at the end of the
test session: “1 passed, 1 failure, etc”.

Note

This function is considered experimental, so beware that it is subject to changes
even in patch releases.

	
head_line

	Experimental

Returns the head line shown with longrepr output for this report, more commonly during
traceback representation during failures:

________ Test.foo ________

In the example above, the head_line is “Test.foo”.

Note

This function is considered experimental, so beware that it is subject to changes
even in patch releases.

	
longreprtext

	Read-only property that returns the full string representation
of longrepr.

New in version 3.0.

_Result

	
class _Result(result, excinfo)[source]

	
	
result

	Get the result(s) for this hook call (DEPRECATED in favor of get_result()).

	
force_result(result)[source]

	Force the result(s) to result.

If the hook was marked as a firstresult a single value should
be set otherwise set a (modified) list of results. Any exceptions
found during invocation will be deleted.

	
get_result()[source]

	Get the result(s) for this hook call.

If the hook was marked as a firstresult only a single value
will be returned otherwise a list of results.

Special Variables

pytest treats some global variables in a special manner when defined in a test module.

collect_ignore

Tutorial: Customizing test collection

Can be declared in conftest.py files to exclude test directories or modules.
Needs to be list[str].

collect_ignore = ["setup.py"]

collect_ignore_glob

Tutorial: Customizing test collection

Can be declared in conftest.py files to exclude test directories or modules
with Unix shell-style wildcards. Needs to be list[str] where str can
contain glob patterns.

collect_ignore_glob = ["*_ignore.py"]

pytest_plugins

Tutorial: Requiring/Loading plugins in a test module or conftest file

Can be declared at the global level in test modules and conftest.py files to register additional plugins.
Can be either a str or Sequence[str].

pytest_plugins = "myapp.testsupport.myplugin"

pytest_plugins = ("myapp.testsupport.tools", "myapp.testsupport.regression")

pytest_mark

Tutorial: Marking whole classes or modules

Can be declared at the global level in test modules to apply one or more marks to all
test functions and methods. Can be either a single mark or a list of marks.

import pytest

pytestmark = pytest.mark.webtest

import pytest

pytestmark = [pytest.mark.integration, pytest.mark.slow]

PYTEST_DONT_REWRITE (module docstring)

The text PYTEST_DONT_REWRITE can be add to any module docstring to disable
assertion rewriting for that module.

Environment Variables

Environment variables that can be used to change pytest’s behavior.

PYTEST_ADDOPTS

This contains a command-line (parsed by the py:mod:shlex module) that will be prepended to the command line given
by the user, see How to change command line options defaults for more information.

PYTEST_DEBUG

When set, pytest will print tracing and debug information.

PYTEST_PLUGINS

Contains comma-separated list of modules that should be loaded as plugins:

export PYTEST_PLUGINS=mymodule.plugin,xdist

PYTEST_DISABLE_PLUGIN_AUTOLOAD

When set, disables plugin auto-loading through setuptools entrypoints. Only explicitly specified plugins will be
loaded.

PYTEST_CURRENT_TEST

This is not meant to be set by users, but is set by pytest internally with the name of the current test so other
processes can inspect it, see PYTEST_CURRENT_TEST environment variable for more information.

Configuration Options

Here is a list of builtin configuration options that may be written in a pytest.ini, tox.ini or setup.cfg
file, usually located at the root of your repository. All options must be under a [pytest] section
([tool:pytest] for setup.cfg files).

Warning

Usage of setup.cfg is not recommended unless for very simple use cases. .cfg
files use a different parser than pytest.ini and tox.ini which might cause hard to track
down problems.
When possible, it is recommended to use the latter files to hold your pytest configuration.

Configuration file options may be overwritten in the command-line by using -o/--override, which can also be
passed multiple times. The expected format is name=value. For example:

pytest -o console_output_style=classic -o cache_dir=/tmp/mycache

	
addopts

	Add the specified OPTS to the set of command line arguments as if they
had been specified by the user. Example: if you have this ini file content:

content of pytest.ini
[pytest]
addopts = --maxfail=2 -rf # exit after 2 failures, report fail info

issuing pytest test_hello.py actually means:

pytest --maxfail=2 -rf test_hello.py

Default is to add no options.

	
cache_dir

	Sets a directory where stores content of cache plugin. Default directory is
.pytest_cache which is created in rootdir. Directory may be
relative or absolute path. If setting relative path, then directory is created
relative to rootdir. Additionally path may contain environment
variables, that will be expanded. For more information about cache plugin
please refer to Cache: working with cross-testrun state.

	
confcutdir

	Sets a directory where search upwards for conftest.py files stops.
By default, pytest will stop searching for conftest.py files upwards
from pytest.ini/tox.ini/setup.cfg of the project if any,
or up to the file-system root.

	
console_output_style

	Sets the console output style while running tests:

	classic: classic pytest output.

	progress: like classic pytest output, but with a progress indicator.

	count: like progress, but shows progress as the number of tests completed instead of a percent.

The default is progress, but you can fallback to classic if you prefer or
the new mode is causing unexpected problems:

content of pytest.ini
[pytest]
console_output_style = classic

	
doctest_encoding

	Default encoding to use to decode text files with docstrings.
See how pytest handles doctests.

	
doctest_optionflags

	One or more doctest flag names from the standard doctest module.
See how pytest handles doctests.

	
empty_parameter_set_mark

	Allows to pick the action for empty parametersets in parameterization

	skip skips tests with an empty parameterset (default)

	xfail marks tests with an empty parameterset as xfail(run=False)

	fail_at_collect raises an exception if parametrize collects an empty parameter set

content of pytest.ini
[pytest]
empty_parameter_set_mark = xfail

Note

The default value of this option is planned to change to xfail in future releases
as this is considered less error prone, see #3155 [https://github.com/pytest-dev/pytest/issues/3155]
for more details.

	
filterwarnings

	Sets a list of filters and actions that should be taken for matched
warnings. By default all warnings emitted during the test session
will be displayed in a summary at the end of the test session.

content of pytest.ini
[pytest]
filterwarnings =
 error
 ignore::DeprecationWarning

This tells pytest to ignore deprecation warnings and turn all other warnings
into errors. For more information please refer to Warnings Capture.

	
junit_duration_report

	
New in version 4.1.

Configures how durations are recorded into the JUnit XML report:

	total (the default): duration times reported include setup, call, and teardown times.

	call: duration times reported include only call times, excluding setup and teardown.

[pytest]
junit_duration_report = call

	
junit_family

	
New in version 4.2.

Configures the format of the generated JUnit XML file. The possible options are:

	xunit1 (or legacy): produces old style output, compatible with the xunit 1.0 format. This is the default.

	
	xunit2: produces xunit 2.0 style output [https://github.com/jenkinsci/xunit-plugin/blob/xunit-2.3.2/src/main/resources/org/jenkinsci/plugins/xunit/types/model/xsd/junit-10.xsd],

	which should be more compatible with latest Jenkins versions.

[pytest]
junit_family = xunit2

	
junit_logging

	
New in version 3.5.

Configures if stdout/stderr should be written to the JUnit XML file. Valid values are
system-out, system-err, and no (the default).

[pytest]
junit_logging = system-out

	
junit_log_passing_tests

	
New in version 4.6.

If junit_logging != "no", configures if the captured output should be written
to the JUnit XML file for passing tests. Default is True.

[pytest]
junit_log_passing_tests = False

	
junit_suite_name

	To set the name of the root test suite xml item, you can configure the junit_suite_name option in your config file:

[pytest]
junit_suite_name = my_suite

	
log_cli_date_format

	Sets a time.strftime() [https://docs.python.org/3/library/time.html#time.strftime]-compatible string that will be used when formatting dates for live logging.

[pytest]
log_cli_date_format = %Y-%m-%d %H:%M:%S

For more information, see Live Logs.

	
log_cli_format

	Sets a logging [https://docs.python.org/3/library/logging.html#module-logging]-compatible string used to format live logging messages.

[pytest]
log_cli_format = %(asctime)s %(levelname)s %(message)s

For more information, see Live Logs.

	
log_cli_level

	Sets the minimum log message level that should be captured for live logging. The integer value or
the names of the levels can be used.

[pytest]
log_cli_level = INFO

For more information, see Live Logs.

	
log_date_format

	Sets a time.strftime() [https://docs.python.org/3/library/time.html#time.strftime]-compatible string that will be used when formatting dates for logging capture.

[pytest]
log_date_format = %Y-%m-%d %H:%M:%S

For more information, see Logging.

	
log_file

	Sets a file name relative to the pytest.ini file where log messages should be written to, in addition
to the other logging facilities that are active.

[pytest]
log_file = logs/pytest-logs.txt

For more information, see Logging.

	
log_file_date_format

	Sets a time.strftime() [https://docs.python.org/3/library/time.html#time.strftime]-compatible string that will be used when formatting dates for the logging file.

[pytest]
log_file_date_format = %Y-%m-%d %H:%M:%S

For more information, see Logging.

	
log_file_format

	Sets a logging [https://docs.python.org/3/library/logging.html#module-logging]-compatible string used to format logging messages redirected to the logging file.

[pytest]
log_file_format = %(asctime)s %(levelname)s %(message)s

For more information, see Logging.

	
log_file_level

	Sets the minimum log message level that should be captured for the logging file. The integer value or
the names of the levels can be used.

[pytest]
log_file_level = INFO

For more information, see Logging.

	
log_format

	Sets a logging [https://docs.python.org/3/library/logging.html#module-logging]-compatible string used to format captured logging messages.

[pytest]
log_format = %(asctime)s %(levelname)s %(message)s

For more information, see Logging.

	
log_level

	Sets the minimum log message level that should be captured for logging capture. The integer value or
the names of the levels can be used.

[pytest]
log_level = INFO

For more information, see Logging.

	
log_print

	If set to False, will disable displaying captured logging messages for failed tests.

[pytest]
log_print = False

For more information, see Logging.

	
markers

	When the --strict-markers or --strict command-line arguments are used,
only known markers - defined in code by core pytest or some plugin - are allowed.

You can list additional markers in this setting to add them to the whitelist,
in which case you probably want to add --strict-markers to addopts
to avoid future regressions:

[pytest]
addopts = --strict-markers
markers =
 slow
 serial

	
minversion

	Specifies a minimal pytest version required for running tests.

content of pytest.ini
[pytest]
minversion = 3.0 # will fail if we run with pytest-2.8

	
norecursedirs

	Set the directory basename patterns to avoid when recursing
for test discovery. The individual (fnmatch-style) patterns are
applied to the basename of a directory to decide if to recurse into it.
Pattern matching characters:

* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any char not in seq

Default patterns are '.*', 'build', 'dist', 'CVS', '_darcs', '{arch}', '*.egg', 'venv'.
Setting a norecursedirs replaces the default. Here is an example of
how to avoid certain directories:

[pytest]
norecursedirs = .svn _build tmp*

This would tell pytest to not look into typical subversion or
sphinx-build directories or into any tmp prefixed directory.

Additionally, pytest will attempt to intelligently identify and ignore a
virtualenv by the presence of an activation script. Any directory deemed to
be the root of a virtual environment will not be considered during test
collection unless ‑‑collect‑in‑virtualenv is given. Note also that
norecursedirs takes precedence over ‑‑collect‑in‑virtualenv; e.g. if
you intend to run tests in a virtualenv with a base directory that matches
'.*' you must override norecursedirs in addition to using the
‑‑collect‑in‑virtualenv flag.

	
python_classes

	One or more name prefixes or glob-style patterns determining which classes
are considered for test collection. Search for multiple glob patterns by
adding a space between patterns. By default, pytest will consider any
class prefixed with Test as a test collection. Here is an example of how
to collect tests from classes that end in Suite:

[pytest]
python_classes = *Suite

Note that unittest.TestCase derived classes are always collected
regardless of this option, as unittest’s own collection framework is used
to collect those tests.

	
python_files

	One or more Glob-style file patterns determining which python files
are considered as test modules. Search for multiple glob patterns by
adding a space between patterns:

[pytest]
python_files = test_*.py check_*.py example_*.py

Or one per line:

[pytest]
python_files =
 test_*.py
 check_*.py
 example_*.py

By default, files matching test_*.py and *_test.py will be considered
test modules.

	
python_functions

	One or more name prefixes or glob-patterns determining which test functions
and methods are considered tests. Search for multiple glob patterns by
adding a space between patterns. By default, pytest will consider any
function prefixed with test as a test. Here is an example of how
to collect test functions and methods that end in _test:

[pytest]
python_functions = *_test

Note that this has no effect on methods that live on a unittest
.TestCase derived class, as unittest’s own collection framework is used
to collect those tests.

See Changing naming conventions for more detailed examples.

	
testpaths

	Sets list of directories that should be searched for tests when
no specific directories, files or test ids are given in the command line when
executing pytest from the rootdir directory.
Useful when all project tests are in a known location to speed up
test collection and to avoid picking up undesired tests by accident.

[pytest]
testpaths = testing doc

This tells pytest to only look for tests in testing and doc
directories when executing from the root directory.

	
usefixtures

	List of fixtures that will be applied to all test functions; this is semantically the same to apply
the @pytest.mark.usefixtures marker to all test functions.

[pytest]
usefixtures =
 clean_db

	
xfail_strict

	If set to True, tests marked with @pytest.mark.xfail that actually succeed will by default fail the
test suite.
For more information, see strict parameter.

[pytest]
xfail_strict = True

Good Integration Practices

Install package with pip

For development, we recommend you use venv [https://docs.python.org/3/library/venv.html/] for virtual environments
(or virtualenv [https://pypi.org/project/virtualenv/] for Python 2.7) and
pip [https://pypi.org/project/pip/] for installing your application and any dependencies,
as well as the pytest package itself.
This ensures your code and dependencies are isolated from your system Python installation.

Next, place a setup.py file in the root of your package with the following minimum content:

from setuptools import setup, find_packages

setup(name="PACKAGENAME", packages=find_packages())

Where PACKAGENAME is the name of your package. You can then install your package in “editable” mode by running from the same directory:

pip install -e .

which lets you change your source code (both tests and application) and rerun tests at will.
This is similar to running python setup.py develop or conda develop in that it installs
your package using a symlink to your development code.

Conventions for Python test discovery

pytest implements the following standard test discovery:

	If no arguments are specified then collection starts from testpaths
(if configured) or the current directory. Alternatively, command line arguments
can be used in any combination of directories, file names or node ids.

	Recurse into directories, unless they match norecursedirs.

	In those directories, search for test_*.py or *_test.py files, imported by their test package name.

	From those files, collect test items:

	test prefixed test functions or methods outside of class

	test prefixed test functions or methods inside Test prefixed test classes (without an __init__ method)

For examples of how to customize your test discovery Changing standard (Python) test discovery.

Within Python modules, pytest also discovers tests using the standard
unittest.TestCase subclassing technique.

Choosing a test layout / import rules

pytest supports two common test layouts:

Tests outside application code

Putting tests into an extra directory outside your actual application code
might be useful if you have many functional tests or for other reasons want
to keep tests separate from actual application code (often a good idea):

setup.py
mypkg/
 __init__.py
 app.py
 view.py
tests/
 test_app.py
 test_view.py
 ...

This has the following benefits:

	Your tests can run against an installed version after executing pip install ..

	Your tests can run against the local copy with an editable install after executing pip install --editable ..

	If you don’t have a setup.py file and are relying on the fact that Python by default puts the current
directory in sys.path to import your package, you can execute python -m pytest to execute the tests against the
local copy directly, without using pip.

Note

See pytest import mechanisms and sys.path/PYTHONPATH for more information about the difference between calling pytest and
python -m pytest.

Note that using this scheme your test files must have unique names, because
pytest will import them as top-level modules since there are no packages
to derive a full package name from. In other words, the test files in the example above will
be imported as test_app and test_view top-level modules by adding tests/ to
sys.path.

If you need to have test modules with the same name, you might add __init__.py files to your
tests folder and subfolders, changing them to packages:

setup.py
mypkg/
 ...
tests/
 __init__.py
 foo/
 __init__.py
 test_view.py
 bar/
 __init__.py
 test_view.py

Now pytest will load the modules as tests.foo.test_view and tests.bar.test_view, allowing
you to have modules with the same name. But now this introduces a subtle problem: in order to load
the test modules from the tests directory, pytest prepends the root of the repository to
sys.path, which adds the side-effect that now mypkg is also importable.
This is problematic if you are using a tool like tox [http://testrun.org/tox] to test your package in a virtual environment,
because you want to test the installed version of your package, not the local code from the repository.

In this situation, it is strongly suggested to use a src layout where application root package resides in a
sub-directory of your root:

setup.py
src/
 mypkg/
 __init__.py
 app.py
 view.py
tests/
 __init__.py
 foo/
 __init__.py
 test_view.py
 bar/
 __init__.py
 test_view.py

This layout prevents a lot of common pitfalls and has many benefits, which are better explained in this excellent
blog post by Ionel Cristian Mărieș [https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure].

Tests as part of application code

Inlining test directories into your application package
is useful if you have direct relation between tests and application modules and
want to distribute them along with your application:

setup.py
mypkg/
 __init__.py
 app.py
 view.py
 test/
 __init__.py
 test_app.py
 test_view.py
 ...

In this scheme, it is easy to run your tests using the --pyargs option:

pytest --pyargs mypkg

pytest will discover where mypkg is installed and collect tests from there.

Note that this layout also works in conjunction with the src layout mentioned in the previous section.

Note

You can use Python3 namespace packages (PEP420) for your application
but pytest will still perform test package name discovery based on the
presence of __init__.py files. If you use one of the
two recommended file system layouts above but leave away the __init__.py
files from your directories it should just work on Python3.3 and above. From
“inlined tests”, however, you will need to use absolute imports for
getting at your application code.

Note

If pytest finds an “a/b/test_module.py” test file while
recursing into the filesystem it determines the import name
as follows:

	determine basedir: this is the first “upward” (towards the root)
directory not containing an __init__.py. If e.g. both a
and b contain an __init__.py file then the parent directory
of a will become the basedir.

	perform sys.path.insert(0, basedir) to make the test module
importable under the fully qualified import name.

	import a.b.test_module where the path is determined
by converting path separators / into “.” characters. This means
you must follow the convention of having directory and file
names map directly to the import names.

The reason for this somewhat evolved importing technique is
that in larger projects multiple test modules might import
from each other and thus deriving a canonical import name helps
to avoid surprises such as a test module getting imported twice.

tox

Once you are done with your work and want to make sure that your actual
package passes all tests you may want to look into tox [http://testrun.org/tox], the
virtualenv test automation tool and its pytest support [https://tox.readthedocs.io/en/latest/example/pytest.html].
tox helps you to setup virtualenv environments with pre-defined
dependencies and then executing a pre-configured test command with
options. It will run tests against the installed package and not
against your source code checkout, helping to detect packaging
glitches.

Integrating with setuptools / python setup.py test / pytest-runner

You can integrate test runs into your setuptools based project
with the pytest-runner [https://pypi.org/project/pytest-runner/] plugin.

Add this to setup.py file:

from setuptools import setup

setup(
 # ...,
 setup_requires=["pytest-runner", ...],
 tests_require=["pytest", ...],
 # ...,
)

And create an alias into setup.cfg file:

[aliases]
test=pytest

If you now type:

python setup.py test

this will execute your tests using pytest-runner. As this is a
standalone version of pytest no prior installation whatsoever is
required for calling the test command. You can also pass additional
arguments to pytest such as your test directory or other
options using --addopts.

You can also specify other pytest-ini options in your setup.cfg file
by putting them into a [tool:pytest] section:

[tool:pytest]
addopts = --verbose
python_files = testing/*/*.py

Manual Integration

If for some reason you don’t want/can’t use pytest-runner, you can write
your own setuptools Test command for invoking pytest.

import sys

from setuptools.command.test import test as TestCommand

class PyTest(TestCommand):
 user_options = [("pytest-args=", "a", "Arguments to pass to pytest")]

 def initialize_options(self):
 TestCommand.initialize_options(self)
 self.pytest_args = ""

 def run_tests(self):
 import shlex

 # import here, cause outside the eggs aren't loaded
 import pytest

 errno = pytest.main(shlex.split(self.pytest_args))
 sys.exit(errno)

setup(
 # ...,
 tests_require=["pytest"],
 cmdclass={"pytest": PyTest},
)

Now if you run:

python setup.py test

this will download pytest if needed and then run your tests
as you would expect it to. You can pass a single string of arguments
using the --pytest-args or -a command-line option. For example:

python setup.py test -a "--durations=5"

is equivalent to running pytest --durations=5.

Flaky tests

A “flaky” test is one that exhibits intermittent or sporadic failure, that seems to have non-deterministic behaviour. Sometimes it passes, sometimes it fails, and it’s not clear why. This page discusses pytest features that can help and other general strategies for identifying, fixing or mitigating them.

Why flaky tests are a problem

Flaky tests are particularly troublesome when a continuous integration (CI) server is being used, so that all tests must pass before a new code change can be merged. If the test result is not a reliable signal – that a test failure means the code change broke the test – developers can become mistrustful of the test results, which can lead to overlooking genuine failures. It is also a source of wasted time as developers must re-run test suites and investigate spurious failures.

Potential root causes

System state

Broadly speaking, a flaky test indicates that the test relies on some system state that is not being appropriately controlled - the test environment is not sufficiently isolated. Higher level tests are more likely to be flaky as they rely on more state.

Flaky tests sometimes appear when a test suite is run in parallel (such as use of pytest-xdist). This can indicate a test is reliant on test ordering.

	Perhaps a different test is failing to clean up after itself and leaving behind data which causes the flaky test to fail.

	The flaky test is reliant on data from a previous test that doesn’t clean up after itself, and in parallel runs that previous test is not always present

	Tests that modify global state typically cannot be run in parallel.

Overly strict assertion

Overly strict assertions can cause problems with floating point comparison as well as timing issues. pytest.approx [https://docs.pytest.org/en/latest/reference.html#pytest-approx] is useful here.

Pytest features

Xfail strict

pytest.mark.xfail with strict=False can be used to mark a test so that its failure does not cause the whole build to break. This could be considered like a manual quarantine, and is rather dangerous to use permanently.

PYTEST_CURRENT_TEST

PYTEST_CURRENT_TEST environment variable may be useful for figuring out “which test got stuck”.

Plugins

Rerunning any failed tests can mitigate the negative effects of flaky tests by giving them additional chances to pass, so that the overall build does not fail. Several pytest plugins support this:

	flaky [https://github.com/box/flaky]

	pytest-flakefinder [https://github.com/dropbox/pytest-flakefinder] - blog post [https://blogs.dropbox.com/tech/2016/03/open-sourcing-pytest-tools/]

	pytest-rerunfailures [https://github.com/pytest-dev/pytest-rerunfailures]

	pytest-replay [https://github.com/ESSS/pytest-replay]: This plugin helps to reproduce locally crashes or flaky tests observed during CI runs.

Plugins to deliberately randomize tests can help expose tests with state problems:

	pytest-random-order [https://github.com/jbasko/pytest-random-order]

	pytest-randomly [https://github.com/pytest-dev/pytest-randomly]

Other general strategies

Split up test suites

It can be common to split a single test suite into two, such as unit vs integration, and only use the unit test suite as a CI gate. This also helps keep build times manageable as high level tests tend to be slower. However, it means it does become possible for code that breaks the build to be merged, so extra vigilance is needed for monitoring the integration test results.

Video/screenshot on failure

For UI tests these are important for understanding what the state of the UI was when the test failed. pytest-splinter can be used with plugins like pytest-bdd and can save a screenshot on test failure [https://pytest-splinter.readthedocs.io/en/latest/#automatic-screenshots-on-test-failure], which can help to isolate the cause.

Delete or rewrite the test

If the functionality is covered by other tests, perhaps the test can be removed. If not, perhaps it can be rewritten at a lower level which will remove the flakiness or make its source more apparent.

Quarantine

Mark Lapierre discusses the Pros and Cons of Quarantined Tests [https://dev.to/mlapierre/pros-and-cons-of-quarantined-tests-2emj] in a post from 2018.

CI tools that rerun on failure

Azure Pipelines (the Azure cloud CI/CD tool, formerly Visual Studio Team Services or VSTS) has a feature to identify flaky tests [https://docs.microsoft.com/en-us/azure/devops/release-notes/2017/dec-11-vsts#identify-flaky-tests] and rerun failed tests.

Research

This is a limited list, please submit an issue or pull request to expand it!

	Gao, Zebao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. “Making system user interactive tests repeatable: When and what should we control?.” In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, vol. 1, pp. 55-65. IEEE, 2015. PDF [http://www.cs.umd.edu/~atif/pubs/gao-icse15.pdf]

	Palomba, Fabio, and Andy Zaidman. “Does refactoring of test smells induce fixing flaky tests?.” In Software Maintenance and Evolution (ICSME), 2017 IEEE International Conference on, pp. 1-12. IEEE, 2017. PDF in Google Drive [https://drive.google.com/file/d/10HdcCQiuQVgW3yYUJD-TSTq1NbYEprl0/view]

	Bell, Jonathan, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and Darko Marinov. “DeFlaker: Automatically detecting flaky tests.” In Proceedings of the 2018 International Conference on Software Engineering. 2018. PDF [https://www.jonbell.net/icse18-deflaker.pdf]

Resources

	Eradicating Non-Determinism in Tests [https://martinfowler.com/articles/nonDeterminism.html] by Martin Fowler, 2011

	No more flaky tests on the Go team [https://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team] by Pavan Sudarshan, 2012

	The Build That Cried Broken: Building Trust in your Continuous Integration Tests [https://www.youtube.com/embed/VotJqV4n8ig] talk (video) by Angie Jones [http://angiejones.tech/] at SeleniumConf Austin 2017

	Test and Code Podcast: Flaky Tests and How to Deal with Them [https://testandcode.com/50] by Brian Okken and Anthony Shaw, 2018

	Microsoft:

	How we approach testing VSTS to enable continuous delivery [https://blogs.msdn.microsoft.com/bharry/2017/06/28/testing-in-a-cloud-delivery-cadence/] by Brian Harry MS, 2017

	Eliminating Flaky Tests [https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/eliminating-flaky-tests] blog and talk (video) by Munil Shah, 2017

	Google:

	Flaky Tests at Google and How We Mitigate Them [https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html] by John Micco, 2016

	Where do Google’s flaky tests come from? [https://docs.google.com/document/d/1mZ0-Kc97DI_F3tf_GBW_NB_aqka-P1jVOsFfufxqUUM/edit#heading=h.ec0r4fypsleh] by Jeff Listfield, 2017

pytest import mechanisms and sys.path/PYTHONPATH

Here’s a list of scenarios where pytest may need to change sys.path in order
to import test modules or conftest.py files.

Test modules / conftest.py files inside packages

Consider this file and directory layout:

root/
|- foo/
 |- __init__.py
 |- conftest.py
 |- bar/
 |- __init__.py
 |- tests/
 |- __init__.py
 |- test_foo.py

When executing:

pytest root/

pytest will find foo/bar/tests/test_foo.py and realize it is part of a package given that
there’s an __init__.py file in the same folder. It will then search upwards until it can find the
last folder which still contains an __init__.py file in order to find the package root (in
this case foo/). To load the module, it will insert root/ to the front of
sys.path (if not there already) in order to load
test_foo.py as the module foo.bar.tests.test_foo.

The same logic applies to the conftest.py file: it will be imported as foo.conftest module.

Preserving the full package name is important when tests live in a package to avoid problems
and allow test modules to have duplicated names. This is also discussed in details in
Conventions for Python test discovery.

Standalone test modules / conftest.py files

Consider this file and directory layout:

root/
|- foo/
 |- conftest.py
 |- bar/
 |- tests/
 |- test_foo.py

When executing:

pytest root/

pytest will find foo/bar/tests/test_foo.py and realize it is NOT part of a package given that
there’s no __init__.py file in the same folder. It will then add root/foo/bar/tests to
sys.path in order to import test_foo.py as the module test_foo. The same is done
with the conftest.py file by adding root/foo to sys.path to import it as conftest.

For this reason this layout cannot have test modules with the same name, as they all will be
imported in the global import namespace.

This is also discussed in details in Conventions for Python test discovery.

Invoking pytest versus python -m pytest

Running pytest with python -m pytest [...] instead of pytest [...] yields nearly
equivalent behaviour, except that the former call will add the current directory to sys.path.
See also Calling pytest through python -m pytest.

Configuration

Command line options and configuration file settings

You can get help on command line options and values in INI-style
configurations files by using the general help option:

pytest -h # prints options _and_ config file settings

This will display command line and configuration file settings
which were registered by installed plugins.

Initialization: determining rootdir and inifile

pytest determines a rootdir for each test run which depends on
the command line arguments (specified test files, paths) and on
the existence of ini-files. The determined rootdir and ini-file are
printed as part of the pytest header during startup.

Here’s a summary what pytest uses rootdir for:

	Construct nodeids during collection; each test is assigned
a unique nodeid which is rooted at the rootdir and takes in account full path,
class name, function name and parametrization (if any).

	Is used by plugins as a stable location to store project/test run specific information;
for example, the internal cache plugin creates a .pytest_cache subdirectory
in rootdir to store its cross-test run state.

Important to emphasize that rootdir is NOT used to modify sys.path/PYTHONPATH or
influence how modules are imported. See pytest import mechanisms and sys.path/PYTHONPATH for more details.

--rootdir=path command-line option can be used to force a specific directory.
The directory passed may contain environment variables when it is used in conjunction
with addopts in a pytest.ini file.

Finding the rootdir

Here is the algorithm which finds the rootdir from args:

	determine the common ancestor directory for the specified args that are
recognised as paths that exist in the file system. If no such paths are
found, the common ancestor directory is set to the current working directory.

	look for pytest.ini, tox.ini and setup.cfg files in the ancestor
directory and upwards. If one is matched, it becomes the ini-file and its
directory becomes the rootdir.

	if no ini-file was found, look for setup.py upwards from the common
ancestor directory to determine the rootdir.

	if no setup.py was found, look for pytest.ini, tox.ini and
setup.cfg in each of the specified args and upwards. If one is
matched, it becomes the ini-file and its directory becomes the rootdir.

	if no ini-file was found, use the already determined common ancestor as root
directory. This allows the use of pytest in structures that are not part of
a package and don’t have any particular ini-file configuration.

If no args are given, pytest collects test below the current working
directory and also starts determining the rootdir from there.

	warning

	custom pytest plugin commandline arguments may include a path, as in
pytest --log-output ../../test.log args. Then args is mandatory,
otherwise pytest uses the folder of test.log for rootdir determination
(see also issue 1435 [https://github.com/pytest-dev/pytest/issues/1435]).
A dot . for referencing to the current working directory is also
possible.

Note that an existing pytest.ini file will always be considered a match,
whereas tox.ini and setup.cfg will only match if they contain a
[pytest] or [tool:pytest] section, respectively. Options from multiple ini-files candidates are never
merged - the first one wins (pytest.ini always wins, even if it does not
contain a [pytest] section).

The config object will subsequently carry these attributes:

	config.rootdir: the determined root directory, guaranteed to exist.

	config.inifile: the determined ini-file, may be None.

The rootdir is used as a reference directory for constructing test
addresses (“nodeids”) and can be used also by plugins for storing
per-testrun information.

Example:

pytest path/to/testdir path/other/

will determine the common ancestor as path and then
check for ini-files as follows:

first look for pytest.ini files
path/pytest.ini
path/setup.cfg # must also contain [tool:pytest] section to match
path/tox.ini # must also contain [pytest] section to match
pytest.ini
... # all the way down to the root

now look for setup.py
path/setup.py
setup.py
... # all the way down to the root

How to change command line options defaults

It can be tedious to type the same series of command line options
every time you use pytest. For example, if you always want to see
detailed info on skipped and xfailed tests, as well as have terser “dot”
progress output, you can write it into a configuration file:

content of pytest.ini or tox.ini
setup.cfg files should use [tool:pytest] section instead
[pytest]
addopts = -ra -q

Alternatively, you can set a PYTEST_ADDOPTS environment variable to add command
line options while the environment is in use:

export PYTEST_ADDOPTS="-v"

Here’s how the command-line is built in the presence of addopts or the environment variable:

<pytest.ini:addopts> $PYTEST_ADDOPTS <extra command-line arguments>

So if the user executes in the command-line:

pytest -m slow

The actual command line executed is:

pytest -ra -q -v -m slow

Note that as usual for other command-line applications, in case of conflicting options the last one wins, so the example
above will show verbose output because -v overwrites -q.

Builtin configuration file options

For the full list of options consult the reference documentation.

Examples and customization tricks

Here is a (growing) list of examples. Contact us if you
need more examples or have questions. Also take a look at the
comprehensive documentation which contains many example
snippets as well. Also, pytest on stackoverflow.com [http://stackoverflow.com/search?q=pytest] often comes with example
answers.

For basic examples, see

	Installation and Getting Started for basic introductory examples

	Asserting with the assert statement for basic assertion examples

	pytest fixtures: explicit, modular, scalable for basic fixture/setup examples

	Parametrizing fixtures and test functions for basic test function parametrization

	unittest.TestCase Support for basic unittest integration

	Running tests written for nose for basic nosetests integration

The following examples aim at various use cases you might encounter.

	Demo of Python failure reports with pytest

	Basic patterns and examples
	Pass different values to a test function, depending on command line options

	Dynamically adding command line options

	Control skipping of tests according to command line option

	Writing well integrated assertion helpers

	Detect if running from within a pytest run

	Adding info to test report header

	profiling test duration

	incremental testing - test steps

	Package/Directory-level fixtures (setups)

	post-process test reports / failures

	Making test result information available in fixtures

	PYTEST_CURRENT_TEST environment variable

	Freezing pytest

	Parametrizing tests
	Generating parameters combinations, depending on command line

	Different options for test IDs

	A quick port of “testscenarios”

	Deferring the setup of parametrized resources

	Apply indirect on particular arguments

	Parametrizing test methods through per-class configuration

	Indirect parametrization with multiple fixtures

	Indirect parametrization of optional implementations/imports

	Set marks or test ID for individual parametrized test

	Parametrizing conditional raising

	Working with custom markers
	Marking test functions and selecting them for a run

	Selecting tests based on their node ID

	Using -k expr to select tests based on their name

	Registering markers

	Marking whole classes or modules

	Marking individual tests when using parametrize

	Custom marker and command line option to control test runs

	Passing a callable to custom markers

	Reading markers which were set from multiple places

	marking platform specific tests with pytest

	Automatically adding markers based on test names

	A session-fixture which can look at all collected tests

	Changing standard (Python) test discovery
	Ignore paths during test collection

	Deselect tests during test collection

	Keeping duplicate paths specified from command line

	Changing directory recursion

	Changing naming conventions

	Interpreting cmdline arguments as Python packages

	Finding out what is collected

	Customizing test collection

	Working with non-python tests
	A basic example for specifying tests in Yaml files

Demo of Python failure reports with pytest

Here is a nice run of several failures and how pytest presents things:

assertion $ pytest failure_demo.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/assertion
collected 44 items

failure_demo.py FF [100%]

================================= FAILURES =================================
___________________________ test_generative[3-6] ___________________________

param1 = 3, param2 = 6

 @pytest.mark.parametrize("param1, param2", [(3, 6)])
 def test_generative(param1, param2):
> assert param1 * 2 < param2
E assert (3 * 2) < 6

failure_demo.py:21: AssertionError
_________________________ TestFailing.test_simple __________________________

self = <failure_demo.TestFailing object at 0xdeadbeef>

 def test_simple(self):
 def f():
 return 42

 def g():
 return 43

> assert f() == g()
E assert 42 == 43
E + where 42 = <function TestFailing.test_simple.<locals>.f at 0xdeadbeef>()
E + and 43 = <function TestFailing.test_simple.<locals>.g at 0xdeadbeef>()

failure_demo.py:32: AssertionError
____________________ TestFailing.test_simple_multiline _____________________

self = <failure_demo.TestFailing object at 0xdeadbeef>

 def test_simple_multiline(self):
> otherfunc_multi(42, 6 * 9)

failure_demo.py:35:
_ _

a = 42, b = 54

 def otherfunc_multi(a, b):
> assert a == b
E assert 42 == 54

failure_demo.py:16: AssertionError
___________________________ TestFailing.test_not ___________________________

self = <failure_demo.TestFailing object at 0xdeadbeef>

 def test_not(self):
 def f():
 return 42

> assert not f()
E assert not 42
E + where 42 = <function TestFailing.test_not.<locals>.f at 0xdeadbeef>()

failure_demo.py:41: AssertionError
_________________ TestSpecialisedExplanations.test_eq_text _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_text(self):
> assert "spam" == "eggs"
E AssertionError: assert 'spam' == 'eggs'
E - spam
E + eggs

failure_demo.py:46: AssertionError
_____________ TestSpecialisedExplanations.test_eq_similar_text _____________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_similar_text(self):
> assert "foo 1 bar" == "foo 2 bar"
E AssertionError: assert 'foo 1 bar' == 'foo 2 bar'
E - foo 1 bar
E ? ^
E + foo 2 bar
E ? ^

failure_demo.py:49: AssertionError
____________ TestSpecialisedExplanations.test_eq_multiline_text ____________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_multiline_text(self):
> assert "foo\nspam\nbar" == "foo\neggs\nbar"
E AssertionError: assert 'foo\nspam\nbar' == 'foo\neggs\nbar'
E foo
E - spam
E + eggs
E bar

failure_demo.py:52: AssertionError
______________ TestSpecialisedExplanations.test_eq_long_text _______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_long_text(self):
 a = "1" * 100 + "a" + "2" * 100
 b = "1" * 100 + "b" + "2" * 100
> assert a == b
E AssertionError: assert '111111111111...2222222222222' == '1111111111111...2222222222222'
E Skipping 90 identical leading characters in diff, use -v to show
E Skipping 91 identical trailing characters in diff, use -v to show
E - 1111111111a222222222
E ? ^
E + 1111111111b222222222
E ? ^

failure_demo.py:57: AssertionError
_________ TestSpecialisedExplanations.test_eq_long_text_multiline __________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_long_text_multiline(self):
 a = "1\n" * 100 + "a" + "2\n" * 100
 b = "1\n" * 100 + "b" + "2\n" * 100
> assert a == b
E AssertionError: assert '1\n1\n1\n1\n...n2\n2\n2\n2\n' == '1\n1\n1\n1\n1...n2\n2\n2\n2\n'
E Skipping 190 identical leading characters in diff, use -v to show
E Skipping 191 identical trailing characters in diff, use -v to show
E 1
E 1
E 1
E 1
E 1...
E
E ...Full output truncated (7 lines hidden), use '-vv' to show

failure_demo.py:62: AssertionError
_________________ TestSpecialisedExplanations.test_eq_list _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_list(self):
> assert [0, 1, 2] == [0, 1, 3]
E assert [0, 1, 2] == [0, 1, 3]
E At index 2 diff: 2 != 3
E Use -v to get the full diff

failure_demo.py:65: AssertionError
______________ TestSpecialisedExplanations.test_eq_list_long _______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_list_long(self):
 a = [0] * 100 + [1] + [3] * 100
 b = [0] * 100 + [2] + [3] * 100
> assert a == b
E assert [0, 0, 0, 0, 0, 0, ...] == [0, 0, 0, 0, 0, 0, ...]
E At index 100 diff: 1 != 2
E Use -v to get the full diff

failure_demo.py:70: AssertionError
_________________ TestSpecialisedExplanations.test_eq_dict _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_dict(self):
> assert {"a": 0, "b": 1, "c": 0} == {"a": 0, "b": 2, "d": 0}
E AssertionError: assert {'a': 0, 'b': 1, 'c': 0} == {'a': 0, 'b': 2, 'd': 0}
E Omitting 1 identical items, use -vv to show
E Differing items:
E {'b': 1} != {'b': 2}
E Left contains 1 more item:
E {'c': 0}
E Right contains 1 more item:
E {'d': 0}...
E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:73: AssertionError
_________________ TestSpecialisedExplanations.test_eq_set __________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_set(self):
> assert {0, 10, 11, 12} == {0, 20, 21}
E AssertionError: assert {0, 10, 11, 12} == {0, 20, 21}
E Extra items in the left set:
E 10
E 11
E 12
E Extra items in the right set:
E 20
E 21...
E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:76: AssertionError
_____________ TestSpecialisedExplanations.test_eq_longer_list ______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_longer_list(self):
> assert [1, 2] == [1, 2, 3]
E assert [1, 2] == [1, 2, 3]
E Right contains one more item: 3
E Use -v to get the full diff

failure_demo.py:79: AssertionError
_________________ TestSpecialisedExplanations.test_in_list _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_in_list(self):
> assert 1 in [0, 2, 3, 4, 5]
E assert 1 in [0, 2, 3, 4, 5]

failure_demo.py:82: AssertionError
__________ TestSpecialisedExplanations.test_not_in_text_multiline __________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_not_in_text_multiline(self):
 text = "some multiline\ntext\nwhich\nincludes foo\nand a\ntail"
> assert "foo" not in text
E AssertionError: assert 'foo' not in 'some multiline\ntext\nw...ncludes foo\nand a\ntail'
E 'foo' is contained here:
E some multiline
E text
E which
E includes foo
E ? +++
E and a...
E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:86: AssertionError
___________ TestSpecialisedExplanations.test_not_in_text_single ____________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_not_in_text_single(self):
 text = "single foo line"
> assert "foo" not in text
E AssertionError: assert 'foo' not in 'single foo line'
E 'foo' is contained here:
E single foo line
E ? +++

failure_demo.py:90: AssertionError
_________ TestSpecialisedExplanations.test_not_in_text_single_long _________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_not_in_text_single_long(self):
 text = "head " * 50 + "foo " + "tail " * 20
> assert "foo" not in text
E AssertionError: assert 'foo' not in 'head head head head hea...ail tail tail tail tail '
E 'foo' is contained here:
E head head foo tail
E ? +++

failure_demo.py:94: AssertionError
______ TestSpecialisedExplanations.test_not_in_text_single_long_term _______

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_not_in_text_single_long_term(self):
 text = "head " * 50 + "f" * 70 + "tail " * 20
> assert "f" * 70 not in text
E AssertionError: assert 'fffffffffff...ffffffffffff' not in 'head head he...l tail tail '
E 'ffffffffffffffffff...fffffffffffffffffff' is contained here:
E head head fftail tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail
E ? ++

failure_demo.py:98: AssertionError
______________ TestSpecialisedExplanations.test_eq_dataclass _______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_dataclass(self):
 from dataclasses import dataclass

 @dataclass
 class Foo(object):
 a: int
 b: str

 left = Foo(1, "b")
 right = Foo(1, "c")
> assert left == right
E AssertionError: assert TestSpecialis...oo(a=1, b='b') == TestSpecialise...oo(a=1, b='c')
E Omitting 1 identical items, use -vv to show
E Differing attributes:
E b: 'b' != 'c'

failure_demo.py:110: AssertionError
________________ TestSpecialisedExplanations.test_eq_attrs _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

 def test_eq_attrs(self):
 import attr

 @attr.s
 class Foo(object):
 a = attr.ib()
 b = attr.ib()

 left = Foo(1, "b")
 right = Foo(1, "c")
> assert left == right
E AssertionError: assert Foo(a=1, b='b') == Foo(a=1, b='c')
E Omitting 1 identical items, use -vv to show
E Differing attributes:
E b: 'b' != 'c'

failure_demo.py:122: AssertionError
______________________________ test_attribute ______________________________

 def test_attribute():
 class Foo(object):
 b = 1

 i = Foo()
> assert i.b == 2
E assert 1 == 2
E + where 1 = <failure_demo.test_attribute.<locals>.Foo object at 0xdeadbeef>.b

failure_demo.py:130: AssertionError
_________________________ test_attribute_instance __________________________

 def test_attribute_instance():
 class Foo(object):
 b = 1

> assert Foo().b == 2
E AssertionError: assert 1 == 2
E + where 1 = <failure_demo.test_attribute_instance.<locals>.Foo object at 0xdeadbeef>.b
E + where <failure_demo.test_attribute_instance.<locals>.Foo object at 0xdeadbeef> = <class 'failure_demo.test_attribute_instance.<locals>.Foo'>()

failure_demo.py:137: AssertionError
__________________________ test_attribute_failure __________________________

 def test_attribute_failure():
 class Foo(object):
 def _get_b(self):
 raise Exception("Failed to get attrib")

 b = property(_get_b)

 i = Foo()
> assert i.b == 2

failure_demo.py:148:
_ _

self = <failure_demo.test_attribute_failure.<locals>.Foo object at 0xdeadbeef>

 def _get_b(self):
> raise Exception("Failed to get attrib")
E Exception: Failed to get attrib

failure_demo.py:143: Exception
_________________________ test_attribute_multiple __________________________

 def test_attribute_multiple():
 class Foo(object):
 b = 1

 class Bar(object):
 b = 2

> assert Foo().b == Bar().b
E AssertionError: assert 1 == 2
E + where 1 = <failure_demo.test_attribute_multiple.<locals>.Foo object at 0xdeadbeef>.b
E + where <failure_demo.test_attribute_multiple.<locals>.Foo object at 0xdeadbeef> = <class 'failure_demo.test_attribute_multiple.<locals>.Foo'>()
E + and 2 = <failure_demo.test_attribute_multiple.<locals>.Bar object at 0xdeadbeef>.b
E + where <failure_demo.test_attribute_multiple.<locals>.Bar object at 0xdeadbeef> = <class 'failure_demo.test_attribute_multiple.<locals>.Bar'>()

failure_demo.py:158: AssertionError
__________________________ TestRaises.test_raises __________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

 def test_raises(self):
 s = "qwe"
> raises(TypeError, int, s)
E ValueError: invalid literal for int() with base 10: 'qwe'

failure_demo.py:168: ValueError
______________________ TestRaises.test_raises_doesnt _______________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

 def test_raises_doesnt(self):
> raises(IOError, int, "3")
E Failed: DID NOT RAISE <class 'OSError'>

failure_demo.py:171: Failed
__________________________ TestRaises.test_raise ___________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

 def test_raise(self):
> raise ValueError("demo error")
E ValueError: demo error

failure_demo.py:174: ValueError
________________________ TestRaises.test_tupleerror ________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

 def test_tupleerror(self):
> a, b = [1] # NOQA
E ValueError: not enough values to unpack (expected 2, got 1)

failure_demo.py:177: ValueError
______ TestRaises.test_reinterpret_fails_with_print_for_the_fun_of_it ______

self = <failure_demo.TestRaises object at 0xdeadbeef>

 def test_reinterpret_fails_with_print_for_the_fun_of_it(self):
 items = [1, 2, 3]
 print("items is %r" % items)
> a, b = items.pop()
E TypeError: cannot unpack non-iterable int object

failure_demo.py:182: TypeError
--------------------------- Captured stdout call ---------------------------
items is [1, 2, 3]
________________________ TestRaises.test_some_error ________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

 def test_some_error(self):
> if namenotexi: # NOQA
E NameError: name 'namenotexi' is not defined

failure_demo.py:185: NameError
____________________ test_dynamic_compile_shows_nicely _____________________

 def test_dynamic_compile_shows_nicely():
 import imp
 import sys

 src = "def foo():\n assert 1 == 0\n"
 name = "abc-123"
 module = imp.new_module(name)
 code = _pytest._code.compile(src, name, "exec")
 exec(code, module.__dict__)
 sys.modules[name] = module
> module.foo()

failure_demo.py:203:
_ _

 def foo():
> assert 1 == 0
E AssertionError

<0-codegen 'abc-123' $REGENDOC_TMPDIR/assertion/failure_demo.py:200>:2: AssertionError
____________________ TestMoreErrors.test_complex_error _____________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

 def test_complex_error(self):
 def f():
 return 44

 def g():
 return 43

> somefunc(f(), g())

failure_demo.py:214:
_ _
failure_demo.py:12: in somefunc
 otherfunc(x, y)
_ _

a = 44, b = 43

 def otherfunc(a, b):
> assert a == b
E assert 44 == 43

failure_demo.py:8: AssertionError
___________________ TestMoreErrors.test_z1_unpack_error ____________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

 def test_z1_unpack_error(self):
 items = []
> a, b = items
E ValueError: not enough values to unpack (expected 2, got 0)

failure_demo.py:218: ValueError
____________________ TestMoreErrors.test_z2_type_error _____________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

 def test_z2_type_error(self):
 items = 3
> a, b = items
E TypeError: cannot unpack non-iterable int object

failure_demo.py:222: TypeError
______________________ TestMoreErrors.test_startswith ______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

 def test_startswith(self):
 s = "123"
 g = "456"
> assert s.startswith(g)
E AssertionError: assert False
E + where False = <built-in method startswith of str object at 0xdeadbeef>('456')
E + where <built-in method startswith of str object at 0xdeadbeef> = '123'.startswith

failure_demo.py:227: AssertionError
__________________ TestMoreErrors.test_startswith_nested ___________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

 def test_startswith_nested(self):
 def f():
 return "123"

 def g():
 return "456"

> assert f().startswith(g())
E AssertionError: assert False
E + where False = <built-in method startswith of str object at 0xdeadbeef>('456')
E + where <built-in method startswith of str object at 0xdeadbeef> = '123'.startswith
E + where '123' = <function TestMoreErrors.test_startswith_nested.<locals>.f at 0xdeadbeef>()
E + and '456' = <function TestMoreErrors.test_startswith_nested.<locals>.g at 0xdeadbeef>()

failure_demo.py:236: AssertionError
_____________________ TestMoreErrors.test_global_func ______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

 def test_global_func(self):
> assert isinstance(globf(42), float)
E assert False
E + where False = isinstance(43, float)
E + where 43 = globf(42)

failure_demo.py:239: AssertionError
_______________________ TestMoreErrors.test_instance _______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

 def test_instance(self):
 self.x = 6 * 7
> assert self.x != 42
E assert 42 != 42
E + where 42 = <failure_demo.TestMoreErrors object at 0xdeadbeef>.x

failure_demo.py:243: AssertionError
_______________________ TestMoreErrors.test_compare ________________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

 def test_compare(self):
> assert globf(10) < 5
E assert 11 < 5
E + where 11 = globf(10)

failure_demo.py:246: AssertionError
_____________________ TestMoreErrors.test_try_finally ______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

 def test_try_finally(self):
 x = 1
 try:
> assert x == 0
E assert 1 == 0

failure_demo.py:251: AssertionError
___________________ TestCustomAssertMsg.test_single_line ___________________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

 def test_single_line(self):
 class A(object):
 a = 1

 b = 2
> assert A.a == b, "A.a appears not to be b"
E AssertionError: A.a appears not to be b
E assert 1 == 2
E + where 1 = <class 'failure_demo.TestCustomAssertMsg.test_single_line.<locals>.A'>.a

failure_demo.py:262: AssertionError
____________________ TestCustomAssertMsg.test_multiline ____________________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

 def test_multiline(self):
 class A(object):
 a = 1

 b = 2
> assert (
 A.a == b
), "A.a appears not to be b\nor does not appear to be b\none of those"
E AssertionError: A.a appears not to be b
E or does not appear to be b
E one of those
E assert 1 == 2
E + where 1 = <class 'failure_demo.TestCustomAssertMsg.test_multiline.<locals>.A'>.a

failure_demo.py:269: AssertionError
___________________ TestCustomAssertMsg.test_custom_repr ___________________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

 def test_custom_repr(self):
 class JSON(object):
 a = 1

 def __repr__(self):
 return "This is JSON\n{\n 'foo': 'bar'\n}"

 a = JSON()
 b = 2
> assert a.a == b, a
E AssertionError: This is JSON
E {
E 'foo': 'bar'
E }
E assert 1 == 2
E + where 1 = This is JSON\n{\n 'foo': 'bar'\n}.a

failure_demo.py:282: AssertionError
======================== 44 failed in 0.12 seconds =========================

Basic patterns and examples

Pass different values to a test function, depending on command line options

Suppose we want to write a test that depends on a command line option.
Here is a basic pattern to achieve this:

content of test_sample.py
def test_answer(cmdopt):
 if cmdopt == "type1":
 print("first")
 elif cmdopt == "type2":
 print("second")
 assert 0 # to see what was printed

For this to work we need to add a command line option and
provide the cmdopt through a fixture function:

content of conftest.py
import pytest

def pytest_addoption(parser):
 parser.addoption(
 "--cmdopt", action="store", default="type1", help="my option: type1 or type2"
)

@pytest.fixture
def cmdopt(request):
 return request.config.getoption("--cmdopt")

Let’s run this without supplying our new option:

$ pytest -q test_sample.py
F [100%]
================================= FAILURES =================================
_______________________________ test_answer ________________________________

cmdopt = 'type1'

 def test_answer(cmdopt):
 if cmdopt == "type1":
 print("first")
 elif cmdopt == "type2":
 print("second")
> assert 0 # to see what was printed
E assert 0

test_sample.py:6: AssertionError
--------------------------- Captured stdout call ---------------------------
first
1 failed in 0.12 seconds

And now with supplying a command line option:

$ pytest -q --cmdopt=type2
F [100%]
================================= FAILURES =================================
_______________________________ test_answer ________________________________

cmdopt = 'type2'

 def test_answer(cmdopt):
 if cmdopt == "type1":
 print("first")
 elif cmdopt == "type2":
 print("second")
> assert 0 # to see what was printed
E assert 0

test_sample.py:6: AssertionError
--------------------------- Captured stdout call ---------------------------
second
1 failed in 0.12 seconds

You can see that the command line option arrived in our test. This
completes the basic pattern. However, one often rather wants to process
command line options outside of the test and rather pass in different or
more complex objects.

Dynamically adding command line options

Through addopts you can statically add command line
options for your project. You can also dynamically modify
the command line arguments before they get processed:

setuptools plugin
import sys

def pytest_load_initial_conftests(args):
 if "xdist" in sys.modules: # pytest-xdist plugin
 import multiprocessing

 num = max(multiprocessing.cpu_count() / 2, 1)
 args[:] = ["-n", str(num)] + args

If you have the xdist plugin [https://pypi.org/project/pytest-xdist/] installed
you will now always perform test runs using a number
of subprocesses close to your CPU. Running in an empty
directory with the above conftest.py:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 0 items

======================= no tests ran in 0.12 seconds =======================

Control skipping of tests according to command line option

Here is a conftest.py file adding a --runslow command
line option to control skipping of pytest.mark.slow marked tests:

content of conftest.py

import pytest

def pytest_addoption(parser):
 parser.addoption(
 "--runslow", action="store_true", default=False, help="run slow tests"
)

def pytest_collection_modifyitems(config, items):
 if config.getoption("--runslow"):
 # --runslow given in cli: do not skip slow tests
 return
 skip_slow = pytest.mark.skip(reason="need --runslow option to run")
 for item in items:
 if "slow" in item.keywords:
 item.add_marker(skip_slow)

We can now write a test module like this:

content of test_module.py
import pytest

def test_func_fast():
 pass

@pytest.mark.slow
def test_func_slow():
 pass

and when running it will see a skipped “slow” test:

$ pytest -rs # "-rs" means report details on the little 's'
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .s [100%]

========================= short test summary info ==========================
SKIPPED [1] test_module.py:8: need --runslow option to run
=================== 1 passed, 1 skipped in 0.12 seconds ====================

Or run it including the slow marked test:

$ pytest --runslow
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .. [100%]

========================= 2 passed in 0.12 seconds =========================

Writing well integrated assertion helpers

If you have a test helper function called from a test you can
use the pytest.fail marker to fail a test with a certain message.
The test support function will not show up in the traceback if you
set the __tracebackhide__ option somewhere in the helper function.
Example:

content of test_checkconfig.py
import pytest

def checkconfig(x):
 __tracebackhide__ = True
 if not hasattr(x, "config"):
 pytest.fail("not configured: %s" % (x,))

def test_something():
 checkconfig(42)

The __tracebackhide__ setting influences pytest showing
of tracebacks: the checkconfig function will not be shown
unless the --full-trace command line option is specified.
Let’s run our little function:

$ pytest -q test_checkconfig.py
F [100%]
================================= FAILURES =================================
______________________________ test_something ______________________________

 def test_something():
> checkconfig(42)
E Failed: not configured: 42

test_checkconfig.py:11: Failed
1 failed in 0.12 seconds

If you only want to hide certain exceptions, you can set __tracebackhide__
to a callable which gets the ExceptionInfo object. You can for example use
this to make sure unexpected exception types aren’t hidden:

import operator
import pytest

class ConfigException(Exception):
 pass

def checkconfig(x):
 __tracebackhide__ = operator.methodcaller("errisinstance", ConfigException)
 if not hasattr(x, "config"):
 raise ConfigException("not configured: %s" % (x,))

def test_something():
 checkconfig(42)

This will avoid hiding the exception traceback on unrelated exceptions (i.e.
bugs in assertion helpers).

Detect if running from within a pytest run

Usually it is a bad idea to make application code
behave differently if called from a test. But if you
absolutely must find out if your application code is
running from a test you can do something like this:

content of conftest.py

def pytest_configure(config):
 import sys

 sys._called_from_test = True

def pytest_unconfigure(config):
 import sys

 del sys._called_from_test

and then check for the sys._called_from_test flag:

if hasattr(sys, "_called_from_test"):
 # called from within a test run
 ...
else:
 # called "normally"
 ...

accordingly in your application. It’s also a good idea
to use your own application module rather than sys
for handling flag.

Adding info to test report header

It’s easy to present extra information in a pytest run:

content of conftest.py

def pytest_report_header(config):
 return "project deps: mylib-1.1"

which will add the string to the test header accordingly:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
project deps: mylib-1.1
rootdir: $REGENDOC_TMPDIR
collected 0 items

======================= no tests ran in 0.12 seconds =======================

It is also possible to return a list of strings which will be considered as several
lines of information. You may consider config.getoption('verbose') in order to
display more information if applicable:

content of conftest.py

def pytest_report_header(config):
 if config.getoption("verbose") > 0:
 return ["info1: did you know that ...", "did you?"]

which will add info only when run with “–v”:

$ pytest -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
info1: did you know that ...
did you?
rootdir: $REGENDOC_TMPDIR
collecting ... collected 0 items

======================= no tests ran in 0.12 seconds =======================

and nothing when run plainly:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 0 items

======================= no tests ran in 0.12 seconds =======================

profiling test duration

If you have a slow running large test suite you might want to find
out which tests are the slowest. Let’s make an artificial test suite:

content of test_some_are_slow.py
import time

def test_funcfast():
 time.sleep(0.1)

def test_funcslow1():
 time.sleep(0.2)

def test_funcslow2():
 time.sleep(0.3)

Now we can profile which test functions execute the slowest:

$ pytest --durations=3
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_some_are_slow.py ... [100%]

========================= slowest 3 test durations =========================
0.31s call test_some_are_slow.py::test_funcslow2
0.20s call test_some_are_slow.py::test_funcslow1
0.10s call test_some_are_slow.py::test_funcfast
========================= 3 passed in 0.12 seconds =========================

incremental testing - test steps

Sometimes you may have a testing situation which consists of a series
of test steps. If one step fails it makes no sense to execute further
steps as they are all expected to fail anyway and their tracebacks
add no insight. Here is a simple conftest.py file which introduces
an incremental marker which is to be used on classes:

content of conftest.py

import pytest

def pytest_runtest_makereport(item, call):
 if "incremental" in item.keywords:
 if call.excinfo is not None:
 parent = item.parent
 parent._previousfailed = item

def pytest_runtest_setup(item):
 if "incremental" in item.keywords:
 previousfailed = getattr(item.parent, "_previousfailed", None)
 if previousfailed is not None:
 pytest.xfail("previous test failed (%s)" % previousfailed.name)

These two hook implementations work together to abort incremental-marked
tests in a class. Here is a test module example:

content of test_step.py

import pytest

@pytest.mark.incremental
class TestUserHandling(object):
 def test_login(self):
 pass

 def test_modification(self):
 assert 0

 def test_deletion(self):
 pass

def test_normal():
 pass

If we run this:

$ pytest -rx
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items

test_step.py .Fx. [100%]

================================= FAILURES =================================
____________________ TestUserHandling.test_modification ____________________

self = <test_step.TestUserHandling object at 0xdeadbeef>

 def test_modification(self):
> assert 0
E assert 0

test_step.py:11: AssertionError
========================= short test summary info ==========================
XFAIL test_step.py::TestUserHandling::test_deletion
 reason: previous test failed (test_modification)
============== 1 failed, 2 passed, 1 xfailed in 0.12 seconds ===============

We’ll see that test_deletion was not executed because test_modification
failed. It is reported as an “expected failure”.

Package/Directory-level fixtures (setups)

If you have nested test directories, you can have per-directory fixture scopes
by placing fixture functions in a conftest.py file in that directory
You can use all types of fixtures including autouse fixtures which are the equivalent of xUnit’s setup/teardown
concept. It’s however recommended to have explicit fixture references in your
tests or test classes rather than relying on implicitly executing
setup/teardown functions, especially if they are far away from the actual tests.

Here is an example for making a db fixture available in a directory:

content of a/conftest.py
import pytest

class DB(object):
 pass

@pytest.fixture(scope="session")
def db():
 return DB()

and then a test module in that directory:

content of a/test_db.py
def test_a1(db):
 assert 0, db # to show value

another test module:

content of a/test_db2.py
def test_a2(db):
 assert 0, db # to show value

and then a module in a sister directory which will not see
the db fixture:

content of b/test_error.py
def test_root(db): # no db here, will error out
 pass

We can run this:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 7 items

test_step.py .Fx. [57%]
a/test_db.py F [71%]
a/test_db2.py F [85%]
b/test_error.py E [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_root ________________________
file $REGENDOC_TMPDIR/b/test_error.py, line 1
 def test_root(db): # no db here, will error out
E fixture 'db' not found
> available fixtures: cache, capfd, capfdbinary, caplog, capsys, capsysbinary, doctest_namespace, monkeypatch, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory
> use 'pytest --fixtures [testpath]' for help on them.

$REGENDOC_TMPDIR/b/test_error.py:1
================================= FAILURES =================================
____________________ TestUserHandling.test_modification ____________________

self = <test_step.TestUserHandling object at 0xdeadbeef>

 def test_modification(self):
> assert 0
E assert 0

test_step.py:11: AssertionError
_________________________________ test_a1 __________________________________

db = <conftest.DB object at 0xdeadbeef>

 def test_a1(db):
> assert 0, db # to show value
E AssertionError: <conftest.DB object at 0xdeadbeef>
E assert 0

a/test_db.py:2: AssertionError
_________________________________ test_a2 __________________________________

db = <conftest.DB object at 0xdeadbeef>

 def test_a2(db):
> assert 0, db # to show value
E AssertionError: <conftest.DB object at 0xdeadbeef>
E assert 0

a/test_db2.py:2: AssertionError
========== 3 failed, 2 passed, 1 xfailed, 1 error in 0.12 seconds ==========

The two test modules in the a directory see the same db fixture instance
while the one test in the sister-directory b doesn’t see it. We could of course
also define a db fixture in that sister directory’s conftest.py file.
Note that each fixture is only instantiated if there is a test actually needing
it (unless you use “autouse” fixture which are always executed ahead of the first test
executing).

post-process test reports / failures

If you want to postprocess test reports and need access to the executing
environment you can implement a hook that gets called when the test
“report” object is about to be created. Here we write out all failing
test calls and also access a fixture (if it was used by the test) in
case you want to query/look at it during your post processing. In our
case we just write some information out to a failures file:

content of conftest.py

import pytest
import os.path

@pytest.hookimpl(tryfirst=True, hookwrapper=True)
def pytest_runtest_makereport(item, call):
 # execute all other hooks to obtain the report object
 outcome = yield
 rep = outcome.get_result()

 # we only look at actual failing test calls, not setup/teardown
 if rep.when == "call" and rep.failed:
 mode = "a" if os.path.exists("failures") else "w"
 with open("failures", mode) as f:
 # let's also access a fixture for the fun of it
 if "tmpdir" in item.fixturenames:
 extra = " (%s)" % item.funcargs["tmpdir"]
 else:
 extra = ""

 f.write(rep.nodeid + extra + "\n")

if you then have failing tests:

content of test_module.py
def test_fail1(tmpdir):
 assert 0

def test_fail2():
 assert 0

and run them:

$ pytest test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py FF [100%]

================================= FAILURES =================================
________________________________ test_fail1 ________________________________

tmpdir = local('PYTEST_TMPDIR/test_fail10')

 def test_fail1(tmpdir):
> assert 0
E assert 0

test_module.py:2: AssertionError
________________________________ test_fail2 ________________________________

 def test_fail2():
> assert 0
E assert 0

test_module.py:6: AssertionError
========================= 2 failed in 0.12 seconds =========================

you will have a “failures” file which contains the failing test ids:

$ cat failures
test_module.py::test_fail1 (PYTEST_TMPDIR/test_fail10)
test_module.py::test_fail2

Making test result information available in fixtures

If you want to make test result reports available in fixture finalizers
here is a little example implemented via a local plugin:

content of conftest.py

import pytest

@pytest.hookimpl(tryfirst=True, hookwrapper=True)
def pytest_runtest_makereport(item, call):
 # execute all other hooks to obtain the report object
 outcome = yield
 rep = outcome.get_result()

 # set a report attribute for each phase of a call, which can
 # be "setup", "call", "teardown"

 setattr(item, "rep_" + rep.when, rep)

@pytest.fixture
def something(request):
 yield
 # request.node is an "item" because we use the default
 # "function" scope
 if request.node.rep_setup.failed:
 print("setting up a test failed!", request.node.nodeid)
 elif request.node.rep_setup.passed:
 if request.node.rep_call.failed:
 print("executing test failed", request.node.nodeid)

if you then have failing tests:

content of test_module.py

import pytest

@pytest.fixture
def other():
 assert 0

def test_setup_fails(something, other):
 pass

def test_call_fails(something):
 assert 0

def test_fail2():
 assert 0

and run it:

$ pytest -s test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_module.py Esetting up a test failed! test_module.py::test_setup_fails
Fexecuting test failed test_module.py::test_call_fails
F

================================== ERRORS ==================================
____________________ ERROR at setup of test_setup_fails ____________________

 @pytest.fixture
 def other():
> assert 0
E assert 0

test_module.py:7: AssertionError
================================= FAILURES =================================
_____________________________ test_call_fails ______________________________

something = None

 def test_call_fails(something):
> assert 0
E assert 0

test_module.py:15: AssertionError
________________________________ test_fail2 ________________________________

 def test_fail2():
> assert 0
E assert 0

test_module.py:19: AssertionError
==================== 2 failed, 1 error in 0.12 seconds =====================

You’ll see that the fixture finalizers could use the precise reporting
information.

PYTEST_CURRENT_TEST environment variable

Sometimes a test session might get stuck and there might be no easy way to figure out
which test got stuck, for example if pytest was run in quiet mode (-q) or you don’t have access to the console
output. This is particularly a problem if the problem helps only sporadically, the famous “flaky” kind of tests.

pytest sets a PYTEST_CURRENT_TEST environment variable when running tests, which can be inspected
by process monitoring utilities or libraries like psutil [https://pypi.org/project/psutil/] to discover which
test got stuck if necessary:

import psutil

for pid in psutil.pids():
 environ = psutil.Process(pid).environ()
 if "PYTEST_CURRENT_TEST" in environ:
 print(f'pytest process {pid} running: {environ["PYTEST_CURRENT_TEST"]}')

During the test session pytest will set PYTEST_CURRENT_TEST to the current test
nodeid and the current stage, which can be setup, call
and teardown.

For example, when running a single test function named test_foo from foo_module.py,
PYTEST_CURRENT_TEST will be set to:

	foo_module.py::test_foo (setup)

	foo_module.py::test_foo (call)

	foo_module.py::test_foo (teardown)

In that order.

Note

The contents of PYTEST_CURRENT_TEST is meant to be human readable and the actual format
can be changed between releases (even bug fixes) so it shouldn’t be relied on for scripting
or automation.

Freezing pytest

If you freeze your application using a tool like
PyInstaller [https://pyinstaller.readthedocs.io]
in order to distribute it to your end-users, it is a good idea to also package
your test runner and run your tests using the frozen application. This way packaging
errors such as dependencies not being included into the executable can be detected early
while also allowing you to send test files to users so they can run them in their
machines, which can be useful to obtain more information about a hard to reproduce bug.

Fortunately recent PyInstaller releases already have a custom hook
for pytest, but if you are using another tool to freeze executables
such as cx_freeze or py2exe, you can use pytest.freeze_includes()
to obtain the full list of internal pytest modules. How to configure the tools
to find the internal modules varies from tool to tool, however.

Instead of freezing the pytest runner as a separate executable, you can make
your frozen program work as the pytest runner by some clever
argument handling during program startup. This allows you to
have a single executable, which is usually more convenient.
Please note that the mechanism for plugin discovery used by pytest
(setupttools entry points) doesn’t work with frozen executables so pytest
can’t find any third party plugins automatically. To include third party plugins
like pytest-timeout they must be imported explicitly and passed on to pytest.main.

contents of app_main.py
import sys
import pytest_timeout # Third party plugin

if len(sys.argv) > 1 and sys.argv[1] == "--pytest":
 import pytest

 sys.exit(pytest.main(sys.argv[2:], plugins=[pytest_timeout]))
else:
 # normal application execution: at this point argv can be parsed
 # by your argument-parsing library of choice as usual
 ...

This allows you to execute tests using the frozen
application with standard pytest command-line options:

./app_main --pytest --verbose --tb=long --junitxml=results.xml test-suite/

Parametrizing tests

pytest allows to easily parametrize test functions.
For basic docs, see Parametrizing fixtures and test functions.

In the following we provide some examples using
the builtin mechanisms.

Generating parameters combinations, depending on command line

Let’s say we want to execute a test with different computation
parameters and the parameter range shall be determined by a command
line argument. Let’s first write a simple (do-nothing) computation test:

content of test_compute.py

def test_compute(param1):
 assert param1 < 4

Now we add a test configuration like this:

content of conftest.py

def pytest_addoption(parser):
 parser.addoption("--all", action="store_true",
 help="run all combinations")

def pytest_generate_tests(metafunc):
 if 'param1' in metafunc.fixturenames:
 if metafunc.config.getoption('all'):
 end = 5
 else:
 end = 2
 metafunc.parametrize("param1", range(end))

This means that we only run 2 tests if we do not pass --all:

$ pytest -q test_compute.py
.. [100%]
2 passed in 0.12 seconds

We run only two computations, so we see two dots.
let’s run the full monty:

$ pytest -q --all
....F [100%]
================================= FAILURES =================================
_____________________________ test_compute[4] ______________________________

param1 = 4

 def test_compute(param1):
> assert param1 < 4
E assert 4 < 4

test_compute.py:3: AssertionError
1 failed, 4 passed in 0.12 seconds

As expected when running the full range of param1 values
we’ll get an error on the last one.

Different options for test IDs

pytest will build a string that is the test ID for each set of values in a
parametrized test. These IDs can be used with -k to select specific cases
to run, and they will also identify the specific case when one is failing.
Running pytest with --collect-only will show the generated IDs.

Numbers, strings, booleans and None will have their usual string representation
used in the test ID. For other objects, pytest will make a string based on
the argument name:

content of test_time.py

import pytest

from datetime import datetime, timedelta

testdata = [
 (datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1)),
 (datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1)),
]

@pytest.mark.parametrize("a,b,expected", testdata)
def test_timedistance_v0(a, b, expected):
 diff = a - b
 assert diff == expected

@pytest.mark.parametrize("a,b,expected", testdata, ids=["forward", "backward"])
def test_timedistance_v1(a, b, expected):
 diff = a - b
 assert diff == expected

def idfn(val):
 if isinstance(val, (datetime,)):
 # note this wouldn't show any hours/minutes/seconds
 return val.strftime('%Y%m%d')

@pytest.mark.parametrize("a,b,expected", testdata, ids=idfn)
def test_timedistance_v2(a, b, expected):
 diff = a - b
 assert diff == expected

@pytest.mark.parametrize("a,b,expected", [
 pytest.param(datetime(2001, 12, 12), datetime(2001, 12, 11),
 timedelta(1), id='forward'),
 pytest.param(datetime(2001, 12, 11), datetime(2001, 12, 12),
 timedelta(-1), id='backward'),
])
def test_timedistance_v3(a, b, expected):
 diff = a - b
 assert diff == expected

In test_timedistance_v0, we let pytest generate the test IDs.

In test_timedistance_v1, we specified ids as a list of strings which were
used as the test IDs. These are succinct, but can be a pain to maintain.

In test_timedistance_v2, we specified ids as a function that can generate a
string representation to make part of the test ID. So our datetime values use the
label generated by idfn, but because we didn’t generate a label for timedelta
objects, they are still using the default pytest representation:

$ pytest test_time.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 8 items
<Module test_time.py>
 <Function test_timedistance_v0[a0-b0-expected0]>
 <Function test_timedistance_v0[a1-b1-expected1]>
 <Function test_timedistance_v1[forward]>
 <Function test_timedistance_v1[backward]>
 <Function test_timedistance_v2[20011212-20011211-expected0]>
 <Function test_timedistance_v2[20011211-20011212-expected1]>
 <Function test_timedistance_v3[forward]>
 <Function test_timedistance_v3[backward]>

======================= no tests ran in 0.12 seconds =======================

In test_timedistance_v3, we used pytest.param to specify the test IDs
together with the actual data, instead of listing them separately.

A quick port of “testscenarios”

Here is a quick port to run tests configured with test scenarios [https://pypi.org/project/testscenarios/],
an add-on from Robert Collins for the standard unittest framework. We
only have to work a bit to construct the correct arguments for pytest’s
Metafunc.parametrize():

content of test_scenarios.py

def pytest_generate_tests(metafunc):
 idlist = []
 argvalues = []
 for scenario in metafunc.cls.scenarios:
 idlist.append(scenario[0])
 items = scenario[1].items()
 argnames = [x[0] for x in items]
 argvalues.append(([x[1] for x in items]))
 metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class")

scenario1 = ('basic', {'attribute': 'value'})
scenario2 = ('advanced', {'attribute': 'value2'})

class TestSampleWithScenarios(object):
 scenarios = [scenario1, scenario2]

 def test_demo1(self, attribute):
 assert isinstance(attribute, str)

 def test_demo2(self, attribute):
 assert isinstance(attribute, str)

this is a fully self-contained example which you can run with:

$ pytest test_scenarios.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items

test_scenarios.py [100%]

========================= 4 passed in 0.12 seconds =========================

If you just collect tests you’ll also nicely see ‘advanced’ and ‘basic’ as variants for the test function:

$ pytest --collect-only test_scenarios.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items
<Module test_scenarios.py>
 <Class TestSampleWithScenarios>
 <Function test_demo1[basic]>
 <Function test_demo2[basic]>
 <Function test_demo1[advanced]>
 <Function test_demo2[advanced]>

======================= no tests ran in 0.12 seconds =======================

Note that we told metafunc.parametrize() that your scenario values
should be considered class-scoped. With pytest-2.3 this leads to a
resource-based ordering.

Deferring the setup of parametrized resources

The parametrization of test functions happens at collection
time. It is a good idea to setup expensive resources like DB
connections or subprocess only when the actual test is run.
Here is a simple example how you can achieve that, first
the actual test requiring a db object:

content of test_backends.py

import pytest
def test_db_initialized(db):
 # a dummy test
 if db.__class__.__name__ == "DB2":
 pytest.fail("deliberately failing for demo purposes")

We can now add a test configuration that generates two invocations of
the test_db_initialized function and also implements a factory that
creates a database object for the actual test invocations:

content of conftest.py
import pytest

def pytest_generate_tests(metafunc):
 if 'db' in metafunc.fixturenames:
 metafunc.parametrize("db", ['d1', 'd2'], indirect=True)

class DB1(object):
 "one database object"
class DB2(object):
 "alternative database object"

@pytest.fixture
def db(request):
 if request.param == "d1":
 return DB1()
 elif request.param == "d2":
 return DB2()
 else:
 raise ValueError("invalid internal test config")

Let’s first see how it looks like at collection time:

$ pytest test_backends.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items
<Module test_backends.py>
 <Function test_db_initialized[d1]>
 <Function test_db_initialized[d2]>

======================= no tests ran in 0.12 seconds =======================

And then when we run the test:

$ pytest -q test_backends.py
.F [100%]
================================= FAILURES =================================
_________________________ test_db_initialized[d2] __________________________

db = <conftest.DB2 object at 0xdeadbeef>

 def test_db_initialized(db):
 # a dummy test
 if db.__class__.__name__ == "DB2":
> pytest.fail("deliberately failing for demo purposes")
E Failed: deliberately failing for demo purposes

test_backends.py:6: Failed
1 failed, 1 passed in 0.12 seconds

The first invocation with db == "DB1" passed while the second with db == "DB2" failed. Our db fixture function has instantiated each of the DB values during the setup phase while the pytest_generate_tests generated two according calls to the test_db_initialized during the collection phase.

Apply indirect on particular arguments

Very often parametrization uses more than one argument name. There is opportunity to apply indirect
parameter on particular arguments. It can be done by passing list or tuple of
arguments’ names to indirect. In the example below there is a function test_indirect which uses
two fixtures: x and y. Here we give to indirect the list, which contains the name of the
fixture x. The indirect parameter will be applied to this argument only, and the value a
will be passed to respective fixture function:

content of test_indirect_list.py

import pytest
@pytest.fixture(scope='function')
def x(request):
 return request.param * 3

@pytest.fixture(scope='function')
def y(request):
 return request.param * 2

@pytest.mark.parametrize('x, y', [('a', 'b')], indirect=['x'])
def test_indirect(x,y):
 assert x == 'aaa'
 assert y == 'b'

The result of this test will be successful:

$ pytest test_indirect_list.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item
<Module test_indirect_list.py>
 <Function test_indirect[a-b]>

======================= no tests ran in 0.12 seconds =======================

Parametrizing test methods through per-class configuration

Here is an example pytest_generate_tests function implementing a
parametrization scheme similar to Michael Foord’s unittest
parametrizer [https://github.com/testing-cabal/unittest-ext/blob/master/params.py] but in a lot less code:

content of ./test_parametrize.py
import pytest

def pytest_generate_tests(metafunc):
 # called once per each test function
 funcarglist = metafunc.cls.params[metafunc.function.__name__]
 argnames = sorted(funcarglist[0])
 metafunc.parametrize(argnames, [[funcargs[name] for name in argnames]
 for funcargs in funcarglist])

class TestClass(object):
 # a map specifying multiple argument sets for a test method
 params = {
 'test_equals': [dict(a=1, b=2), dict(a=3, b=3),],
 'test_zerodivision': [dict(a=1, b=0),],
 }

 def test_equals(self, a, b):
 assert a == b

 def test_zerodivision(self, a, b):
 with pytest.raises(ZeroDivisionError):
 a / b

Our test generator looks up a class-level definition which specifies which
argument sets to use for each test function. Let’s run it:

$ pytest -q
F.. [100%]
================================= FAILURES =================================
________________________ TestClass.test_equals[1-2] ________________________

self = <test_parametrize.TestClass object at 0xdeadbeef>, a = 1, b = 2

 def test_equals(self, a, b):
> assert a == b
E assert 1 == 2

test_parametrize.py:18: AssertionError
1 failed, 2 passed in 0.12 seconds

Indirect parametrization with multiple fixtures

Here is a stripped down real-life example of using parametrized
testing for testing serialization of objects between different python
interpreters. We define a test_basic_objects function which
is to be run with different sets of arguments for its three arguments:

	python1: first python interpreter, run to pickle-dump an object to a file

	python2: second interpreter, run to pickle-load an object from a file

	obj: object to be dumped/loaded

-*- coding: utf-8 -*-
"""
module containing a parametrized tests testing cross-python
serialization via the pickle module.
"""
import distutils.spawn
import subprocess
import textwrap

import pytest

pythonlist = ["python2.7", "python3.4", "python3.5"]

@pytest.fixture(params=pythonlist)
def python1(request, tmpdir):
 picklefile = tmpdir.join("data.pickle")
 return Python(request.param, picklefile)

@pytest.fixture(params=pythonlist)
def python2(request, python1):
 return Python(request.param, python1.picklefile)

class Python(object):
 def __init__(self, version, picklefile):
 self.pythonpath = distutils.spawn.find_executable(version)
 if not self.pythonpath:
 pytest.skip("{!r} not found".format(version))
 self.picklefile = picklefile

 def dumps(self, obj):
 dumpfile = self.picklefile.dirpath("dump.py")
 dumpfile.write(
 textwrap.dedent(
 r"""
 import pickle
 f = open({!r}, 'wb')
 s = pickle.dump({!r}, f, protocol=2)
 f.close()
 """.format(
 str(self.picklefile), obj
)
)
)
 subprocess.check_call((self.pythonpath, str(dumpfile)))

 def load_and_is_true(self, expression):
 loadfile = self.picklefile.dirpath("load.py")
 loadfile.write(
 textwrap.dedent(
 r"""
 import pickle
 f = open({!r}, 'rb')
 obj = pickle.load(f)
 f.close()
 res = eval({!r})
 if not res:
 raise SystemExit(1)
 """.format(
 str(self.picklefile), expression
)
)
)
 print(loadfile)
 subprocess.check_call((self.pythonpath, str(loadfile)))

@pytest.mark.parametrize("obj", [42, {}, {1: 3}])
def test_basic_objects(python1, python2, obj):
 python1.dumps(obj)
 python2.load_and_is_true("obj == %s" % obj)

Running it results in some skips if we don’t have all the python interpreters installed and otherwise runs all combinations (5 interpreters times 5 interpreters times 3 objects to serialize/deserialize):

. $ pytest -rs -q multipython.py
...ssssssssssssssssssssssss [100%]
========================= short test summary info ==========================
SKIPPED [12] $REGENDOC_TMPDIR/CWD/multipython.py:31: 'python3.4' not found
SKIPPED [12] $REGENDOC_TMPDIR/CWD/multipython.py:31: 'python3.5' not found
3 passed, 24 skipped in 0.12 seconds

Indirect parametrization of optional implementations/imports

If you want to compare the outcomes of several implementations of a given
API, you can write test functions that receive the already imported implementations
and get skipped in case the implementation is not importable/available. Let’s
say we have a “base” implementation and the other (possibly optimized ones)
need to provide similar results:

content of conftest.py

import pytest

@pytest.fixture(scope="session")
def basemod(request):
 return pytest.importorskip("base")

@pytest.fixture(scope="session", params=["opt1", "opt2"])
def optmod(request):
 return pytest.importorskip(request.param)

And then a base implementation of a simple function:

content of base.py
def func1():
 return 1

And an optimized version:

content of opt1.py
def func1():
 return 1.0001

And finally a little test module:

content of test_module.py

def test_func1(basemod, optmod):
 assert round(basemod.func1(), 3) == round(optmod.func1(), 3)

If you run this with reporting for skips enabled:

$ pytest -rs test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .s [100%]

========================= short test summary info ==========================
SKIPPED [1] $REGENDOC_TMPDIR/conftest.py:11: could not import 'opt2': No module named 'opt2'
=================== 1 passed, 1 skipped in 0.12 seconds ====================

You’ll see that we don’t have an opt2 module and thus the second test run
of our test_func1 was skipped. A few notes:

	the fixture functions in the conftest.py file are “session-scoped” because we
don’t need to import more than once

	if you have multiple test functions and a skipped import, you will see
the [1] count increasing in the report

	you can put @pytest.mark.parametrize style
parametrization on the test functions to parametrize input/output
values as well.

Set marks or test ID for individual parametrized test

Use pytest.param to apply marks or set test ID to individual parametrized test.
For example:

content of test_pytest_param_example.py
import pytest

@pytest.mark.parametrize(
 "test_input,expected",
 [
 ("3+5", 8),
 pytest.param("1+7", 8, marks=pytest.mark.basic),
 pytest.param("2+4", 6, marks=pytest.mark.basic, id="basic_2+4"),
 pytest.param(
 "6*9", 42, marks=[pytest.mark.basic, pytest.mark.xfail], id="basic_6*9"
),
],
)
def test_eval(test_input, expected):
 assert eval(test_input) == expected

In this example, we have 4 parametrized tests. Except for the first test,
we mark the rest three parametrized tests with the custom marker basic,
and for the fourth test we also use the built-in mark xfail to indicate this
test is expected to fail. For explicitness, we set test ids for some tests.

Then run pytest with verbose mode and with only the basic marker:

$ pytest -v -m basic
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 17 items / 14 deselected / 3 selected

test_pytest_param_example.py::test_eval[1+7-8] PASSED [33%]
test_pytest_param_example.py::test_eval[basic_2+4] PASSED [66%]
test_pytest_param_example.py::test_eval[basic_6*9] XFAIL [100%]

============ 2 passed, 14 deselected, 1 xfailed in 0.12 seconds ============

As the result:

	Four tests were collected

	One test was deselected because it doesn’t have the basic mark.

	Three tests with the basic mark was selected.

	The test test_eval[1+7-8] passed, but the name is autogenerated and confusing.

	The test test_eval[basic_2+4] passed.

	The test test_eval[basic_6*9] was expected to fail and did fail.

Parametrizing conditional raising

Use pytest.raises() with the
pytest.mark.parametrize decorator to write parametrized tests
in which some tests raise exceptions and others do not.

It is helpful to define a no-op context manager does_not_raise to serve
as a complement to raises. For example:

from contextlib import contextmanager
import pytest

@contextmanager
def does_not_raise():
 yield

@pytest.mark.parametrize('example_input,expectation', [
 (3, does_not_raise()),
 (2, does_not_raise()),
 (1, does_not_raise()),
 (0, pytest.raises(ZeroDivisionError)),
])
def test_division(example_input, expectation):
 """Test how much I know division."""
 with expectation:
 assert (6 / example_input) is not None

In the example above, the first three test cases should run unexceptionally,
while the fourth should raise ZeroDivisionError.

If you’re only supporting Python 3.7+, you can simply use nullcontext
to define does_not_raise:

from contextlib import nullcontext as does_not_raise

Or, if you’re supporting Python 3.3+ you can use:

from contextlib import ExitStack as does_not_raise

Or, if desired, you can pip install contextlib2 and use:

from contextlib2 import ExitStack as does_not_raise

Working with custom markers

Here are some examples using the Marking test functions with attributes mechanism.

Marking test functions and selecting them for a run

You can “mark” a test function with custom metadata like this:

content of test_server.py

import pytest

@pytest.mark.webtest
def test_send_http():
 pass # perform some webtest test for your app

def test_something_quick():
 pass

def test_another():
 pass

class TestClass(object):
 def test_method(self):
 pass

You can then restrict a test run to only run tests marked with webtest:

$ pytest -v -m webtest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 3 deselected / 1 selected

test_server.py::test_send_http PASSED [100%]

================== 1 passed, 3 deselected in 0.12 seconds ==================

Or the inverse, running all tests except the webtest ones:

$ pytest -v -m "not webtest"
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 1 deselected / 3 selected

test_server.py::test_something_quick PASSED [33%]
test_server.py::test_another PASSED [66%]
test_server.py::TestClass::test_method PASSED [100%]

================== 3 passed, 1 deselected in 0.12 seconds ==================

Selecting tests based on their node ID

You can provide one or more node IDs as positional
arguments to select only specified tests. This makes it easy to select
tests based on their module, class, method, or function name:

$ pytest -v test_server.py::TestClass::test_method
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 1 item

test_server.py::TestClass::test_method PASSED [100%]

========================= 1 passed in 0.12 seconds =========================

You can also select on the class:

$ pytest -v test_server.py::TestClass
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 1 item

test_server.py::TestClass::test_method PASSED [100%]

========================= 1 passed in 0.12 seconds =========================

Or select multiple nodes:

$ pytest -v test_server.py::TestClass test_server.py::test_send_http
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 2 items

test_server.py::TestClass::test_method PASSED [50%]
test_server.py::test_send_http PASSED [100%]

========================= 2 passed in 0.12 seconds =========================

Note

Node IDs are of the form module.py::class::method or
module.py::function. Node IDs control which tests are
collected, so module.py::class will select all test methods
on the class. Nodes are also created for each parameter of a
parametrized fixture or test, so selecting a parametrized test
must include the parameter value, e.g.
module.py::function[param].

Node IDs for failing tests are displayed in the test summary info
when running pytest with the -rf option. You can also
construct Node IDs from the output of pytest --collectonly.

Using -k expr to select tests based on their name

You can use the -k command line option to specify an expression
which implements a substring match on the test names instead of the
exact match on markers that -m provides. This makes it easy to
select tests based on their names:

$ pytest -v -k http # running with the above defined example module
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 3 deselected / 1 selected

test_server.py::test_send_http PASSED [100%]

================== 1 passed, 3 deselected in 0.12 seconds ==================

And you can also run all tests except the ones that match the keyword:

$ pytest -k "not send_http" -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 1 deselected / 3 selected

test_server.py::test_something_quick PASSED [33%]
test_server.py::test_another PASSED [66%]
test_server.py::TestClass::test_method PASSED [100%]

================== 3 passed, 1 deselected in 0.12 seconds ==================

Or to select “http” and “quick” tests:

$ pytest -k "http or quick" -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 2 deselected / 2 selected

test_server.py::test_send_http PASSED [50%]
test_server.py::test_something_quick PASSED [100%]

================== 2 passed, 2 deselected in 0.12 seconds ==================

Note

If you are using expressions such as "X and Y" then both X and Y
need to be simple non-keyword names. For example, "pass" or "from"
will result in SyntaxErrors because "-k" evaluates the expression using
Python’s eval [https://docs.python.org/3.6/library/functions.html#eval] function.

However, if the "-k" argument is a simple string, no such restrictions
apply. Also "-k 'not STRING'" has no restrictions. You can also
specify numbers like "-k 1.3" to match tests which are parametrized
with the float "1.3".

Registering markers

Registering markers for your test suite is simple:

content of pytest.ini
[pytest]
markers =
 webtest: mark a test as a webtest.

You can ask which markers exist for your test suite - the list includes our just defined webtest markers:

$ pytest --markers
@pytest.mark.webtest: mark a test as a webtest.

@pytest.mark.filterwarnings(warning): add a warning filter to the given test. see https://docs.pytest.org/en/latest/warnings.html#pytest-mark-filterwarnings

@pytest.mark.skip(reason=None): skip the given test function with an optional reason. Example: skip(reason="no way of currently testing this") skips the test.

@pytest.mark.skipif(condition): skip the given test function if eval(condition) results in a True value. Evaluation happens within the module global context. Example: skipif('sys.platform == "win32"') skips the test if we are on the win32 platform. see https://docs.pytest.org/en/latest/skipping.html

@pytest.mark.xfail(condition, reason=None, run=True, raises=None, strict=False): mark the test function as an expected failure if eval(condition) has a True value. Optionally specify a reason for better reporting and run=False if you don't even want to execute the test function. If only specific exception(s) are expected, you can list them in raises, and if the test fails in other ways, it will be reported as a true failure. See https://docs.pytest.org/en/latest/skipping.html

@pytest.mark.parametrize(argnames, argvalues): call a test function multiple times passing in different arguments in turn. argvalues generally needs to be a list of values if argnames specifies only one name or a list of tuples of values if argnames specifies multiple names. Example: @parametrize('arg1', [1,2]) would lead to two calls of the decorated test function, one with arg1=1 and another with arg1=2.see https://docs.pytest.org/en/latest/parametrize.html for more info and examples.

@pytest.mark.usefixtures(fixturename1, fixturename2, ...): mark tests as needing all of the specified fixtures. see https://docs.pytest.org/en/latest/fixture.html#usefixtures

@pytest.mark.tryfirst: mark a hook implementation function such that the plugin machinery will try to call it first/as early as possible.

@pytest.mark.trylast: mark a hook implementation function such that the plugin machinery will try to call it last/as late as possible.

For an example on how to add and work with markers from a plugin, see
Custom marker and command line option to control test runs.

Note

It is recommended to explicitly register markers so that:

	There is one place in your test suite defining your markers

	Asking for existing markers via pytest --markers gives good output

	Typos in function markers are treated as an error if you use
the --strict-markers option.

Marking whole classes or modules

You may use pytest.mark decorators with classes to apply markers to all of
its test methods:

content of test_mark_classlevel.py
import pytest

@pytest.mark.webtest
class TestClass(object):
 def test_startup(self):
 pass

 def test_startup_and_more(self):
 pass

This is equivalent to directly applying the decorator to the
two test functions.

To remain backward-compatible with Python 2.4 you can also set a
pytestmark attribute on a TestClass like this:

import pytest

class TestClass(object):
 pytestmark = pytest.mark.webtest

or if you need to use multiple markers you can use a list:

import pytest

class TestClass(object):
 pytestmark = [pytest.mark.webtest, pytest.mark.slowtest]

You can also set a module level marker:

import pytest
pytestmark = pytest.mark.webtest

or multiple markers:

pytestmark = [pytest.mark.webtest, pytest.mark.slowtest]

in which case markers will be applied (in left-to-right order) to
all functions and methods defined in the module.

Marking individual tests when using parametrize

When using parametrize, applying a mark will make it apply
to each individual test. However it is also possible to
apply a marker to an individual test instance:

import pytest

@pytest.mark.foo
@pytest.mark.parametrize(
 ("n", "expected"), [(1, 2), pytest.param((1, 3), marks=pytest.mark.bar), (2, 3)]
)
def test_increment(n, expected):
 assert n + 1 == expected

In this example the mark “foo” will apply to each of the three
tests, whereas the “bar” mark is only applied to the second test.
Skip and xfail marks can also be applied in this way, see Skip/xfail with parametrize.

Custom marker and command line option to control test runs

Plugins can provide custom markers and implement specific behaviour
based on it. This is a self-contained example which adds a command
line option and a parametrized test function marker to run tests
specifies via named environments:

content of conftest.py

import pytest

def pytest_addoption(parser):
 parser.addoption(
 "-E",
 action="store",
 metavar="NAME",
 help="only run tests matching the environment NAME.",
)

def pytest_configure(config):
 # register an additional marker
 config.addinivalue_line(
 "markers", "env(name): mark test to run only on named environment"
)

def pytest_runtest_setup(item):
 envnames = [mark.args[0] for mark in item.iter_markers(name="env")]
 if envnames:
 if item.config.getoption("-E") not in envnames:
 pytest.skip("test requires env in %r" % envnames)

A test file using this local plugin:

content of test_someenv.py

import pytest

@pytest.mark.env("stage1")
def test_basic_db_operation():
 pass

and an example invocations specifying a different environment than what
the test needs:

$ pytest -E stage2
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_someenv.py s [100%]

======================== 1 skipped in 0.12 seconds =========================

and here is one that specifies exactly the environment needed:

$ pytest -E stage1
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_someenv.py . [100%]

========================= 1 passed in 0.12 seconds =========================

The --markers option always gives you a list of available markers:

$ pytest --markers
@pytest.mark.env(name): mark test to run only on named environment

@pytest.mark.filterwarnings(warning): add a warning filter to the given test. see https://docs.pytest.org/en/latest/warnings.html#pytest-mark-filterwarnings

@pytest.mark.skip(reason=None): skip the given test function with an optional reason. Example: skip(reason="no way of currently testing this") skips the test.

@pytest.mark.skipif(condition): skip the given test function if eval(condition) results in a True value. Evaluation happens within the module global context. Example: skipif('sys.platform == "win32"') skips the test if we are on the win32 platform. see https://docs.pytest.org/en/latest/skipping.html

@pytest.mark.xfail(condition, reason=None, run=True, raises=None, strict=False): mark the test function as an expected failure if eval(condition) has a True value. Optionally specify a reason for better reporting and run=False if you don't even want to execute the test function. If only specific exception(s) are expected, you can list them in raises, and if the test fails in other ways, it will be reported as a true failure. See https://docs.pytest.org/en/latest/skipping.html

@pytest.mark.parametrize(argnames, argvalues): call a test function multiple times passing in different arguments in turn. argvalues generally needs to be a list of values if argnames specifies only one name or a list of tuples of values if argnames specifies multiple names. Example: @parametrize('arg1', [1,2]) would lead to two calls of the decorated test function, one with arg1=1 and another with arg1=2.see https://docs.pytest.org/en/latest/parametrize.html for more info and examples.

@pytest.mark.usefixtures(fixturename1, fixturename2, ...): mark tests as needing all of the specified fixtures. see https://docs.pytest.org/en/latest/fixture.html#usefixtures

@pytest.mark.tryfirst: mark a hook implementation function such that the plugin machinery will try to call it first/as early as possible.

@pytest.mark.trylast: mark a hook implementation function such that the plugin machinery will try to call it last/as late as possible.

Passing a callable to custom markers

Below is the config file that will be used in the next examples:

content of conftest.py
import sys

def pytest_runtest_setup(item):
 for marker in item.iter_markers(name="my_marker"):
 print(marker)
 sys.stdout.flush()

A custom marker can have its argument set, i.e. args and kwargs properties, defined by either invoking it as a callable or using pytest.mark.MARKER_NAME.with_args. These two methods achieve the same effect most of the time.

However, if there is a callable as the single positional argument with no keyword arguments, using the pytest.mark.MARKER_NAME(c) will not pass c as a positional argument but decorate c with the custom marker (see MarkDecorator). Fortunately, pytest.mark.MARKER_NAME.with_args comes to the rescue:

content of test_custom_marker.py
import pytest

def hello_world(*args, **kwargs):
 return "Hello World"

@pytest.mark.my_marker.with_args(hello_world)
def test_with_args():
 pass

The output is as follows:

$ pytest -q -s
Mark(name='my_marker', args=(<function hello_world at 0xdeadbeef>,), kwargs={})
.
1 passed in 0.12 seconds

We can see that the custom marker has its argument set extended with the function hello_world. This is the key difference between creating a custom marker as a callable, which invokes __call__ behind the scenes, and using with_args.

Reading markers which were set from multiple places

If you are heavily using markers in your test suite you may encounter the case where a marker is applied several times to a test function. From plugin
code you can read over all such settings. Example:

content of test_mark_three_times.py
import pytest

pytestmark = pytest.mark.glob("module", x=1)

@pytest.mark.glob("class", x=2)
class TestClass(object):
 @pytest.mark.glob("function", x=3)
 def test_something(self):
 pass

Here we have the marker “glob” applied three times to the same
test function. From a conftest file we can read it like this:

content of conftest.py
import sys

def pytest_runtest_setup(item):
 for mark in item.iter_markers(name="glob"):
 print("glob args=%s kwargs=%s" % (mark.args, mark.kwargs))
 sys.stdout.flush()

Let’s run this without capturing output and see what we get:

$ pytest -q -s
glob args=('function',) kwargs={'x': 3}
glob args=('class',) kwargs={'x': 2}
glob args=('module',) kwargs={'x': 1}
.
1 passed in 0.12 seconds

marking platform specific tests with pytest

Consider you have a test suite which marks tests for particular platforms,
namely pytest.mark.darwin, pytest.mark.win32 etc. and you
also have tests that run on all platforms and have no specific
marker. If you now want to have a way to only run the tests
for your particular platform, you could use the following plugin:

content of conftest.py
#
import sys
import pytest

ALL = set("darwin linux win32".split())

def pytest_runtest_setup(item):
 supported_platforms = ALL.intersection(mark.name for mark in item.iter_markers())
 plat = sys.platform
 if supported_platforms and plat not in supported_platforms:
 pytest.skip("cannot run on platform %s" % (plat))

then tests will be skipped if they were specified for a different platform.
Let’s do a little test file to show how this looks like:

content of test_plat.py

import pytest

@pytest.mark.darwin
def test_if_apple_is_evil():
 pass

@pytest.mark.linux
def test_if_linux_works():
 pass

@pytest.mark.win32
def test_if_win32_crashes():
 pass

def test_runs_everywhere():
 pass

then you will see two tests skipped and two executed tests as expected:

$ pytest -rs # this option reports skip reasons
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items

test_plat.py s.s. [100%]

========================= short test summary info ==========================
SKIPPED [2] $REGENDOC_TMPDIR/conftest.py:13: cannot run on platform linux
=================== 2 passed, 2 skipped in 0.12 seconds ====================

Note that if you specify a platform via the marker-command line option like this:

$ pytest -m linux
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items / 3 deselected / 1 selected

test_plat.py . [100%]

================== 1 passed, 3 deselected in 0.12 seconds ==================

then the unmarked-tests will not be run. It is thus a way to restrict the run to the specific tests.

Automatically adding markers based on test names

If you a test suite where test function names indicate a certain
type of test, you can implement a hook that automatically defines
markers so that you can use the -m option with it. Let’s look
at this test module:

content of test_module.py

def test_interface_simple():
 assert 0

def test_interface_complex():
 assert 0

def test_event_simple():
 assert 0

def test_something_else():
 assert 0

We want to dynamically define two markers and can do it in a
conftest.py plugin:

content of conftest.py

import pytest

def pytest_collection_modifyitems(items):
 for item in items:
 if "interface" in item.nodeid:
 item.add_marker(pytest.mark.interface)
 elif "event" in item.nodeid:
 item.add_marker(pytest.mark.event)

We can now use the -m option to select one set:

$ pytest -m interface --tb=short
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items / 2 deselected / 2 selected

test_module.py FF [100%]

================================= FAILURES =================================
__________________________ test_interface_simple ___________________________
test_module.py:4: in test_interface_simple
 assert 0
E assert 0
__________________________ test_interface_complex __________________________
test_module.py:8: in test_interface_complex
 assert 0
E assert 0
================== 2 failed, 2 deselected in 0.12 seconds ==================

or to select both “event” and “interface” tests:

$ pytest -m "interface or event" --tb=short
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items / 1 deselected / 3 selected

test_module.py FFF [100%]

================================= FAILURES =================================
__________________________ test_interface_simple ___________________________
test_module.py:4: in test_interface_simple
 assert 0
E assert 0
__________________________ test_interface_complex __________________________
test_module.py:8: in test_interface_complex
 assert 0
E assert 0
____________________________ test_event_simple _____________________________
test_module.py:12: in test_event_simple
 assert 0
E assert 0
================== 3 failed, 1 deselected in 0.12 seconds ==================

A session-fixture which can look at all collected tests

A session-scoped fixture effectively has access to all
collected test items. Here is an example of a fixture
function which walks all collected tests and looks
if their test class defines a callme method and
calls it:

content of conftest.py

import pytest

@pytest.fixture(scope="session", autouse=True)
def callattr_ahead_of_alltests(request):
 print("callattr_ahead_of_alltests called")
 seen = set([None])
 session = request.node
 for item in session.items:
 cls = item.getparent(pytest.Class)
 if cls not in seen:
 if hasattr(cls.obj, "callme"):
 cls.obj.callme()
 seen.add(cls)

test classes may now define a callme method which
will be called ahead of running any tests:

content of test_module.py

class TestHello(object):
 @classmethod
 def callme(cls):
 print("callme called!")

 def test_method1(self):
 print("test_method1 called")

 def test_method2(self):
 print("test_method1 called")

class TestOther(object):
 @classmethod
 def callme(cls):
 print("callme other called")
 def test_other(self):
 print("test other")

works with unittest as well ...
import unittest

class SomeTest(unittest.TestCase):
 @classmethod
 def callme(self):
 print("SomeTest callme called")

 def test_unit1(self):
 print("test_unit1 method called")

If you run this without output capturing:

$ pytest -q -s test_module.py
callattr_ahead_of_alltests called
callme called!
callme other called
SomeTest callme called
test_method1 called
.test_method1 called
.test other
.test_unit1 method called
.
4 passed in 0.12 seconds

Changing standard (Python) test discovery

Ignore paths during test collection

You can easily ignore certain test directories and modules during collection
by passing the --ignore=path option on the cli. pytest allows multiple
--ignore options. Example:

tests/
|-- example
| |-- test_example_01.py
| |-- test_example_02.py
| '-- test_example_03.py
|-- foobar
| |-- test_foobar_01.py
| |-- test_foobar_02.py
| '-- test_foobar_03.py
'-- hello
 '-- world
 |-- test_world_01.py
 |-- test_world_02.py
 '-- test_world_03.py

Now if you invoke pytest with --ignore=tests/foobar/test_foobar_03.py --ignore=tests/hello/,
you will see that pytest only collects test-modules, which do not match the patterns specified:

=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 5 items

tests/example/test_example_01.py . [20%]
tests/example/test_example_02.py . [40%]
tests/example/test_example_03.py . [60%]
tests/foobar/test_foobar_01.py . [80%]
tests/foobar/test_foobar_02.py . [100%]

========================= 5 passed in 0.02 seconds =========================

The --ignore-glob option allows to ignore test file paths based on Unix shell-style wildcards.
If you want to exclude test-modules that end with _01.py, execute pytest with --ignore-glob='*_01.py'.

Deselect tests during test collection

Tests can individually be deselected during collection by passing the --deselect=item option.
For example, say tests/foobar/test_foobar_01.py contains test_a and test_b.
You can run all of the tests within tests/ except for tests/foobar/test_foobar_01.py::test_a
by invoking pytest with --deselect tests/foobar/test_foobar_01.py::test_a.
pytest allows multiple --deselect options.

Keeping duplicate paths specified from command line

Default behavior of pytest is to ignore duplicate paths specified from the command line.
Example:

pytest path_a path_a

...
collected 1 item
...

Just collect tests once.

To collect duplicate tests, use the --keep-duplicates option on the cli.
Example:

pytest --keep-duplicates path_a path_a

...
collected 2 items
...

As the collector just works on directories, if you specify twice a single test file, pytest will
still collect it twice, no matter if the --keep-duplicates is not specified.
Example:

pytest test_a.py test_a.py

...
collected 2 items
...

Changing directory recursion

You can set the norecursedirs option in an ini-file, for example your pytest.ini in the project root directory:

content of pytest.ini
[pytest]
norecursedirs = .svn _build tmp*

This would tell pytest to not recurse into typical subversion or sphinx-build directories or into any tmp prefixed directory.

Changing naming conventions

You can configure different naming conventions by setting
the python_files, python_classes and
python_functions configuration options.
Here is an example:

content of pytest.ini
Example 1: have pytest look for "check" instead of "test"
can also be defined in tox.ini or setup.cfg file, although the section
name in setup.cfg files should be "tool:pytest"
[pytest]
python_files = check_*.py
python_classes = Check
python_functions = *_check

This would make pytest look for tests in files that match the check_*
.py glob-pattern, Check prefixes in classes, and functions and methods
that match *_check. For example, if we have:

content of check_myapp.py
class CheckMyApp(object):
 def simple_check(self):
 pass
 def complex_check(self):
 pass

The test collection would look like this:

$ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 2 items
<Module check_myapp.py>
 <Class CheckMyApp>
 <Function simple_check>
 <Function complex_check>

======================= no tests ran in 0.12 seconds =======================

You can check for multiple glob patterns by adding a space between the patterns:

Example 2: have pytest look for files with "test" and "example"
content of pytest.ini, tox.ini, or setup.cfg file (replace "pytest"
with "tool:pytest" for setup.cfg)
[pytest]
python_files = test_*.py example_*.py

Note

the python_functions and python_classes options has no effect
for unittest.TestCase test discovery because pytest delegates
discovery of test case methods to unittest code.

Interpreting cmdline arguments as Python packages

You can use the --pyargs option to make pytest try
interpreting arguments as python package names, deriving
their file system path and then running the test. For
example if you have unittest2 installed you can type:

pytest --pyargs unittest2.test.test_skipping -q

which would run the respective test module. Like with
other options, through an ini-file and the addopts option you
can make this change more permanently:

content of pytest.ini
[pytest]
addopts = --pyargs

Now a simple invocation of pytest NAME will check
if NAME exists as an importable package/module and otherwise
treat it as a filesystem path.

Finding out what is collected

You can always peek at the collection tree without running tests like this:

. $ pytest --collect-only pythoncollection.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 3 items
<Module CWD/pythoncollection.py>
 <Function test_function>
 <Class TestClass>
 <Function test_method>
 <Function test_anothermethod>

======================= no tests ran in 0.12 seconds =======================

Customizing test collection

You can easily instruct pytest to discover tests from every Python file:

content of pytest.ini
[pytest]
python_files = *.py

However, many projects will have a setup.py which they don’t want to be
imported. Moreover, there may files only importable by a specific python
version. For such cases you can dynamically define files to be ignored by
listing them in a conftest.py file:

content of conftest.py
import sys

collect_ignore = ["setup.py"]
if sys.version_info[0] > 2:
 collect_ignore.append("pkg/module_py2.py")

and then if you have a module file like this:

content of pkg/module_py2.py
def test_only_on_python2():
 try:
 assert 0
 except Exception, e:
 pass

and a setup.py dummy file like this:

content of setup.py
0/0 # will raise exception if imported

If you run with a Python 2 interpreter then you will find the one test and will
leave out the setup.py file:

#$ pytest --collect-only
====== test session starts ======
platform linux2 -- Python 2.7.10, pytest-2.9.1, py-1.4.31, pluggy-0.3.1
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 1 items
<Module 'pkg/module_py2.py'>
 <Function 'test_only_on_python2'>

====== no tests ran in 0.04 seconds ======

If you run with a Python 3 interpreter both the one test and the setup.py
file will be left out:

$ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 0 items

======================= no tests ran in 0.12 seconds =======================

It’s also possible to ignore files based on Unix shell-style wildcards by adding
patterns to collect_ignore_glob.

The following example conftest.py ignores the file setup.py and in
addition all files that end with *_py2.py when executed with a Python 3
interpreter:

content of conftest.py
import sys

collect_ignore = ["setup.py"]
if sys.version_info[0] > 2:
 collect_ignore_glob = ["*_py2.py"]

Working with non-python tests

A basic example for specifying tests in Yaml files

Here is an example conftest.py (extracted from Ali Afshnars special purpose pytest-yamlwsgi [http://bitbucket.org/aafshar/pytest-yamlwsgi/src/tip/pytest_yamlwsgi.py] plugin). This conftest.py will collect test*.yml files and will execute the yaml-formatted content as custom tests:

-*- coding: utf-8 -*-
content of conftest.py
import pytest

def pytest_collect_file(parent, path):
 if path.ext == ".yml" and path.basename.startswith("test"):
 return YamlFile(path, parent)

class YamlFile(pytest.File):
 def collect(self):
 import yaml # we need a yaml parser, e.g. PyYAML

 raw = yaml.safe_load(self.fspath.open())
 for name, spec in sorted(raw.items()):
 yield YamlItem(name, self, spec)

class YamlItem(pytest.Item):
 def __init__(self, name, parent, spec):
 super(YamlItem, self).__init__(name, parent)
 self.spec = spec

 def runtest(self):
 for name, value in sorted(self.spec.items()):
 # some custom test execution (dumb example follows)
 if name != value:
 raise YamlException(self, name, value)

 def repr_failure(self, excinfo):
 """ called when self.runtest() raises an exception. """
 if isinstance(excinfo.value, YamlException):
 return "\n".join(
 [
 "usecase execution failed",
 " spec failed: %r: %r" % excinfo.value.args[1:3],
 " no further details known at this point.",
]
)

 def reportinfo(self):
 return self.fspath, 0, "usecase: %s" % self.name

class YamlException(Exception):
 """ custom exception for error reporting. """

You can create a simple example file:

test_simple.yml
ok:
 sub1: sub1

hello:
 world: world
 some: other

and if you installed PyYAML [https://pypi.org/project/PyYAML/] or a compatible YAML-parser you can
now execute the test specification:

nonpython $ pytest test_simple.yml
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/nonpython
collected 2 items

test_simple.yml F. [100%]

================================= FAILURES =================================
______________________________ usecase: hello ______________________________
usecase execution failed
 spec failed: 'some': 'other'
 no further details known at this point.
==================== 1 failed, 1 passed in 0.12 seconds ====================

You get one dot for the passing sub1: sub1 check and one failure.
Obviously in the above conftest.py you’ll want to implement a more
interesting interpretation of the yaml-values. You can easily write
your own domain specific testing language this way.

Note

repr_failure(excinfo) is called for representing test failures.
If you create custom collection nodes you can return an error
representation string of your choice. It
will be reported as a (red) string.

reportinfo() is used for representing the test location and is also
consulted when reporting in verbose mode:

nonpython $ pytest -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/nonpython
collecting ... collected 2 items

test_simple.yml::hello FAILED [50%]
test_simple.yml::ok PASSED [100%]

================================= FAILURES =================================
______________________________ usecase: hello ______________________________
usecase execution failed
 spec failed: 'some': 'other'
 no further details known at this point.
==================== 1 failed, 1 passed in 0.12 seconds ====================

While developing your custom test collection and execution it’s also
interesting to just look at the collection tree:

nonpython $ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/nonpython
collected 2 items
<Package $REGENDOC_TMPDIR/nonpython>
 <YamlFile test_simple.yml>
 <YamlItem hello>
 <YamlItem ok>

======================= no tests ran in 0.12 seconds =======================

Setting up bash completion

When using bash as your shell, pytest can use argcomplete
(https://argcomplete.readthedocs.io/) for auto-completion.
For this argcomplete needs to be installed and enabled.

Install argcomplete using:

sudo pip install 'argcomplete>=0.5.7'

For global activation of all argcomplete enabled python applications run:

sudo activate-global-python-argcomplete

For permanent (but not global) pytest activation, use:

register-python-argcomplete pytest >> ~/.bashrc

For one-time activation of argcomplete for pytest only, use:

eval "$(register-python-argcomplete pytest)"

Backwards Compatibility Policy

Keeping backwards compatibility has a very high priority in the pytest project. Although we have deprecated functionality over the years, most of it is still supported. All deprecations in pytest were done because simpler or more efficient ways of accomplishing the same tasks have emerged, making the old way of doing things unnecessary.

With the pytest 3.0 release we introduced a clear communication scheme for when we will actually remove the old busted joint and politely ask you to use the new hotness instead, while giving you enough time to adjust your tests or raise concerns if there are valid reasons to keep deprecated functionality around.

To communicate changes we issue deprecation warnings using a custom warning hierarchy (see Internal pytest warnings). These warnings may be suppressed using the standard means: -W command-line flag or filterwarnings ini options (see Warnings Capture), but we suggest to use these sparingly and temporarily, and heed the warnings when possible.

We will only start the removal of deprecated functionality in major releases (e.g. if we deprecate something in 3.0 we will start to remove it in 4.0), and keep it around for at least two minor releases (e.g. if we deprecate something in 3.9 and 4.0 is the next release, we start to remove it in 5.0, not in 4.0).

When the deprecation expires (e.g. 4.0 is released), we won’t remove the deprecated functionality immediately, but will use the standard warning filters to turn them into errors by default. This approach makes it explicit that removal is imminent, and still gives you time to turn the deprecated feature into a warning instead of an error so it can be dealt with in your own time. In the next minor release (e.g. 4.1), the feature will be effectively removed.

Deprecation Roadmap

Features currently deprecated and removed in previous releases can be found in Deprecations and Removals.

We track future deprecation and removal of features using milestones and the deprecation [https://github.com/pytest-dev/pytest/issues?q=label%3A%22type%3A+deprecation%22] and removal [https://github.com/pytest-dev/pytest/labels/type%3A%20removal] labels on GitHub.

Deprecations and Removals

This page lists all pytest features that are currently deprecated or have been removed in past major releases.
The objective is to give users a clear rationale why a certain feature has been removed, and what alternatives
should be used instead.

	Deprecated Features

	"message" parameter of pytest.raises

	pytest.config global

	raises / warns with a string as the second argument

	Result log (--result-log)

	Removed Features

	Using Class in custom Collectors

	marks in pytest.mark.parametrize

	pytest_funcarg__ prefix

	[pytest] section in setup.cfg files

	Metafunc.addcall

	cached_setup

	pytest_plugins in non-top-level conftest files

	Config.warn and Node.warn

	record_xml_property

	Passing command-line string to pytest.main()

	Calling fixtures directly

	yield tests

	Internal classes accessed through Node

	Node.get_marker

	somefunction.markname

	pytest_namespace

	Reinterpretation mode (--assert=reinterp)

	Removed command-line options

	py.test-X* entry points

Deprecated Features

Below is a complete list of all pytest features which are considered deprecated. Using those features will issue
_pytest.warning_types.PytestWarning or subclasses, which can be filtered using
standard warning filters.

"message" parameter of pytest.raises

Deprecated since version 4.1.

It is a common mistake to think this parameter will match the exception message, while in fact
it only serves to provide a custom message in case the pytest.raises check fails. To prevent
users from making this mistake, and because it is believed to be little used, pytest is
deprecating it without providing an alternative for the moment.

If you have a valid use case for this parameter, consider that to obtain the same results
you can just call pytest.fail manually at the end of the with statement.

For example:

with pytest.raises(TimeoutError, message="Client got unexpected message"):
 wait_for(websocket.recv(), 0.5)

Becomes:

with pytest.raises(TimeoutError):
 wait_for(websocket.recv(), 0.5)
 pytest.fail("Client got unexpected message")

If you still have concerns about this deprecation and future removal, please comment on
issue #3974 [https://github.com/pytest-dev/pytest/issues/3974].

pytest.config global

Deprecated since version 4.1.

The pytest.config global object is deprecated. Instead use
request.config (via the request fixture) or if you are a plugin author
use the pytest_configure(config) hook. Note that many hooks can also access
the config object indirectly, through session.config or item.config for example.

raises / warns with a string as the second argument

Deprecated since version 4.1.

Use the context manager form of these instead. When necessary, invoke exec
directly.

Example:

pytest.raises(ZeroDivisionError, "1 / 0")
pytest.raises(SyntaxError, "a $ b")

pytest.warns(DeprecationWarning, "my_function()")
pytest.warns(SyntaxWarning, "assert(1, 2)")

Becomes:

with pytest.raises(ZeroDivisionError):
 1 / 0
with pytest.raises(SyntaxError):
 exec("a $ b") # exec is required for invalid syntax

with pytest.warns(DeprecationWarning):
 my_function()
with pytest.warns(SyntaxWarning):
 exec("assert(1, 2)") # exec is used to avoid a top-level warning

Result log (--result-log)

The --resultlog command line option has been deprecated: it is little used
and there are more modern and better alternatives, for example pytest-tap [https://tappy.readthedocs.io/en/latest/].

This feature will be effectively removed in pytest 4.0 as the team intends to include a better alternative in the core.

If you have any concerns, please don’t hesitate to open an issue [https://github.com/pytest-dev/pytest/issues].

Removed Features

As stated in our Backwards Compatibility Policy policy, deprecated features are removed only in major releases after
an appropriate period of deprecation has passed.

Using Class in custom Collectors

Removed in version 4.0.

Using objects named "Class" as a way to customize the type of nodes that are collected in Collector
subclasses has been deprecated. Users instead should use pytest_pycollect_makeitem to customize node types during
collection.

This issue should affect only advanced plugins who create new collection types, so if you see this warning
message please contact the authors so they can change the code.

marks in pytest.mark.parametrize

Removed in version 4.0.

Applying marks to values of a pytest.mark.parametrize call is now deprecated. For example:

@pytest.mark.parametrize(
 "a, b",
 [
 (3, 9),
 pytest.mark.xfail(reason="flaky")(6, 36),
 (10, 100),
 (20, 200),
 (40, 400),
 (50, 500),
],
)
def test_foo(a, b):
 ...

This code applies the pytest.mark.xfail(reason="flaky") mark to the (6, 36) value of the above parametrization
call.

This was considered hard to read and understand, and also its implementation presented problems to the code preventing
further internal improvements in the marks architecture.

To update the code, use pytest.param:

@pytest.mark.parametrize(
 "a, b",
 [
 (3, 9),
 pytest.param(6, 36, marks=pytest.mark.xfail(reason="flaky")),
 (10, 100),
 (20, 200),
 (40, 400),
 (50, 500),
],
)
def test_foo(a, b):
 ...

pytest_funcarg__ prefix

Removed in version 4.0.

In very early pytest versions fixtures could be defined using the pytest_funcarg__ prefix:

def pytest_funcarg__data():
 return SomeData()

Switch over to the @pytest.fixture decorator:

@pytest.fixture
def data():
 return SomeData()

[pytest] section in setup.cfg files

Removed in version 4.0.

[pytest] sections in setup.cfg files should now be named [tool:pytest]
to avoid conflicts with other distutils commands.

Metafunc.addcall

Removed in version 4.0.

_pytest.python.Metafunc.addcall() was a precursor to the current parametrized mechanism. Users should use
_pytest.python.Metafunc.parametrize() instead.

Example:

def pytest_generate_tests(metafunc):
 metafunc.addcall({"i": 1}, id="1")
 metafunc.addcall({"i": 2}, id="2")

Becomes:

def pytest_generate_tests(metafunc):
 metafunc.parametrize("i", [1, 2], ids=["1", "2"])

cached_setup

Removed in version 4.0.

request.cached_setup was the precursor of the setup/teardown mechanism available to fixtures.

Example:

@pytest.fixture
def db_session():
 return request.cached_setup(
 setup=Session.create, teardown=lambda session: session.close(), scope="module"
)

This should be updated to make use of standard fixture mechanisms:

@pytest.fixture(scope="module")
def db_session():
 session = Session.create()
 yield session
 session.close()

You can consult funcarg comparison section in the docs [https://docs.pytest.org/en/latest/funcarg_compare.html] for
more information.

pytest_plugins in non-top-level conftest files

Removed in version 4.0.

Defining pytest_plugins is now deprecated in non-top-level conftest.py
files because they will activate referenced plugins globally, which is surprising because for all other pytest
features conftest.py files are only active for tests at or below it.

Config.warn and Node.warn

Removed in version 4.0.

Those methods were part of the internal pytest warnings system, but since 3.8 pytest is using the builtin warning
system for its own warnings, so those two functions are now deprecated.

Config.warn should be replaced by calls to the standard warnings.warn, example:

config.warn("C1", "some warning")

Becomes:

warnings.warn(pytest.PytestWarning("some warning"))

Node.warn now supports two signatures:

	node.warn(PytestWarning("some message")): is now the recommended way to call this function.
The warning instance must be a PytestWarning or subclass.

	node.warn("CI", "some message"): this code/message form has been removed and should be converted to the warning instance form above.

record_xml_property

Removed in version 4.0.

The record_xml_property fixture is now deprecated in favor of the more generic record_property, which
can be used by other consumers (for example pytest-html) to obtain custom information about the test run.

This is just a matter of renaming the fixture as the API is the same:

def test_foo(record_xml_property):
 ...

Change to:

def test_foo(record_property):
 ...

Passing command-line string to pytest.main()

Removed in version 4.0.

Passing a command-line string to pytest.main() is deprecated:

pytest.main("-v -s")

Pass a list instead:

pytest.main(["-v", "-s"])

By passing a string, users expect that pytest will interpret that command-line using the shell rules they are working
on (for example bash or Powershell), but this is very hard/impossible to do in a portable way.

Calling fixtures directly

Removed in version 4.0.

Calling a fixture function directly, as opposed to request them in a test function, is deprecated.

For example:

@pytest.fixture
def cell():
 return ...

@pytest.fixture
def full_cell():
 cell = cell()
 cell.make_full()
 return cell

This is a great source of confusion to new users, which will often call the fixture functions and request them from test functions interchangeably, which breaks the fixture resolution model.

In those cases just request the function directly in the dependent fixture:

@pytest.fixture
def cell():
 return ...

@pytest.fixture
def full_cell(cell):
 cell.make_full()
 return cell

Alternatively if the fixture function is called multiple times inside a test (making it hard to apply the above pattern) or
if you would like to make minimal changes to the code, you can create a fixture which calls the original function together
with the name parameter:

def cell():
 return ...

@pytest.fixture(name="cell")
def cell_fixture():
 return cell()

yield tests

Removed in version 4.0.

pytest supported yield-style tests, where a test function actually yield functions and values
that are then turned into proper test methods. Example:

def check(x, y):
 assert x ** x == y

def test_squared():
 yield check, 2, 4
 yield check, 3, 9

This would result into two actual test functions being generated.

This form of test function doesn’t support fixtures properly, and users should switch to pytest.mark.parametrize:

@pytest.mark.parametrize("x, y", [(2, 4), (3, 9)])
def test_squared(x, y):
 assert x ** x == y

Internal classes accessed through Node

Removed in version 4.0.

Access of Module, Function, Class, Instance, File and Item through Node instances now issue
this warning:

usage of Function.Module is deprecated, please use pytest.Module instead

Users should just import pytest and access those objects using the pytest module.

This has been documented as deprecated for years, but only now we are actually emitting deprecation warnings.

Node.get_marker

Removed in version 4.0.

As part of a large Marker revamp and iteration, _pytest.nodes.Node.get_marker() is deprecated. See
the documentation on tips on how to update your code.

somefunction.markname

Removed in version 4.0.

As part of a large Marker revamp and iteration we already deprecated using MarkInfo
the only correct way to get markers of an element is via node.iter_markers(name).

pytest_namespace

Removed in version 4.0.

This hook is deprecated because it greatly complicates the pytest internals regarding configuration and initialization, making some
bug fixes and refactorings impossible.

Example of usage:

class MySymbol:
 ...

def pytest_namespace():
 return {"my_symbol": MySymbol()}

Plugin authors relying on this hook should instead require that users now import the plugin modules directly (with an appropriate public API).

As a stopgap measure, plugin authors may still inject their names into pytest’s namespace, usually during pytest_configure:

import pytest

def pytest_configure():
 pytest.my_symbol = MySymbol()

Reinterpretation mode (--assert=reinterp)

Removed in version 3.0.

Reinterpretation mode has now been removed and only plain and rewrite
mode are available, consequently the --assert=reinterp option is
no longer available. This also means files imported from plugins or
conftest.py will not benefit from improved assertions by
default, you should use pytest.register_assert_rewrite() to
explicitly turn on assertion rewriting for those files.

Removed command-line options

Removed in version 3.0.

The following deprecated commandline options were removed:

	--genscript: no longer supported;

	--no-assert: use --assert=plain instead;

	--nomagic: use --assert=plain instead;

	--report: use -r instead;

py.test-X* entry points

Removed in version 3.0.

Removed all py.test-X* entry points. The versioned, suffixed entry points
were never documented and a leftover from a pre-virtualenv era. These entry
points also created broken entry points in wheels, so removing them also
removes a source of confusion for users.

Python 2.7 and 3.4 support plan

Python 2.7 EOL is fast approaching, with
upstream support ending in 2020 [https://legacy.python.org/dev/peps/pep-0373/#id4].
Python 3.4’s last release is scheduled for
March 2019 [https://www.python.org/dev/peps/pep-0429/#release-schedule]. pytest is one of
the participating projects of the https://python3statement.org.

The pytest 4.6 series will be the last to support Python 2.7 and 3.4, and is scheduled
to be released by mid-2019. pytest 5.0 and onwards will support only Python 3.5+.

Thanks to the python_requires [https://packaging.python.org/guides/distributing-packages-using-setuptools/#python-requires>] setuptools option,
Python 2.7 and Python 3.4 users using a modern pip version
will install the last pytest 4.6 version automatically even if 5.0 or later
are available on PyPI.

While pytest 5.0 will be the new mainstream and development version, until January 2020
the pytest core team plans to make bug-fix releases of the pytest 4.6 series by
back-porting patches to the 4.6.x branch that affect Python 2 users.

After 2020, the core team will no longer actively backport patches, but the 4.6.x
branch will continue to exist so the community itself can contribute patches. The core team will
be happy to accept those patches and make new 4.6 releases until mid-2020.

Historical Notes

This page lists features or behavior from previous versions of pytest which have changed over the years. They are
kept here as a historical note so users looking at old code can find documentation related to them.

Marker revamp and iteration

Changed in version 3.6.

pytest’s marker implementation traditionally worked by simply updating the __dict__ attribute of functions to cumulatively add markers. As a result, markers would unintentionally be passed along class hierarchies in surprising ways. Further, the API for retrieving them was inconsistent, as markers from parameterization would be stored differently than markers applied using the @pytest.mark decorator and markers added via node.add_marker.

This state of things made it technically next to impossible to use data from markers correctly without having a deep understanding of the internals, leading to subtle and hard to understand bugs in more advanced usages.

Depending on how a marker got declared/changed one would get either a MarkerInfo which might contain markers from sibling classes,
MarkDecorators when marks came from parameterization or from a node.add_marker call, discarding prior marks. Also MarkerInfo acts like a single mark, when it in fact represents a merged view on multiple marks with the same name.

On top of that markers were not accessible in the same way for modules, classes, and functions/methods.
In fact, markers were only accessible in functions, even if they were declared on classes/modules.

A new API to access markers has been introduced in pytest 3.6 in order to solve the problems with
the initial design, providing the _pytest.nodes.Node.iter_markers() method to iterate over
markers in a consistent manner and reworking the internals, which solved a great deal of problems
with the initial design.

Updating code

The old Node.get_marker(name) function is considered deprecated because it returns an internal MarkerInfo object
which contains the merged name, *args and **kwargs of all the markers which apply to that node.

In general there are two scenarios on how markers should be handled:

1. Marks overwrite each other. Order matters but you only want to think of your mark as a single item. E.g.
log_level('info') at a module level can be overwritten by log_level('debug') for a specific test.

In this case, use Node.get_closest_marker(name):

replace this:
marker = item.get_marker("log_level")
if marker:
 level = marker.args[0]

by this:
marker = item.get_closest_marker("log_level")
if marker:
 level = marker.args[0]

2. Marks compose in an additive manner. E.g. skipif(condition) marks mean you just want to evaluate all of them,
order doesn’t even matter. You probably want to think of your marks as a set here.

In this case iterate over each mark and handle their *args and **kwargs individually.

replace this
skipif = item.get_marker("skipif")
if skipif:
 for condition in skipif.args:
 # eval condition
 ...

by this:
for skipif in item.iter_markers("skipif"):
 condition = skipif.args[0]
 # eval condition

If you are unsure or have any questions, please consider opening
an issue [https://github.com/pytest-dev/pytest/issues].

Related issues

Here is a non-exhaustive list of issues fixed by the new implementation:

	Marks don’t pick up nested classes (#199 [https://github.com/pytest-dev/pytest/issues/199]).

	Markers stain on all related classes (#568 [https://github.com/pytest-dev/pytest/issues/568]).

	Combining marks - args and kwargs calculation (#2897 [https://github.com/pytest-dev/pytest/issues/2897]).

	request.node.get_marker('name') returns None for markers applied in classes (#902 [https://github.com/pytest-dev/pytest/issues/902]).

	Marks applied in parametrize are stored as markdecorator (#2400 [https://github.com/pytest-dev/pytest/issues/2400]).

	Fix marker interaction in a backward incompatible way (#1670 [https://github.com/pytest-dev/pytest/issues/1670]).

	Refactor marks to get rid of the current “marks transfer” mechanism (#2363 [https://github.com/pytest-dev/pytest/issues/2363]).

	Introduce FunctionDefinition node, use it in generate_tests (#2522 [https://github.com/pytest-dev/pytest/issues/2522]).

	Remove named marker attributes and collect markers in items (#891 [https://github.com/pytest-dev/pytest/issues/891]).

	skipif mark from parametrize hides module level skipif mark (#1540 [https://github.com/pytest-dev/pytest/issues/1540]).

	skipif + parametrize not skipping tests (#1296 [https://github.com/pytest-dev/pytest/issues/1296]).

	Marker transfer incompatible with inheritance (#535 [https://github.com/pytest-dev/pytest/issues/535]).

More details can be found in the original PR [https://github.com/pytest-dev/pytest/pull/3317].

Note

in a future major relase of pytest we will introduce class based markers,
at which point markers will no longer be limited to instances of Mark.

cache plugin integrated into the core

The functionality of the core cache plugin was previously distributed
as a third party plugin named pytest-cache. The core plugin
is compatible regarding command line options and API usage except that you
can only store/receive data between test runs that is json-serializable.

funcargs and pytest_funcarg__

In versions prior to 2.3 there was no @pytest.fixture marker
and you had to use a magic pytest_funcarg__NAME prefix
for the fixture factory. This remains and will remain supported
but is not anymore advertised as the primary means of declaring fixture
functions.

@pytest.yield_fixture decorator

Prior to version 2.10, in order to use a yield statement to execute teardown code one
had to mark a fixture using the yield_fixture marker. From 2.10 onward, normal
fixtures can use yield directly so the yield_fixture decorator is no longer needed
and considered deprecated.

[pytest] header in setup.cfg

Prior to 3.0, the supported section name was [pytest]. Due to how
this may collide with some distutils commands, the recommended
section name for setup.cfg files is now [tool:pytest].

Note that for pytest.ini and tox.ini files the section
name is [pytest].

Applying marks to @pytest.mark.parametrize parameters

Prior to version 3.1 the supported mechanism for marking values
used the syntax:

import pytest

@pytest.mark.parametrize(
 "test_input,expected", [("3+5", 8), ("2+4", 6), pytest.mark.xfail(("6*9", 42))]
)
def test_eval(test_input, expected):
 assert eval(test_input) == expected

This was an initial hack to support the feature but soon was demonstrated to be incomplete,
broken for passing functions or applying multiple marks with the same name but different parameters.

The old syntax is planned to be removed in pytest-4.0.

@pytest.mark.parametrize argument names as a tuple

In versions prior to 2.4 one needed to specify the argument
names as a tuple. This remains valid but the simpler "name1,name2,..."
comma-separated-string syntax is now advertised first because
it’s easier to write and produces less line noise.

setup: is now an “autouse fixture”

During development prior to the pytest-2.3 release the name
pytest.setup was used but before the release it was renamed
and moved to become part of the general fixture mechanism,
namely Autouse fixtures (xUnit setup on steroids)

Conditions as strings instead of booleans

Prior to pytest-2.4 the only way to specify skipif/xfail conditions was
to use strings:

import sys

@pytest.mark.skipif("sys.version_info >= (3,3)")
def test_function():
 ...

During test function setup the skipif condition is evaluated by calling
eval('sys.version_info >= (3,0)', namespace). The namespace contains
all the module globals, and os and sys as a minimum.

Since pytest-2.4 boolean conditions are considered preferable
because markers can then be freely imported between test modules.
With strings you need to import not only the marker but all variables
used by the marker, which violates encapsulation.

The reason for specifying the condition as a string was that pytest can
report a summary of skip conditions based purely on the condition string.
With conditions as booleans you are required to specify a reason string.

Note that string conditions will remain fully supported and you are free
to use them if you have no need for cross-importing markers.

The evaluation of a condition string in pytest.mark.skipif(conditionstring)
or pytest.mark.xfail(conditionstring) takes place in a namespace
dictionary which is constructed as follows:

	the namespace is initialized by putting the sys and os modules
and the pytest config object into it.

	updated with the module globals of the test function for which the
expression is applied.

The pytest config object allows you to skip based on a test
configuration value which you might have added:

@pytest.mark.skipif("not config.getvalue('db')")
def test_function():
 ...

The equivalent with “boolean conditions” is:

@pytest.mark.skipif(not pytest.config.getvalue("db"), reason="--db was not specified")
def test_function():
 pass

Note

You cannot use pytest.config.getvalue() in code
imported before pytest’s argument parsing takes place. For example,
conftest.py files are imported before command line parsing and thus
config.getvalue() will not execute correctly.

pytest.set_trace()

Previous to version 2.4 to set a break point in code one needed to use pytest.set_trace():

import pytest

def test_function():
 ...
 pytest.set_trace() # invoke PDB debugger and tracing

This is no longer needed and one can use the native import pdb;pdb.set_trace() call directly.

For more details see Setting breakpoints.

“compat” properties

Access of Module, Function, Class, Instance, File and Item through Node instances have long
been documented as deprecated, but started to emit warnings from pytest 3.9 and onward.

Users should just import pytest and access those objects using the pytest module.

License

Distributed under the terms of the MIT [https://github.com/pytest-dev/pytest/blob/master/LICENSE] license, pytest is free and open source software.

The MIT License (MIT)

Copyright (c) 2004-2020 Holger Krekel and others

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contribution getting started

Contributions are highly welcomed and appreciated. Every little help counts,
so do not hesitate!

Contribution links

	Contribution getting started

	Feature requests and feedback

	Report bugs

	Fix bugs

	Implement features

	Write documentation

	Submitting Plugins to pytest-dev

	Preparing Pull Requests

	Writing Tests

	Joining the Development Team

Feature requests and feedback

Do you like pytest? Share some love on Twitter or in your blog posts!

We’d also like to hear about your propositions and suggestions. Feel free to
submit them as issues [https://github.com/pytest-dev/pytest/issues] and:

	Explain in detail how they should work.

	Keep the scope as narrow as possible. This will make it easier to implement.

Report bugs

Report bugs for pytest in the issue tracker [https://github.com/pytest-dev/pytest/issues].

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting,
specifically the Python interpreter version, installed libraries, and pytest
version.

	Detailed steps to reproduce the bug.

If you can write a demonstration test that currently fails but should pass
(xfail), that is a very useful commit to make as well, even if you cannot
fix the bug itself.

Fix bugs

Look through the GitHub issues for bugs [https://github.com/pytest-dev/pytest/labels/type:%20bug].

Talk to developers to find out how you can fix specific bugs.

Don’t forget to check the issue trackers of your favourite plugins, too!

Implement features

Look through the GitHub issues for enhancements [https://github.com/pytest-dev/pytest/labels/type:%20enhancement].

Talk to developers to find out how you can implement specific
features.

Write documentation

Pytest could always use more documentation. What exactly is needed?

	More complementary documentation. Have you perhaps found something unclear?

	Documentation translations. We currently have only English.

	Docstrings. There can never be too many of them.

	Blog posts, articles and such – they’re all very appreciated.

You can also edit documentation files directly in the GitHub web interface,
without using a local copy. This can be convenient for small fixes.

Note

Build the documentation locally with the following command:

$ tox -e docs

The built documentation should be available in the doc/en/_build/.

Where ‘en’ refers to the documentation language.

Submitting Plugins to pytest-dev

Pytest development of the core, some plugins and support code happens
in repositories living under the pytest-dev organisations:

	pytest-dev on GitHub [https://github.com/pytest-dev]

	pytest-dev on Bitbucket [https://bitbucket.org/pytest-dev]

All pytest-dev Contributors team members have write access to all contained
repositories. Pytest core and plugins are generally developed
using pull requests to respective repositories.

The objectives of the pytest-dev organisation are:

	Having a central location for popular pytest plugins

	Sharing some of the maintenance responsibility (in case a maintainer no
longer wishes to maintain a plugin)

You can submit your plugin by subscribing to the pytest-dev mail list [https://mail.python.org/mailman/listinfo/pytest-dev] and writing a
mail pointing to your existing pytest plugin repository which must have
the following:

	PyPI presence with a setup.py that contains a license, pytest-
prefixed name, version number, authors, short and long description.

	a tox.ini for running tests using tox [https://tox.readthedocs.io].

	a README.txt describing how to use the plugin and on which
platforms it runs.

	a LICENSE.txt file or equivalent containing the licensing
information, with matching info in setup.py.

	an issue tracker for bug reports and enhancement requests.

	a changelog [http://keepachangelog.com/]

If no contributor strongly objects and two agree, the repository can then be
transferred to the pytest-dev organisation.

Here’s a rundown of how a repository transfer usually proceeds
(using a repository named joedoe/pytest-xyz as example):

	joedoe transfers repository ownership to pytest-dev administrator calvin.

	calvin creates pytest-xyz-admin and pytest-xyz-developers teams, inviting joedoe to both as maintainer.

	calvin transfers repository to pytest-dev and configures team access:

	pytest-xyz-admin admin access;

	pytest-xyz-developers write access;

The pytest-dev/Contributors team has write access to all projects, and
every project administrator is in it. We recommend that each plugin has at least three
people who have the right to release to PyPI.

Repository owners can rest assured that no pytest-dev administrator will ever make
releases of your repository or take ownership in any way, except in rare cases
where someone becomes unresponsive after months of contact attempts.
As stated, the objective is to share maintenance and avoid “plugin-abandon”.

Preparing Pull Requests

Short version

	Fork the repository.

	Enable and install pre-commit [https://pre-commit.com] to ensure style-guides and code checks are followed.

	Target master for bugfixes and doc changes.

	Target features for new features or functionality changes.

	Follow PEP-8 for naming and black [https://github.com/python/black] for formatting.

	Tests are run using tox:

tox -e linting,py27,py37

The test environments above are usually enough to cover most cases locally.

	Write a changelog entry: changelog/2574.bugfix, use issue id number
and one of bugfix, removal, feature, vendor, doc or
trivial for the issue type.

	Unless your change is a trivial or a documentation fix (e.g., a typo or reword of a small section) please
add yourself to the AUTHORS file, in alphabetical order.

Long version

What is a “pull request”? It informs the project’s core developers about the
changes you want to review and merge. Pull requests are stored on
GitHub servers [https://github.com/pytest-dev/pytest/pulls].
Once you send a pull request, we can discuss its potential modifications and
even add more commits to it later on. There’s an excellent tutorial on how Pull
Requests work in the
GitHub Help Center [https://help.github.com/articles/using-pull-requests/].

Here is a simple overview, with pytest-specific bits:

	Fork the
pytest GitHub repository [https://github.com/pytest-dev/pytest]. It’s
fine to use pytest as your fork repository name because it will live
under your user.

	Clone your fork locally using git [https://git-scm.com/] and create a branch:

$ git clone git@github.com:YOUR_GITHUB_USERNAME/pytest.git
$ cd pytest
now, to fix a bug create your own branch off "master":

 $ git checkout -b your-bugfix-branch-name master

or to instead add a feature create your own branch off "features":

 $ git checkout -b your-feature-branch-name features

Given we have “major.minor.micro” version numbers, bugfixes will usually
be released in micro releases whereas features will be released in
minor releases and incompatible changes in major releases.

If you need some help with Git, follow this quick start
guide: https://git.wiki.kernel.org/index.php/QuickStart

	Install pre-commit [https://pre-commit.com] and its hook on the pytest repo:

$ pip install --user pre-commit
$ pre-commit install

Afterwards pre-commit will run whenever you commit.

https://pre-commit.com/ is a framework for managing and maintaining multi-language pre-commit hooks
to ensure code-style and code formatting is consistent.

	Install tox

Tox is used to run all the tests and will automatically setup virtualenvs
to run the tests in.
(will implicitly use http://www.virtualenv.org/en/latest/):

$ pip install tox

	Run all the tests

You need to have Python 2.7 and 3.7 available in your system. Now
running tests is as simple as issuing this command:

$ tox -e linting,py27,py37

This command will run tests via the “tox” tool against Python 2.7 and 3.7
and also perform “lint” coding-style checks.

	You can now edit your local working copy and run the tests again as necessary. Please follow PEP-8 for naming.

You can pass different options to tox. For example, to run tests on Python 2.7 and pass options to pytest
(e.g. enter pdb on failure) to pytest you can do:

$ tox -e py27 -- --pdb

Or to only run tests in a particular test module on Python 3.7:

$ tox -e py37 -- testing/test_config.py

When committing, pre-commit will re-format the files if necessary.

	Commit and push once your tests pass and you are happy with your change(s):

$ git commit -a -m "<commit message>"
$ git push -u

	Create a new changelog entry in changelog. The file should be named <issueid>.<type>,
where issueid is the number of the issue related to the change and type is one of
bugfix, removal, feature, vendor, doc or trivial.

	Add yourself to AUTHORS file if not there yet, in alphabetical order.

	Finally, submit a pull request through the GitHub website using this data:

head-fork: YOUR_GITHUB_USERNAME/pytest
compare: your-branch-name

base-fork: pytest-dev/pytest
base: master # if it's a bugfix
base: features # if it's a feature

Writing Tests

Writing tests for plugins or for pytest itself is often done using the testdir fixture [https://docs.pytest.org/en/latest/reference.html#testdir], as a “black-box” test.

For example, to ensure a simple test passes you can write:

def test_true_assertion(testdir):
 testdir.makepyfile(
 """
 def test_foo():
 assert True
 """
)
 result = testdir.runpytest()
 result.assert_outcomes(failed=0, passed=1)

Alternatively, it is possible to make checks based on the actual output of the termal using
glob-like expressions:

def test_true_assertion(testdir):
 testdir.makepyfile(
 """
 def test_foo():
 assert False
 """
)
 result = testdir.runpytest()
 result.stdout.fnmatch_lines(["*assert False*", "*1 failed*"])

When choosing a file where to write a new test, take a look at the existing files and see if there’s
one file which looks like a good fit. For example, a regression test about a bug in the --lf option
should go into test_cacheprovider.py, given that this option is implemented in cacheprovider.py.
If in doubt, go ahead and open a PR with your best guess and we can discuss this over the code.

Joining the Development Team

Anyone who has successfully seen through a pull request which did not
require any extra work from the development team to merge will
themselves gain commit access if they so wish (if we forget to ask please send a friendly
reminder). This does not mean your workflow to contribute changes,
everyone goes through the same pull-request-and-review process and
no-one merges their own pull requests unless already approved. It does however mean you can
participate in the development process more fully since you can merge
pull requests from other contributors yourself after having reviewed
them.

Development Guide

Some general guidelines regarding development in pytest for maintainers and contributors. Nothing here
is set in stone and can’t be changed, feel free to suggest improvements or changes in the workflow.

Code Style

	PEP-8 [https://www.python.org/dev/peps/pep-0008]

	flake8 [https://pypi.org/project/flake8/] for quality checks

	invoke [http://www.pyinvoke.org/] to automate development tasks

Branches

We have two long term branches:

	master: contains the code for the next bugfix release.

	features: contains the code with new features for the next minor release.

The official repository usually does not contain topic branches, developers and contributors should create topic
branches in their own forks.

Exceptions can be made for cases where more than one contributor is working on the same
topic or where it makes sense to use some automatic capability of the main repository, such as automatic docs from
readthedocs for a branch dealing with documentation refactoring.

Issues

Any question, feature, bug or proposal is welcome as an issue. Users are encouraged to use them whenever they need.

GitHub issues should use labels to categorize them. Labels should be created sporadically, to fill a niche; we should
avoid creating labels just for the sake of creating them.

Each label should include a description in the GitHub’s interface stating its purpose.

Labels are managed using labels [https://github.com/hackebrot/labels]. All the labels in the repository
are kept in .github/labels.toml, so any changes should be via PRs to that file.
After a PR is accepted and merged, one of the maintainers must manually synchronize the labels file with the
GitHub repository.

Temporary labels

To classify issues for a special event it is encouraged to create a temporary label. This helps those involved to find
the relevant issues to work on. Examples of that are sprints in Python events or global hacking events.

	temporary: EP2017 sprint: candidate issues or PRs tackled during the EuroPython 2017

Issues created at those events should have other relevant labels added as well.

Those labels should be removed after they are no longer relevant.

Release Procedure

Our current policy for releasing is to aim for a bugfix every few weeks and a minor release every 2-3 months. The idea
is to get fixes and new features out instead of trying to cram a ton of features into a release and by consequence
taking a lot of time to make a new one.

Important

pytest releases must be prepared on Linux because the docs and examples expect
to be executed in that platform.

	Create a branch release-X.Y.Z with the version for the release.

	patch releases: from the latest master;

	minor releases: from the latest features; then merge with the latest master;

Ensure your are in a clean work tree.

	Using tox, generate docs, changelog, announcements:

$ tox -e release -- <VERSION>

This will generate a commit with all the changes ready for pushing.

	Open a PR for this branch targeting master.

	After all tests pass and the PR has been approved, publish to PyPI by pushing the tag:

git tag <VERSION>
git push git@github.com:pytest-dev/pytest.git <VERSION>

Wait for the deploy to complete, then make sure it is available on PyPI [https://pypi.org/project/pytest].

	Merge the PR into master.

	Send an email announcement with the contents from:

doc/en/announce/release-<VERSION>.rst

To the following mailing lists:

	pytest-dev@python.org (all releases)

	python-announce-list@python.org (all releases)

	testing-in-python@lists.idyll.org (only major/minor releases)

And announce it on Twitter [https://twitter.com/] with the #pytest hashtag.

Talks and Tutorials

Books

	pytest Quick Start Guide, by Bruno Oliveira (2018) [https://www.packtpub.com/web-development/pytest-quick-start-guide].

	Python Testing with pytest, by Brian Okken (2017) [https://pragprog.com/book/bopytest/python-testing-with-pytest].

Talks and blog postings

	pytest: recommendations, basic packages for testing in Python and Django, Andreu Vallbona, PyconES 2017 (slides in english [http://talks.apsl.io/testing-pycones-2017/], video in spanish [https://www.youtube.com/watch?v=K20GeR-lXDk])

	pytest advanced, Andrew Svetlov (Russian, PyCon Russia, 2016) [https://www.youtube.com/watch?v=7KgihdKTWY4].

	Pythonic testing, Igor Starikov (Russian, PyNsk, November 2016) [https://www.youtube.com/watch?v=_92nfdd5nK8].

	pytest - Rapid Simple Testing, Florian Bruhin, Swiss Python Summit 2016 [https://www.youtube.com/watch?v=rCBHkQ_LVIs].

	Improve your testing with Pytest and Mock, Gabe Hollombe, PyCon SG 2015 [https://www.youtube.com/watch?v=RcN26hznmk4].

	Introduction to pytest, Andreas Pelme, EuroPython 2014 [https://www.youtube.com/watch?v=LdVJj65ikRY].

	Advanced Uses of py.test Fixtures, Floris Bruynooghe, EuroPython
2014 [https://www.youtube.com/watch?v=IBC_dxr-4ps].

	Why i use py.test and maybe you should too, Andy Todd, Pycon AU 2013 [https://www.youtube.com/watch?v=P-AhpukDIik]

	3-part blog series about pytest from @pydanny alias Daniel Greenfeld (January
2014) [http://pydanny.com/pytest-no-boilerplate-testing.html]

	pytest: helps you write better Django apps, Andreas Pelme, DjangoCon
Europe 2014 [https://www.youtube.com/watch?v=aaArYVh6XSM].

	pytest fixtures: explicit, modular, scalable

	Testing Django Applications with pytest, Andreas Pelme, EuroPython
2013 [https://www.youtube.com/watch?v=aUf8Fkb7TaY].

	Testes pythonics com py.test, Vinicius Belchior Assef Neto, Plone
Conf 2013, Brazil [https://www.youtube.com/watch?v=QUKoq2K7bis].

	Introduction to py.test fixtures, FOSDEM 2013, Floris Bruynooghe [https://www.youtube.com/watch?v=bJhRW4eZMco].

	pytest feature and release highlights, Holger Krekel (GERMAN, October 2013) [http://pyvideo.org/video/2429/pytest-feature-and-new-release-highlights]

	pytest introduction from Brian Okken (January 2013) [http://pythontesting.net/framework/pytest-introduction/]

	pycon australia 2012 pytest talk from Brianna Laugher (video [http://www.youtube.com/watch?v=DTNejE9EraI], slides [http://www.slideshare.net/pfctdayelise/funcargs-other-fun-with-pytest], code [https://gist.github.com/3386951])

	pycon 2012 US talk video from Holger Krekel [http://www.youtube.com/watch?v=9LVqBQcFmyw]

	monkey patching done right [http://tetamap.wordpress.com/2009/03/03/monkeypatching-in-unit-tests-done-right/] (blog post, consult monkeypatch plugin for up-to-date API)

Test parametrization:

	generating parametrized tests with fixtures.

	test generators and cached setup [http://bruynooghe.blogspot.com/2010/06/pytest-test-generators-and-cached-setup.html]

	parametrizing tests, generalized [http://tetamap.wordpress.com/2009/05/13/parametrizing-python-tests-generalized/] (blog post)

	putting test-hooks into local or global plugins [http://tetamap.wordpress.com/2009/05/14/putting-test-hooks-into-local-and-global-plugins/] (blog post)

Assertion introspection:

	(07/2011) Behind the scenes of pytest’s new assertion rewriting [http://pybites.blogspot.com/2011/07/behind-scenes-of-pytests-new-assertion.html]

Distributed testing:

	simultaneously test your code on all platforms [http://tetamap.wordpress.com/2009/03/23/new-simultanously-test-your-code-on-all-platforms/] (blog entry)

Plugin specific examples:

	skipping slow tests by default in pytest [http://bruynooghe.blogspot.com/2009/12/skipping-slow-test-by-default-in-pytest.html] (blog entry)

	many examples in the docs for plugins

 [image: _images/gaynor3.png]
[image: _images/theuni.png]
[image: _images/cramer2.png]
[image: _images/keleshev.png]

Project examples

Here are some examples of projects using pytest (please send notes via Contact channels):

	PyPy [http://pypy.org], Python with a JIT compiler, running over
21000 tests [http://buildbot.pypy.org/summary?branch=%3Ctrunk%3E]

	the MoinMoin [http://moinmo.in] Wiki Engine

	sentry [https://getsentry.com/welcome/], realtime app-maintenance and exception tracking

	Astropy [http://www.astropy.org/] and affiliated packages [http://www.astropy.org/affiliated/index.html]

	tox [http://testrun.org/tox], virtualenv/Hudson integration tool

	PIDA [http://pida.co.uk] framework for integrated development

	PyPM [http://code.activestate.com/pypm/] ActiveState’s package manager

	Fom [http://packages.python.org/Fom/] a fluid object mapper for FluidDB

	applib [https://github.com/ActiveState/applib] cross-platform utilities

	six [https://pypi.org/project/six/] Python 2 and 3 compatibility utilities

	pediapress [http://code.pediapress.com/wiki/wiki] MediaWiki articles

	mwlib [https://pypi.org/project/mwlib/] mediawiki parser and utility library

	The Translate Toolkit [http://translate.sourceforge.net/wiki/toolkit/index] for localization and conversion

	execnet [http://codespeak.net/execnet] rapid multi-Python deployment

	pylib [https://py.readthedocs.io] cross-platform path, IO, dynamic code library

	Pacha [http://pacha.cafepais.com/] configuration management in five minutes

	bbfreeze [https://pypi.org/project/bbfreeze/] create standalone executables from Python scripts

	pdb++ [http://bitbucket.org/antocuni/pdb] a fancier version of PDB

	py-s3fuse [http://code.google.com/p/py-s3fuse/] Amazon S3 FUSE based filesystem

	waskr [http://code.google.com/p/waskr/] WSGI Stats Middleware

	guachi [http://code.google.com/p/guachi/] global persistent configs for Python modules

	Circuits [https://pypi.org/project/circuits/] lightweight Event Driven Framework

	pygtk-helpers [http://bitbucket.org/aafshar/pygtkhelpers-main/] easy interaction with PyGTK

	QuantumCore [http://quantumcore.org/] statusmessage and repoze openid plugin

	pydataportability [http://pydataportability.net/] libraries for managing the open web

	XIST [http://www.livinglogic.de/Python/xist/] extensible HTML/XML generator

	tiddlyweb [https://pypi.org/project/tiddlyweb/] optionally headless, extensible RESTful datastore

	fancycompleter [http://bitbucket.org/antocuni/fancycompleter/src] for colorful tab-completion

	Paludis [http://paludis.exherbo.org/] tools for Gentoo Paludis package manager

	Gerald [http://halfcooked.com/code/gerald/] schema comparison tool

	abjad [http://code.google.com/p/abjad/] Python API for Formalized Score control

	bu [http://packages.python.org/bu/] a microscopic build system

	katcp [https://bitbucket.org/hodgestar/katcp] Telescope communication protocol over Twisted

	kss plugin timer [https://pypi.org/project/kss.plugin.timer/]

	pyudev [https://pyudev.readthedocs.io/en/latest/tests/plugins.html] a pure Python binding to the Linux library libudev

	pytest-localserver [https://bitbucket.org/pytest-dev/pytest-localserver/] a plugin for pytest that provides an httpserver and smtpserver

	pytest-monkeyplus [https://pypi.org/project/pytest-monkeyplus/] a plugin that extends monkeypatch

These projects help integrate pytest into other Python frameworks:

	pytest-django [https://pypi.org/project/pytest-django/] for Django

	zope.pytest [http://packages.python.org/zope.pytest/] for Zope and Grok

	pytest_gae [https://pypi.org/project/pytest_gae/0.2.1/] for Google App Engine

	There is some work [https://github.com/Kotti/Kotti/blob/master/kotti/testing.py] underway for Kotti, a CMS built in Pyramid/Pylons

Some organisations using pytest

	Square Kilometre Array, Cape Town [http://ska.ac.za/]

	Some Mozilla QA people [http://www.theautomatedtester.co.uk/blog/2011/pytest_and_xdist_plugin.html] use pytest to distribute their Selenium tests

	Tandberg [http://www.tandberg.com/]

	Shootq [http://web.shootq.com/]

	Stups department of Heinrich Heine University Duesseldorf [http://www.stups.uni-duesseldorf.de/projects.php]

	cellzome [http://www.cellzome.com/]

	Open End, Gothenborg [http://www.openend.se]

	Laboratory of Bioinformatics, Warsaw [http://genesilico.pl/]

	merlinux, Germany [http://merlinux.eu]

	ESSS, Brazil [http://www.esss.com.br]

	many more … (please be so kind to send a note via Contact channels)

Some Issues and Questions

Note

This FAQ is here only mostly for historic reasons. Checkout
pytest Q&A at Stackoverflow [http://stackoverflow.com/search?q=pytest]
for many questions and answers related to pytest and/or use
Contact channels to get help.

On naming, nosetests, licensing and magic

How does pytest relate to nose and unittest?

pytest and nose [https://nose.readthedocs.io/en/latest/] share basic philosophy when it comes
to running and writing Python tests. In fact, you can run many tests
written for nose with pytest. nose [https://nose.readthedocs.io/en/latest/] was originally created
as a clone of pytest when pytest was in the 0.8 release
cycle. Note that starting with pytest-2.0 support for running unittest
test suites is majorly improved.

how does pytest relate to twisted’s trial?

Since some time pytest has builtin support for supporting tests
written using trial. It does not itself start a reactor, however,
and does not handle Deferreds returned from a test in pytest style.
If you are using trial’s unittest.TestCase chances are that you can
just run your tests even if you return Deferreds. In addition,
there also is a dedicated pytest-twisted [https://pypi.org/project/pytest-twisted/] plugin which allows you to
return deferreds from pytest-style tests, allowing the use of
pytest fixtures: explicit, modular, scalable and other features.

how does pytest work with Django?

In 2012, some work is going into the pytest-django plugin [https://pypi.org/project/pytest-django/]. It substitutes the usage of Django’s
manage.py test and allows the use of all pytest features most of which
are not available from Django directly.

What’s this “magic” with pytest? (historic notes)

Around 2007 (version 0.8) some people thought that pytest
was using too much “magic”. It had been part of the pylib [https://py.readthedocs.io/en/latest/] which
contains a lot of unrelated python library code. Around 2010 there
was a major cleanup refactoring, which removed unused or deprecated code
and resulted in the new pytest PyPI package which strictly contains
only test-related code. This release also brought a complete pluginification
such that the core is around 300 lines of code and everything else is
implemented in plugins. Thus pytest today is a small, universally runnable
and customizable testing framework for Python. Note, however, that
pytest uses metaprogramming techniques and reading its source is
thus likely not something for Python beginners.

A second “magic” issue was the assert statement debugging feature.
Nowadays, pytest explicitly rewrites assert statements in test modules
in order to provide more useful assert feedback.
This completely avoids previous issues of confusing assertion-reporting.
It also means, that you can use Python’s -O optimization without losing
assertions in test modules.

You can also turn off all assertion interaction using the
--assert=plain option.

Why can I use both pytest and py.test commands?

pytest used to be part of the py package, which provided several developer
utilities, all starting with py.<TAB>, thus providing nice TAB-completion.
If you install pip install pycmd you get these tools from a separate
package. Once pytest became a separate package, the py.test name was
retained due to avoid a naming conflict with another tool. This conflict was
eventually resolved, and the pytest command was therefore introduced. In
future versions of pytest, we may deprecate and later remove the py.test
command to avoid perpetuating the confusion.

pytest fixtures, parametrized tests

Is using pytest fixtures versus xUnit setup a style question?

For simple applications and for people experienced with nose [https://nose.readthedocs.io/en/latest/] or
unittest-style test setup using xUnit style setup probably
feels natural. For larger test suites, parametrized testing
or setup of complex test resources using fixtures may feel more natural.
Moreover, fixtures are ideal for writing advanced test support
code (like e.g. the monkeypatch, the tmpdir or capture fixtures)
because the support code can register setup/teardown functions
in a managed class/module/function scope.

Can I yield multiple values from a fixture function?

There are two conceptual reasons why yielding from a factory function
is not possible:

	If multiple factories yielded values there would
be no natural place to determine the combination
policy - in real-world examples some combinations
often should not run.

	Calling factories for obtaining test function arguments
is part of setting up and running a test. At that
point it is not possible to add new test calls to
the test collection anymore.

However, with pytest-2.3 you can use the Fixtures as Function arguments decorator
and specify params so that all tests depending on the factory-created
resource will run multiple times with different parameters.

You can also use the pytest_generate_tests hook to
implement the parametrization scheme of your choice [http://tetamap.wordpress.com/2009/05/13/parametrizing-python-tests-generalized/]. See also
Parametrizing tests for more examples.

pytest interaction with other packages

Issues with pytest, multiprocess and setuptools?

On Windows the multiprocess package will instantiate sub processes
by pickling and thus implicitly re-import a lot of local modules.
Unfortunately, setuptools-0.6.11 does not if __name__=='__main__'
protect its generated command line script. This leads to infinite
recursion when running a test that instantiates Processes.

As of mid-2013, there shouldn’t be a problem anymore when you
use the standard setuptools (note that distribute has been merged
back into setuptools which is now shipped directly with virtualenv).

Contact channels

	pytest issue tracker [https://github.com/pytest-dev/pytest/issues] to report bugs or suggest features (for version
2.0 and above).

	pytest on stackoverflow.com [http://stackoverflow.com/search?q=pytest]
to post questions with the tag pytest. New Questions will usually
be seen by pytest users or developers and answered quickly.

	Testing In Python [http://lists.idyll.org/listinfo/testing-in-python]: a mailing list for Python testing tools and discussion.

	pytest-dev at python.org (mailing list) [http://mail.python.org/mailman/listinfo/pytest-dev] pytest specific announcements and discussions.

	pytest-commit at python.org (mailing list) [http://mail.python.org/mailman/listinfo/pytest-commit]: for commits and new issues

	contribution guide for help on submitting pull
requests to GitHub.

	#pylib on irc.freenode.net IRC channel for random questions.

	private mail to Holger.Krekel at gmail com if you want to communicate sensitive issues

	merlinux.eu [http://merlinux.eu] offers pytest and tox-related professional teaching and
consulting.

Tidelift

pytest is a member of Tidelift [https://tidelift.com]. This document describes how the core team manages
Tidelift-related activities.

What is it

Tidelift aims to make Open Source sustainable by offering subscriptions to companies which rely
on Open Source packages. This subscription allows it to pay maintainers of those Open Source
packages to aid sustainability of the work.

Funds

It was decided in the mailing list [https://mail.python.org/pipermail/pytest-dev/2019-May/004716.html] that the Tidelift contribution will be split evenly between
members of the contributors team [https://github.com/orgs/pytest-dev/teams/contributors] interested in receiving funding.

The current list of contributors receiving funding are:

	@asottile [https://github.com/asottile]

	@blueyed [https://github.com/blueyed]

	@nicoddemus [https://github.com/nicoddemus]

Contributors interested in receiving a part of the funds just need to submit a PR adding their
name to the list. Contributors that want to stop receiving the funds should also submit a PR
in the same way.

The PR should mention @pytest-dev/tidelift-admins [https://github.com/orgs/pytest-dev/teams/tidelift-admins/members] so appropriate changes
can be made in the Tidelift platform.

After the PR has been accepted and merged, the contributor should register in the Tidelift [https://tidelift.com]
platform and follow the instructions there, including signing an agreement [https://tidelift.com/docs/lifting/agreement].

Admins

A few people have admin access to the Tidelift dashboard to make changes. Those people
are part of the @pytest-dev/tidelift-admins [https://github.com/orgs/pytest-dev/teams/tidelift-admins/members] team.

Core contributors [https://github.com/orgs/pytest-dev/teams/core/members] interested in helping out with Tidelift maintenance are welcome! We don’t
expect much work here other than the occasional adding/removal of a contributor from receiving
funds. Just drop a line to one of the @pytest-dev/tidelift-admins [https://github.com/orgs/pytest-dev/teams/tidelift-admins/members] or use the mailing list.

Release announcements

	pytest-4.6.11

	pytest-4.6.10

	pytest-4.6.9

	pytest-4.6.8

	pytest-4.6.7

	pytest-4.6.6

	pytest-4.6.5

	pytest-4.6.4

	pytest-4.6.3

	pytest-4.6.2

	pytest-4.6.1

	pytest-4.6.0

	pytest-4.5.0

	pytest-4.4.2

	pytest-4.4.1

	pytest-4.4.0

	pytest-4.3.1

	pytest-4.3.0

	pytest-4.2.1

	pytest-4.2.0

	pytest-4.1.1

	pytest-4.1.0

	pytest-4.0.2

	pytest-4.0.1

	pytest-4.0.0

	pytest-3.10.1

	pytest-3.10.0

	pytest-3.9.3

	pytest-3.9.2

	pytest-3.9.1

	pytest-3.9.0

	pytest-3.8.2

	pytest-3.8.1

	pytest-3.8.0

	pytest-3.7.4

	pytest-3.7.3

	pytest-3.7.2

	pytest-3.7.1

	pytest-3.7.0

	pytest-3.6.4

	pytest-3.6.3

	pytest-3.6.2

	pytest-3.6.1

	pytest-3.6.0

	pytest-3.5.1

	pytest-3.5.0

	pytest-3.4.2

	pytest-3.4.1

	pytest-3.4.0

	pytest-3.3.2

	pytest-3.3.1

	pytest-3.3.0

	pytest-3.2.5

	pytest-3.2.4

	pytest-3.2.3

	pytest-3.2.2

	pytest-3.2.1

	pytest-3.2.0

	pytest-3.1.3

	pytest-3.1.2

	pytest-3.1.1

	pytest-3.1.0

	pytest-3.0.7

	pytest-3.0.6

	pytest-3.0.5

	pytest-3.0.4

	pytest-3.0.3

	pytest-3.0.2

	pytest-3.0.1

	pytest-3.0.0

	python testing sprint June 20th-26th 2016
	Participants

	Sprint organisation, schedule

	Money / funding

	pytest-2.9.2
	2.9.2 (compared to 2.9.1)

	pytest-2.9.1
	2.9.1 (compared to 2.9.0)

	pytest-2.9.0
	2.9.0 (compared to 2.8.7)

	pytest-2.8.7
	2.8.7 (compared to 2.8.6)

	pytest-2.8.6
	2.8.6 (compared to 2.8.5)

	pytest-2.8.5
	2.8.5 (compared to 2.8.4)

	pytest-2.8.4
	2.8.4 (compared to 2.8.3)

	pytest-2.8.3: bug fixes
	2.8.3 (compared to 2.8.2)

	pytest-2.8.2: bug fixes
	2.8.2 (compared to 2.7.2)

	pytest-2.7.2: bug fixes
	2.7.2 (compared to 2.7.1)

	pytest-2.7.1: bug fixes
	2.7.1 (compared to 2.7.0)

	pytest-2.7.0: fixes, features, speed improvements
	2.7.0 (compared to 2.6.4)

	pytest-2.6.3: fixes and little improvements

	Changes 2.6.3

	pytest-2.6.2: few fixes and cx_freeze support
	2.6.2

	pytest-2.6.1: fixes and new xfail feature

	Changes 2.6.1

	pytest-2.6.0: shorter tracebacks, new warning system, test runner compat
	2.6.0

	pytest-2.5.2: fixes
	2.5.2

	pytest-2.5.1: fixes and new home page styling
	2.5.1

	pytest-2.5.0: now down to ZERO reported bugs!
	2.5.0

	pytest-2.4.2: colorama on windows, plugin/tmpdir fixes

	pytest-2.4.1: fixing three regressions compared to 2.3.5

	pytest-2.4.0: new fixture features/hooks and bug fixes
	Changes between 2.3.5 and 2.4

	pytest-2.3.5: bug fixes and little improvements
	Changes between 2.3.4 and 2.3.5

	pytest-2.3.4: stabilization, more flexible selection via “-k expr”

	pytest-2.3.3: integration fixes, py24 support, */** shown in traceback
	Changes between 2.3.2 and 2.3.3

	pytest-2.3.2: some fixes and more traceback-printing speed
	Changes between 2.3.1 and 2.3.2

	pytest-2.3.1: fix regression with factory functions
	Changes between 2.3.0 and 2.3.1

	pytest-2.3: improved fixtures / better unittest integration
	Changes between 2.2.4 and 2.3.0

	pytest-2.2.4: bug fixes, better junitxml/unittest/python3 compat
	Changes between 2.2.3 and 2.2.4

	pytest-2.2.2: bug fixes
	Changes between 2.2.1 and 2.2.2

	pytest-2.2.1: bug fixes, perfect teardowns
	Changes between 2.2.0 and 2.2.1

	py.test 2.2.0: test marking++, parametrization++ and duration profiling
	notes on incompatibility

	Changes between 2.1.3 and 2.2.0

	py.test 2.1.3: just some more fixes
	Changes between 2.1.2 and 2.1.3

	py.test 2.1.2: bug fixes and fixes for jython
	Changes between 2.1.1 and 2.1.2

	py.test 2.1.1: assertion fixes and improved junitxml output
	Changes between 2.1.0 and 2.1.1

	py.test 2.1.0: perfected assertions and bug fixes
	Changes between 2.0.3 and 2.1.0

	py.test 2.0.3: bug fixes and speed ups
	Changes between 2.0.2 and 2.0.3

	py.test 2.0.2: bug fixes, improved xfail/skip expressions, speed ups
	Changes between 2.0.1 and 2.0.2

	py.test 2.0.1: bug fixes
	Changes between 2.0.0 and 2.0.1

	py.test 2.0.0: asserts++, unittest++, reporting++, config++, docs++
	New Features

	Fixes

	Important Notes

	(Incompatible) Removals

pytest-4.6.11

pytest 4.6.11 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Sviatoslav Sydorenko

Happy testing,
The pytest Development Team

pytest-4.6.10

pytest 4.6.10 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Fernando Mez

Happy testing,
The pytest Development Team

pytest-4.6.9

pytest 4.6.9 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Felix Yan

	Hugo

Happy testing,
The pytest Development Team

pytest-4.6.8

pytest 4.6.8 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Ryan Mast

Happy testing,
The pytest Development Team

pytest-4.6.7

pytest 4.6.7 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Bruno Oliveira

	Daniel Hahler

Happy testing,
The pytest Development Team

pytest-4.6.6

pytest 4.6.6 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Michael Goerz

Happy testing,
The pytest Development Team

pytest-4.6.5

pytest 4.6.5 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Thomas Grainger

Happy testing,
The pytest Development Team

pytest-4.6.4

pytest 4.6.4 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Thomas Grainger

	Zac Hatfield-Dodds

Happy testing,
The pytest Development Team

pytest-4.6.3

pytest 4.6.3 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Dirk Thomas

Happy testing,
The pytest Development Team

pytest-4.6.2

pytest 4.6.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

Happy testing,
The pytest Development Team

pytest-4.6.1

pytest 4.6.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

Happy testing,
The pytest Development Team

pytest-4.6.0

The pytest team is proud to announce the 4.6.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

https://docs.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

https://docs.pytest.org/en/latest/

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Akiomi Kamakura

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	David Röthlisberger

	Evan Kepner

	Jeffrey Rackauckas

	MyComputer

	Nikita Krokosh

	Raul Tambre

	Thomas Hisch

	Tim Hoffmann

	Tomer Keren

	Victor Maryama

	danielx123

	oleg-yegorov

Happy testing,
The Pytest Development Team

pytest-4.5.0

The pytest team is proud to announce the 4.5.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

https://docs.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

https://docs.pytest.org/en/latest/

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Floris Bruynooghe

	Pulkit Goyal

	Samuel Searles-Bryant

	Zac Hatfield-Dodds

	Zac-HD

Happy testing,
The Pytest Development Team

pytest-4.4.2

pytest 4.4.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Allan Lewis

	Anthony Sottile

	Bruno Oliveira

	DamianSkrzypczak

	Daniel Hahler

	Don Kirkby

	Douglas Thor

	Hugo

	Ilya Konstantinov

	Jon Dufresne

	Matt Cooper

	Nikolay Kondratyev

	Ondřej Súkup

	Peter Schutt

	Romain Chossart

	Sitaktif

Happy testing,
The pytest Development Team

pytest-4.4.1

pytest 4.4.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

Happy testing,
The pytest Development Team

pytest-4.4.0

The pytest team is proud to announce the 4.4.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

https://docs.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

https://docs.pytest.org/en/latest/

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	ApaDoctor

	Bernhard M. Wiedemann

	Brian Skinn

	Bruno Oliveira

	Daniel Hahler

	Gary Tyler

	Jeong YunWon

	Miro Hrončok

	Takafumi Arakaki

	henrykironde

	smheidrich

Happy testing,
The Pytest Development Team

pytest-4.3.1

pytest 4.3.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Andras Mitzki

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Danilo Horta

	Grygorii Iermolenko

	Jeff Hale

	Kyle Altendorf

	Stephan Hoyer

	Zac Hatfield-Dodds

	Zac-HD

	songbowen

Happy testing,
The pytest Development Team

pytest-4.3.0

The pytest team is proud to announce the 4.3.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

https://docs.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

https://docs.pytest.org/en/latest/

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Andras Mitzki

	Anthony Sottile

	Bruno Oliveira

	Christian Fetzer

	Daniel Hahler

	Grygorii Iermolenko

	
	Alex Matevish

	Ronny Pfannschmidt

	cclauss

Happy testing,
The Pytest Development Team

pytest-4.2.1

pytest 4.2.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Arel Cordero

	Bruno Oliveira

	Daniel Hahler

	Holger Kohr

	Kevin J. Foley

	Nick Murphy

	Paweł Stradomski

	Raphael Pierzina

	Ronny Pfannschmidt

	Sam Brightman

	Thomas Hisch

	Zac Hatfield-Dodds

Happy testing,
The pytest Development Team

pytest-4.2.0

The pytest team is proud to announce the 4.2.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

https://docs.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

https://docs.pytest.org/en/latest/

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Adam Uhlir

	Anthony Sottile

	Bruno Oliveira

	Christopher Dignam

	Daniel Hahler

	Joseph Hunkeler

	Kristoffer Nordstroem

	Ronny Pfannschmidt

	Thomas Hisch

	wim glenn

Happy testing,
The Pytest Development Team

pytest-4.1.1

pytest 4.1.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Anton Lodder

	Bruno Oliveira

	Daniel Hahler

	David Vo

	Oscar Benjamin

	Ronny Pfannschmidt

	Victor Maryama

	Yoav Caspi

	dmitry.dygalo

Happy testing,
The pytest Development Team

pytest-4.1.0

The pytest team is proud to announce the 4.1.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

https://docs.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

https://docs.pytest.org/en/latest/

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Adam Johnson

	Aly Sivji

	Andrey Paramonov

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	David Vo

	Hyunchel Kim

	Jeffrey Rackauckas

	Kanguros

	Nicholas Devenish

	Pedro Algarvio

	Randy Barlow

	Ronny Pfannschmidt

	Tomer Keren

	feuillemorte

	wim glenn

Happy testing,
The Pytest Development Team

pytest-4.0.2

pytest 4.0.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Pedro Algarvio

	Ronny Pfannschmidt

	Tomer Keren

	Yash Todi

Happy testing,
The pytest Development Team

pytest-4.0.1

pytest 4.0.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Michael D. Hoyle

	Ronny Pfannschmidt

	Slam

Happy testing,
The pytest Development Team

pytest-4.0.0

The pytest team is proud to announce the 4.0.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

https://docs.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

https://docs.pytest.org/en/latest/

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Bruno Oliveira

	Daniel Hahler

	Ronny Pfannschmidt

Happy testing,
The Pytest Development Team

pytest-3.10.1

pytest 3.10.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Boris Feld

	Bruno Oliveira

	Daniel Hahler

	Fabien ZARIFIAN

	Jon Dufresne

	Ronny Pfannschmidt

Happy testing,
The pytest Development Team

pytest-3.10.0

The pytest team is proud to announce the 3.10.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

https://docs.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

https://docs.pytest.org/en/latest/

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Anders Hovmöller

	Andreu Vallbona Plazas

	Ankit Goel

	Anthony Sottile

	Bernardo Gomes

	Brianna Laugher

	Bruno Oliveira

	Daniel Hahler

	David Szotten

	Mick Koch

	Niclas Olofsson

	Palash Chatterjee

	Ronny Pfannschmidt

	Sven-Hendrik Haase

	Ville Skyttä

	William Jamir Silva

Happy testing,
The Pytest Development Team

pytest-3.9.3

pytest 3.9.3 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Andreas Profous

	Ankit Goel

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Jon Dufresne

	Ronny Pfannschmidt

Happy testing,
The pytest Development Team

pytest-3.9.2

pytest 3.9.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Ankit Goel

	Anthony Sottile

	Bruno Oliveira

	Ronny Pfannschmidt

	Vincent Barbaresi

	ykantor

Happy testing,
The pytest Development Team

pytest-3.9.1

pytest 3.9.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Bruno Oliveira

	Ronny Pfannschmidt

	Thomas Hisch

Happy testing,
The pytest Development Team

pytest-3.9.0

The pytest team is proud to announce the 3.9.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

https://docs.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

https://docs.pytest.org/en/latest/

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Andrea Cimatoribus

	Ankit Goel

	Anthony Sottile

	Ben Eyal

	Bruno Oliveira

	Daniel Hahler

	Jeffrey Rackauckas

	Jose Carlos Menezes

	Kyle Altendorf

	Niklas JQ

	Palash Chatterjee

	Ronny Pfannschmidt

	Thomas Hess

	Thomas Hisch

	Tomer Keren

	Victor Maryama

Happy testing,
The Pytest Development Team

pytest-3.8.2

pytest 3.8.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Ankit Goel

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Denis Otkidach

	Harry Percival

	Jeffrey Rackauckas

	Jose Carlos Menezes

	Ronny Pfannschmidt

	Zac-HD

	iwanb

Happy testing,
The pytest Development Team

pytest-3.8.1

pytest 3.8.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Ankit Goel

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Maximilian Albert

	Ronny Pfannschmidt

	William Jamir Silva

	wim glenn

Happy testing,
The pytest Development Team

pytest-3.8.0

The pytest team is proud to announce the 3.8.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

https://docs.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

https://docs.pytest.org/en/latest/

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	CrazyMerlyn

	Daniel Hahler

	Fabio Zadrozny

	Jeffrey Rackauckas

	Ronny Pfannschmidt

	Virgil Dupras

	dhirensr

	hoefling

	wim glenn

Happy testing,
The Pytest Development Team

pytest-3.7.4

pytest 3.7.4 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at https://docs.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Jiri Kuncar

	Steve Piercy

Happy testing,
The pytest Development Team

pytest-3.7.3

pytest 3.7.3 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Andrew Champion

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Gandalf Saxe

	Jennifer Rinker

	Natan Lao

	Ondřej Súkup

	Ronny Pfannschmidt

	Sankt Petersbug

	Tyler Richard

	Victor Maryama

	Vlad Shcherbina

	turturica

	wim glenn

Happy testing,
The pytest Development Team

pytest-3.7.2

pytest 3.7.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Daniel Hahler

	Josh Holland

	Ronny Pfannschmidt

	Sankt Petersbug

	Wes Thomas

	turturica

Happy testing,
The pytest Development Team

pytest-3.7.1

pytest 3.7.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Kale Kundert

	Ronny Pfannschmidt

Happy testing,
The pytest Development Team

pytest-3.7.0

The pytest team is proud to announce the 3.7.0 release!

pytest is a mature Python testing tool with more than a 2000 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

http://doc.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

http://docs.pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Alan

	Alan Brammer

	Ammar Najjar

	Anthony Sottile

	Bruno Oliveira

	Jeffrey Rackauckas

	Kale Kundert

	Ronny Pfannschmidt

	Serhii Mozghovyi

	Tadek Teleżyński

	Wil Cooley

	abrammer

	avirlrma

	turturica

Happy testing,
The Pytest Development Team

pytest-3.6.4

pytest 3.6.4 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bernhard M. Wiedemann

	Bruno Oliveira

	Drew

	E Hershey

	Hugo Martins

	Vlad Shcherbina

Happy testing,
The pytest Development Team

pytest-3.6.3

pytest 3.6.3 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	AdamEr8

	Anthony Sottile

	Bruno Oliveira

	Jean-Paul Calderone

	Jon Dufresne

	Marcelo Duarte Trevisani

	Ondřej Súkup

	Ronny Pfannschmidt

	T.E.A de Souza

	Victor Maryama

Happy testing,
The pytest Development Team

pytest-3.6.2

pytest 3.6.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Alan Velasco

	Alex Barbato

	Anthony Sottile

	Bartosz Cierocki

	Bruno Oliveira

	Daniel Hahler

	Guoqiang Zhang

	Hynek Schlawack

	John T. Wodder II

	Michael Käufl

	Ronny Pfannschmidt

	Samuel Dion-Girardeau

Happy testing,
The pytest Development Team

pytest-3.6.1

pytest 3.6.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Jeffrey Rackauckas

	Miro Hrončok

	Niklas Meinzer

	Oliver Bestwalter

	Ronny Pfannschmidt

Happy testing,
The pytest Development Team

pytest-3.6.0

The pytest team is proud to announce the 3.6.0 release!

pytest is a mature Python testing tool with more than a 1600 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

http://doc.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

http://docs.pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Anthony Shaw

	ApaDoctor

	Brian Maissy

	Bruno Oliveira

	Jon Dufresne

	Katerina Koukiou

	Miro Hrončok

	Rachel Kogan

	Ronny Pfannschmidt

	Tim Hughes

	Tyler Goodlet

	Ville Skyttä

	aviral1701

	feuillemorte

Happy testing,
The Pytest Development Team

pytest-3.5.1

pytest 3.5.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Brian Maissy

	Bruno Oliveira

	Darren Burns

	David Chudzicki

	Floris Bruynooghe

	Holger Kohr

	Irmen de Jong

	Jeffrey Rackauckas

	Rachel Kogan

	Ronny Pfannschmidt

	Stefan Scherfke

	Tim Strazny

	Семён Марьясин

Happy testing,
The pytest Development Team

pytest-3.5.0

The pytest team is proud to announce the 3.5.0 release!

pytest is a mature Python testing tool with more than a 1600 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

http://doc.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

http://docs.pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Allan Feldman

	Brian Maissy

	Bruno Oliveira

	Carlos Jenkins

	Daniel Hahler

	Florian Bruhin

	Jason R. Coombs

	Jeffrey Rackauckas

	Jordan Speicher

	Julien Palard

	Kale Kundert

	Kostis Anagnostopoulos

	Kyle Altendorf

	Maik Figura

	Pedro Algarvio

	Ronny Pfannschmidt

	Tadeu Manoel

	Tareq Alayan

	Thomas Hisch

	William Lee

	codetriage-readme-bot

	feuillemorte

	joshm91

	mike

Happy testing,
The Pytest Development Team

pytest-3.4.2

pytest 3.4.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Allan Feldman

	Bruno Oliveira

	Florian Bruhin

	Jason R. Coombs

	Kyle Altendorf

	Maik Figura

	Ronny Pfannschmidt

	codetriage-readme-bot

	feuillemorte

	joshm91

	mike

Happy testing,
The pytest Development Team

pytest-3.4.1

pytest 3.4.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Aaron

	Alan Velasco

	Andy Freeland

	Brian Maissy

	Bruno Oliveira

	Florian Bruhin

	Jason R. Coombs

	Marcin Bachry

	Pedro Algarvio

	Ronny Pfannschmidt

Happy testing,
The pytest Development Team

pytest-3.4.0

The pytest team is proud to announce the 3.4.0 release!

pytest is a mature Python testing tool with more than a 1600 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

http://doc.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

http://docs.pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Aaron

	Alan Velasco

	Anders Hovmöller

	Andrew Toolan

	Anthony Sottile

	Aron Coyle

	Brian Maissy

	Bruno Oliveira

	Cyrus Maden

	Florian Bruhin

	Henk-Jaap Wagenaar

	Ian Lesperance

	Jon Dufresne

	Jurko Gospodnetić

	Kate

	Kimberly

	Per A. Brodtkorb

	Pierre-Alexandre Fonta

	Raphael Castaneda

	Ronny Pfannschmidt

	ST John

	Segev Finer

	Thomas Hisch

	Tzu-ping Chung

	feuillemorte

Happy testing,
The Pytest Development Team

pytest-3.3.2

pytest 3.3.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Antony Lee

	Austin

	Bruno Oliveira

	Florian Bruhin

	Floris Bruynooghe

	Henk-Jaap Wagenaar

	Jurko Gospodnetić

	Ronny Pfannschmidt

	Srinivas Reddy Thatiparthy

	Thomas Hisch

Happy testing,
The pytest Development Team

pytest-3.3.1

pytest 3.3.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Bruno Oliveira

	Daniel Hahler

	Eugene Prikazchikov

	Florian Bruhin

	Roland Puntaier

	Ronny Pfannschmidt

	Sebastian Rahlf

	Tom Viner

Happy testing,
The pytest Development Team

pytest-3.3.0

The pytest team is proud to announce the 3.3.0 release!

pytest is a mature Python testing tool with more than a 1600 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

http://doc.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

http://docs.pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Bruno Oliveira

	Ceridwen

	Daniel Hahler

	Dirk Thomas

	Dmitry Malinovsky

	Florian Bruhin

	George Y. Kussumoto

	Hugo

	Jesús Espino

	Joan Massich

	Ofir

	OfirOshir

	Ronny Pfannschmidt

	Samuel Dion-Girardeau

	Srinivas Reddy Thatiparthy

	Sviatoslav Abakumov

	Tarcisio Fischer

	Thomas Hisch

	Tyler Goodlet

	hugovk

	je

	prokaktus

Happy testing,
The Pytest Development Team

pytest-3.2.5

pytest 3.2.5 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Bruno Oliveira

Happy testing,
The pytest Development Team

pytest-3.2.4

pytest 3.2.4 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Bruno Oliveira

	Christian Boelsen

	Christoph Buchner

	Daw-Ran Liou

	Florian Bruhin

	Franck Michea

	Leonard Lausen

	Matty G

	Owen Tuz

	Pavel Karateev

	Pierre GIRAUD

	Ronny Pfannschmidt

	Stephen Finucane

	Sviatoslav Abakumov

	Thomas Hisch

	Tom Dalton

	Xuan Luong

	Yorgos Pagles

	Семён Марьясин

Happy testing,
The pytest Development Team

pytest-3.2.3

pytest 3.2.3 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Bruno Oliveira

	Evan

	Joe Hamman

	Oliver Bestwalter

	Ronny Pfannschmidt

	Xuan Luong

Happy testing,
The pytest Development Team

pytest-3.2.2

pytest 3.2.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Andreas Pelme

	Antonio Hidalgo

	Bruno Oliveira

	Felipe Dau

	Fernando Macedo

	Jesús Espino

	Joan Massich

	Joe Talbott

	Kirill Pinchuk

	Ronny Pfannschmidt

	Xuan Luong

Happy testing,
The pytest Development Team

pytest-3.2.1

pytest 3.2.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Alex Gaynor

	Bruno Oliveira

	Florian Bruhin

	Ronny Pfannschmidt

	Srinivas Reddy Thatiparthy

Happy testing,
The pytest Development Team

pytest-3.2.0

The pytest team is proud to announce the 3.2.0 release!

pytest is a mature Python testing tool with more than a 1600 tests
against itself, passing on many different interpreters and platforms.

This release contains a number of bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

http://doc.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

http://docs.pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Alex Hartoto

	Andras Tim

	Bruno Oliveira

	Daniel Hahler

	Florian Bruhin

	Floris Bruynooghe

	John Still

	Jordan Moldow

	Kale Kundert

	Lawrence Mitchell

	Llandy Riveron Del Risco

	Maik Figura

	Martin Altmayer

	Mihai Capotă

	Nathaniel Waisbrot

	Nguyễn Hồng Quân

	Pauli Virtanen

	Raphael Pierzina

	Ronny Pfannschmidt

	Segev Finer

	V.Kuznetsov

Happy testing,
The Pytest Development Team

pytest-3.1.3

pytest 3.1.3 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Antoine Legrand

	Bruno Oliveira

	Max Moroz

	Raphael Pierzina

	Ronny Pfannschmidt

	Ryan Fitzpatrick

Happy testing,
The pytest Development Team

pytest-3.1.2

pytest 3.1.2 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Andreas Pelme

	ApaDoctor

	Bruno Oliveira

	Florian Bruhin

	Ronny Pfannschmidt

	Segev Finer

Happy testing,
The pytest Development Team

pytest-3.1.1

pytest 3.1.1 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Bruno Oliveira

	Florian Bruhin

	Floris Bruynooghe

	Jason R. Coombs

	Ronny Pfannschmidt

	wanghui

Happy testing,
The pytest Development Team

pytest-3.1.0

The pytest team is proud to announce the 3.1.0 release!

pytest is a mature Python testing tool with more than a 1600 tests
against itself, passing on many different interpreters and platforms.

This release contains a bugs fixes and improvements, so users are encouraged
to take a look at the CHANGELOG:

http://doc.pytest.org/en/latest/changelog.html

For complete documentation, please visit:

http://docs.pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Ben Lloyd

	Bruno Oliveira

	David Giese

	David Szotten

	Dmitri Pribysh

	Florian Bruhin

	Florian Schulze

	Floris Bruynooghe

	John Towler

	Jonas Obrist

	Katerina Koukiou

	Kodi Arfer

	Krzysztof Szularz

	Lev Maximov

	Loïc Estève

	Luke Murphy

	Manuel Krebber

	Matthew Duck

	Matthias Bussonnier

	Michael Howitz

	Michal Wajszczuk

	Paweł Adamczak

	Rafael Bertoldi

	Ravi Chandra

	Ronny Pfannschmidt

	Skylar Downes

	Thomas Kriechbaumer

	Vitaly Lashmanov

	Vlad Dragos

	Wheerd

	Xander Johnson

	mandeep

	reut

Happy testing,
The Pytest Development Team

pytest-3.0.7

pytest 3.0.7 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Anthony Sottile

	Barney Gale

	Bruno Oliveira

	Florian Bruhin

	Floris Bruynooghe

	Ionel Cristian Mărieș

	Katerina Koukiou

	NODA, Kai

	Omer Hadari

	Patrick Hayes

	Ran Benita

	Ronny Pfannschmidt

	Victor Uriarte

	Vidar Tonaas Fauske

	Ville Skyttä

	fbjorn

	mbyt

Happy testing,
The pytest Development Team

pytest-3.0.6

pytest 3.0.6 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The full changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Andreas Pelme

	Bruno Oliveira

	Dmitry Malinovsky

	Eli Boyarski

	Jakub Wilk

	Jeff Widman

	Loïc Estève

	Luke Murphy

	Miro Hrončok

	Oscar Hellström

	Peter Heatwole

	Philippe Ombredanne

	Ronny Pfannschmidt

	Rutger Prins

	Stefan Scherfke

Happy testing,
The pytest Development Team

pytest-3.0.5

pytest 3.0.5 has just been released to PyPI.

This is a bug-fix release, being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Ana Vojnovic

	Bruno Oliveira

	Daniel Hahler

	Duncan Betts

	Igor Starikov

	Ismail

	Luke Murphy

	Ned Batchelder

	Ronny Pfannschmidt

	Sebastian Ramacher

	nmundar

Happy testing,
The pytest Development Team

pytest-3.0.4

pytest 3.0.4 has just been released to PyPI.

This release fixes some regressions and bugs reported in the last version,
being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Bruno Oliveira

	Dan Wandschneider

	Florian Bruhin

	Georgy Dyuldin

	Grigorii Eremeev

	Jason R. Coombs

	Manuel Jacob

	Mathieu Clabaut

	Michael Seifert

	Nikolaus Rath

	Ronny Pfannschmidt

	Tom V

Happy testing,
The pytest Development Team

pytest-3.0.3

pytest 3.0.3 has just been released to PyPI.

This release fixes some regressions and bugs reported in the last version,
being a drop-in replacement. To upgrade:

pip install --upgrade pytest

The changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Bruno Oliveira

	Florian Bruhin

	Floris Bruynooghe

	Huayi Zhang

	Lev Maximov

	Raquel Alegre

	Ronny Pfannschmidt

	Roy Williams

	Tyler Goodlet

	mbyt

Happy testing,
The pytest Development Team

pytest-3.0.2

pytest 3.0.2 has just been released to PyPI.

This release fixes some regressions and bugs reported in version 3.0.1, being a
drop-in replacement. To upgrade:

pip install --upgrade pytest

The changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

	Ahn Ki-Wook

	Bruno Oliveira

	Florian Bruhin

	Jordan Guymon

	Raphael Pierzina

	Ronny Pfannschmidt

	mbyt

Happy testing,
The pytest Development Team

pytest-3.0.1

pytest 3.0.1 has just been released to PyPI.

This release fixes some regressions reported in version 3.0.0, being a
drop-in replacement. To upgrade:

pip install –upgrade pytest

The changelog is available at http://doc.pytest.org/en/latest/changelog.html.

Thanks to all who contributed to this release, among them:

Adam Chainz
Andrew Svetlov
Bruno Oliveira
Daniel Hahler
Dmitry Dygalo
Florian Bruhin
Marcin Bachry
Ronny Pfannschmidt
matthiasha

Happy testing,
The py.test Development Team

pytest-3.0.0

The pytest team is proud to announce the 3.0.0 release!

pytest is a mature Python testing tool with more than a 1600 tests
against itself, passing on many different interpreters and platforms.

This release contains a lot of bugs fixes and improvements, and much of
the work done on it was possible because of the 2016 Sprint[1], which
was funded by an indiegogo campaign which raised over US$12,000 with
nearly 100 backers.

There’s a “What’s new in pytest 3.0” [2] blog post highlighting the
major features in this release.

To see the complete changelog and documentation, please visit:

http://docs.pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

AbdealiJK
Ana Ribeiro
Antony Lee
Brandon W Maister
Brianna Laugher
Bruno Oliveira
Ceridwen
Christian Boelsen
Daniel Hahler
Danielle Jenkins
Dave Hunt
Diego Russo
Dmitry Dygalo
Edoardo Batini
Eli Boyarski
Florian Bruhin
Floris Bruynooghe
Greg Price
Guyzmo
HEAD KANGAROO
JJ
Javi Romero
Javier Domingo Cansino
Kale Kundert
Kalle Bronsen
Marius Gedminas
Matt Williams
Mike Lundy
Oliver Bestwalter
Omar Kohl
Raphael Pierzina
RedBeardCode
Roberto Polli
Romain Dorgueil
Roman Bolshakov
Ronny Pfannschmidt
Stefan Zimmermann
Steffen Allner
Tareq Alayan
Ted Xiao
Thomas Grainger
Tom Viner
TomV
Vasily Kuznetsov
aostr
marscher
palaviv
satoru
taschini

Happy testing,
The Pytest Development Team

[1] http://blog.pytest.org/2016/pytest-development-sprint/
[2] http://blog.pytest.org/2016/whats-new-in-pytest-30/

python testing sprint June 20th-26th 2016

[image: ../_images/freiburg2.jpg]
The pytest core group held the biggest sprint
in its history in June 2016, taking place in the black forest town Freiburg
in Germany. In February 2016 we started a funding
campaign on Indiegogo to cover expenses [http://igg.me/at/pytest-sprint/x/4034848] The page also mentions
some preliminary topics:

	improving pytest-xdist test scheduling to take into account
fixture setups and explicit user hints.

	provide info on fixture dependencies during –collect-only

	tying pytest-xdist to tox so that you can do “py.test -e py34”
to run tests in a particular tox-managed virtualenv. Also
look into making pytest-xdist use tox environments on
remote ssh-sides so that remote dependency management becomes
easier.

	refactoring the fixture system so more people understand it :)

	integrating PyUnit setup methods as autouse fixtures.
possibly adding ways to influence ordering of same-scoped
fixtures (so you can make a choice of which fixtures come
before others)

	fixing bugs and issues from the tracker, really an endless source :)

Participants

Over 20 participants took part from 4 continents, including employees
from Splunk, Personalkollen, Cobe.io, FanDuel and Dolby. Some newcomers
mixed with developers who have worked on pytest since its beginning, and
of course everyone in between.

Sprint organisation, schedule

People arrived in Freiburg on the 19th, with sprint development taking
place on 20th, 21st, 22nd, 24th and 25th. On the 23rd we took a break
day for some hot hiking in the Black Forest.

Sprint activity was organised heavily around pairing, with plenty of group
discusssions to take advantage of the high bandwidth, and lightning talks
as well.

Money / funding

The Indiegogo campaign aimed for 11000 USD and in the end raised over
12000, to reimburse travel costs, pay for a sprint venue and catering.

Excess money is reserved for further sprint/travel funding for pytest/tox
contributors.

pytest-2.9.2

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

Adam Chainz
Benjamin Dopplinger
Bruno Oliveira
Florian Bruhin
John Towler
Martin Prusse
Meng Jue
MengJueM
Omar Kohl
Quentin Pradet
Ronny Pfannschmidt
Thomas Güttler
TomV
Tyler Goodlet

Happy testing,
The py.test Development Team

2.9.2 (compared to 2.9.1)

Bug Fixes

	fix #510 [https://github.com/pytest-dev/pytest/issues/510]: skip tests where one parameterize dimension was empty
thanks Alex Stapleton for the Report and @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the PR

	Fix Xfail does not work with condition keyword argument.
Thanks @astraw38 [https://github.com/astraw38] for reporting the issue (#1496 [https://github.com/pytest-dev/pytest/issue/1496]) and @tomviner [https://github.com/tomviner]
for PR the (#1524 [https://github.com/pytest-dev/pytest/issue/1524]).

	Fix win32 path issue when putting custom config file with absolute path
in pytest.main("-c your_absolute_path").

	Fix maximum recursion depth detection when raised error class is not aware
of unicode/encoded bytes.
Thanks @prusse-martin [https://github.com/prusse-martin] for the PR (#1506 [https://github.com/pytest-dev/pytest/pull/1506]).

	Fix pytest.mark.skip mark when used in strict mode.
Thanks @pquentin [https://github.com/pquentin] for the PR and @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for
showing how to fix the bug.

	Minor improvements and fixes to the documentation.
Thanks @omarkohl [https://github.com/omarkohl] for the PR.

	Fix --fixtures to show all fixture definitions as opposed to just
one per fixture name.
Thanks to @hackebrot [https://github.com/hackebrot] for the PR.

pytest-2.9.1

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

Bruno Oliveira
Daniel Hahler
Dmitry Malinovsky
Florian Bruhin
Floris Bruynooghe
Matt Bachmann
Ronny Pfannschmidt
TomV
Vladimir Bolshakov
Zearin
palaviv

Happy testing,
The py.test Development Team

2.9.1 (compared to 2.9.0)

Bug Fixes

	Improve error message when a plugin fails to load.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix (#1178 [https://github.com/pytest-dev/pytest/issues/1178]):
pytest.fail with non-ascii characters raises an internal pytest error.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix (#469 [https://github.com/pytest-dev/pytest/issues/469]): junit parses report.nodeid incorrectly, when params IDs
contain ::. Thanks @tomviner [https://github.com/tomviner] for the PR (#1431 [https://github.com/pytest-dev/pytest/pull/1431]).

	Fix (#578 [https://github.com/pytest-dev/pytest/issues/578]): SyntaxErrors
containing non-ascii lines at the point of failure generated an internal
py.test error.
Thanks @asottile [https://github.com/asottile] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix (#1437 [https://github.com/pytest-dev/pytest/issues/1437]): When passing in a bytestring regex pattern to parameterize
attempt to decode it as utf-8 ignoring errors.

	Fix (#649 [https://github.com/pytest-dev/pytest/issues/649]): parametrized test nodes cannot be specified to run on the command line.

pytest-2.9.0

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

Anatoly Bubenkov
Bruno Oliveira
Buck Golemon
David Vierra
Florian Bruhin
Galaczi Endre
Georgy Dyuldin
Lukas Bednar
Luke Murphy
Marcin Biernat
Matt Williams
Michael Aquilina
Raphael Pierzina
Ronny Pfannschmidt
Ryan Wooden
Tiemo Kieft
TomV
holger krekel
jab

Happy testing,
The py.test Development Team

2.9.0 (compared to 2.8.7)

New Features

	New pytest.mark.skip mark, which unconditionally skips marked tests.
Thanks @MichaelAquilina [https://github.com/MichaelAquilina] for the complete PR (#1040 [https://github.com/pytest-dev/pytest/pull/1040]).

	--doctest-glob may now be passed multiple times in the command-line.
Thanks @jab [https://github.com/jab] and @nicoddemus [https://github.com/nicoddemus] for the PR.

	New -rp and -rP reporting options give the summary and full output
of passing tests, respectively. Thanks to @codewarrior0 [https://github.com/codewarrior0] for the PR.

	pytest.mark.xfail now has a strict option which makes XPASS
tests to fail the test suite, defaulting to False. There’s also a
xfail_strict ini option that can be used to configure it project-wise.
Thanks @rabbbit [https://github.com/rabbbit] for the request and @nicoddemus [https://github.com/nicoddemus] for the PR (#1355 [https://github.com/pytest-dev/pytest/pull/1355]).

	Parser.addini now supports options of type bool. Thanks
@nicoddemus [https://github.com/nicoddemus] for the PR.

	New ALLOW_BYTES doctest option strips b prefixes from byte strings
in doctest output (similar to ALLOW_UNICODE).
Thanks @jaraco [https://github.com/jaraco] for the request and @nicoddemus [https://github.com/nicoddemus] for the PR (#1287 [https://github.com/pytest-dev/pytest/pull/1287]).

	give a hint on KeyboardInterrupt to use the –fulltrace option to show the errors,
this fixes #1366 [https://github.com/pytest-dev/pytest/issues/1366].
Thanks to @hpk42 [https://github.com/hpk42] for the report and @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the PR.

	catch IndexError exceptions when getting exception source location. This fixes
pytest internal error for dynamically generated code (fixtures and tests)
where source lines are fake by intention

Changes

	Important: py.code [https://pylib.readthedocs.io/en/latest/code.html] has been
merged into the pytest repository as pytest._code. This decision
was made because py.code had very few uses outside pytest and the
fact that it was in a different repository made it difficult to fix bugs on
its code in a timely manner. The team hopes with this to be able to better
refactor out and improve that code.
This change shouldn’t affect users, but it is useful to let users aware
if they encounter any strange behavior.

Keep in mind that the code for pytest._code is private and
experimental, so you definitely should not import it explicitly!

Please note that the original py.code is still available in
pylib [https://pylib.readthedocs.io].

	pytest_enter_pdb now optionally receives the pytest config object.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Removed code and documentation for Python 2.5 or lower versions,
including removal of the obsolete _pytest.assertion.oldinterpret module.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR (#1226 [https://github.com/pytest-dev/pytest/pull/1226]).

	Comparisons now always show up in full when CI or BUILD_NUMBER is
found in the environment, even when -vv isn’t used.
Thanks @The-Compiler [https://github.com/The-Compiler] for the PR.

	--lf and --ff now support long names: --last-failed and
--failed-first respectively.
Thanks @MichaelAquilina [https://github.com/MichaelAquilina] for the PR.

	Added expected exceptions to pytest.raises fail message

	Collection only displays progress (“collecting X items”) when in a terminal.
This avoids cluttering the output when using --color=yes to obtain
colors in CI integrations systems (#1397 [https://github.com/pytest-dev/pytest/issues/1397]).

Bug Fixes

	The -s and -c options should now work under xdist;
Config.fromdictargs now represents its input much more faithfully.
Thanks to @bukzor [https://github.com/bukzor] for the complete PR (#680 [https://github.com/pytest-dev/pytest/issues/680]).

	Fix (#1290 [https://github.com/pytest-dev/pytest/pull/1290]): support Python 3.5’s @ operator in assertion rewriting.
Thanks @Shinkenjoe [https://github.com/Shinkenjoe] for report with test case and @tomviner [https://github.com/tomviner] for the PR.

	Fix formatting utf-8 explanation messages (#1379 [https://github.com/pytest-dev/pytest/issues/1379]).
Thanks @biern [https://github.com/biern] for the PR.

	Fix traceback style docs [https://pytest.org/latest/usage.html#modifying-python-traceback-printing] to describe all of the available options
(auto/long/short/line/native/no), with auto being the default since v2.6.
Thanks @hackebrot [https://github.com/hackebrot] for the PR.

	Fix (#1422 [https://github.com/pytest-dev/pytest/issues/1422]): junit record_xml_property doesn’t allow multiple records
with same name.

pytest-2.8.7

This is a hotfix release to solve a regression
in the builtin monkeypatch plugin that got introduced in 2.8.6.

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is supposed to be drop-in compatible to 2.8.5.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

Ronny Pfannschmidt

Happy testing,
The py.test Development Team

2.8.7 (compared to 2.8.6)

	fix #1338: use predictable object resolution for monkeypatch

pytest-2.8.6

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is supposed to be drop-in compatible to 2.8.5.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

AMiT Kumar
Bruno Oliveira
Erik M. Bray
Florian Bruhin
Georgy Dyuldin
Jeff Widman
Kartik Singhal
Loïc Estève
Manu Phatak
Peter Demin
Rick van Hattem
Ronny Pfannschmidt
Ulrich Petri
foxx

Happy testing,
The py.test Development Team

2.8.6 (compared to 2.8.5)

	fix #1259: allow for double nodeids in junitxml,
this was a regression failing plugins combinations
like pytest-pep8 + pytest-flakes

	Workaround for exception that occurs in pyreadline when using
--pdb with standard I/O capture enabled.
Thanks Erik M. Bray for the PR.

	fix #900: Better error message in case the target of a monkeypatch call
raises an ImportError.

	fix #1292: monkeypatch calls (setattr, setenv, etc.) are now O(1).
Thanks David R. MacIver for the report and Bruno Oliveira for the PR.

	fix #1223: captured stdout and stderr are now properly displayed before
entering pdb when --pdb is used instead of being thrown away.
Thanks Cal Leeming for the PR.

	fix #1305: pytest warnings emitted during pytest_terminal_summary are now
properly displayed.
Thanks Ionel Maries Cristian for the report and Bruno Oliveira for the PR.

	fix #628: fixed internal UnicodeDecodeError when doctests contain unicode.
Thanks Jason R. Coombs for the report and Bruno Oliveira for the PR.

	fix #1334: Add captured stdout to jUnit XML report on setup error.
Thanks Georgy Dyuldin for the PR.

pytest-2.8.5

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is supposed to be drop-in compatible to 2.8.4.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

Alex Gaynor
aselus-hub
Bruno Oliveira
Ronny Pfannschmidt

Happy testing,
The py.test Development Team

2.8.5 (compared to 2.8.4)

	fix #1243: fixed issue where class attributes injected during collection could break pytest.
PR by Alexei Kozlenok, thanks Ronny Pfannschmidt and Bruno Oliveira for the review and help.

	fix #1074: precompute junitxml chunks instead of storing the whole tree in objects
Thanks Bruno Oliveira for the report and Ronny Pfannschmidt for the PR

	fix #1238: fix pytest.deprecated_call() receiving multiple arguments
(Regression introduced in 2.8.4). Thanks Alex Gaynor for the report and
Bruno Oliveira for the PR.

pytest-2.8.4

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is supposed to be drop-in compatible to 2.8.2.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

Bruno Oliveira
Florian Bruhin
Jeff Widman
Mehdy Khoshnoody
Nicholas Chammas
Ronny Pfannschmidt
Tim Chan

Happy testing,
The py.test Development Team

2.8.4 (compared to 2.8.3)

	fix #1190: deprecated_call() now works when the deprecated
function has been already called by another test in the same
module. Thanks Mikhail Chernykh for the report and Bruno Oliveira for the
PR.

	fix #1198: --pastebin option now works on Python 3. Thanks
Mehdy Khoshnoody for the PR.

	fix #1219: --pastebin now works correctly when captured output contains
non-ascii characters. Thanks Bruno Oliveira for the PR.

	fix #1204: another error when collecting with a nasty __getattr__().
Thanks Florian Bruhin for the PR.

	fix the summary printed when no tests did run.
Thanks Florian Bruhin for the PR.

	a number of documentation modernizations wrt good practices.
Thanks Bruno Oliveira for the PR.

pytest-2.8.3: bug fixes

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is supposed to be drop-in compatible to 2.8.2.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

Bruno Oliveira
Florian Bruhin
Gabe Hollombe
Gabriel Reis
Hartmut Goebel
John Vandenberg
Lee Kamentsky
Michael Birtwell
Raphael Pierzina
Ronny Pfannschmidt
William Martin Stewart

Happy testing,
The py.test Development Team

2.8.3 (compared to 2.8.2)

	fix #1169: add __name__ attribute to testcases in TestCaseFunction to
support the @unittest.skip decorator on functions and methods.
Thanks Lee Kamentsky for the PR.

	fix #1035: collecting tests if test module level obj has __getattr__().
Thanks Suor for the report and Bruno Oliveira / Tom Viner for the PR.

	fix #331: don’t collect tests if their failure cannot be reported correctly
e.g. they are a callable instance of a class.

	fix #1133: fixed internal error when filtering tracebacks where one entry
belongs to a file which is no longer available.
Thanks Bruno Oliveira for the PR.

	enhancement made to highlight in red the name of the failing tests so
they stand out in the output.
Thanks Gabriel Reis for the PR.

	add more talks to the documentation

	extend documentation on the –ignore cli option

	use pytest-runner for setuptools integration

	minor fixes for interaction with OS X El Capitan system integrity protection (thanks Florian)

pytest-2.8.2: bug fixes

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is supposed to be drop-in compatible to 2.8.1.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

Bruno Oliveira
Demian Brecht
Florian Bruhin
Ionel Cristian Mărieș
Raphael Pierzina
Ronny Pfannschmidt
holger krekel

Happy testing,
The py.test Development Team

2.8.2 (compared to 2.7.2)

	fix #1085: proper handling of encoding errors when passing encoded byte
strings to pytest.parametrize in Python 2.
Thanks Themanwithoutaplan for the report and Bruno Oliveira for the PR.

	fix #1087: handling SystemError when passing empty byte strings to
pytest.parametrize in Python 3.
Thanks Paul Kehrer for the report and Bruno Oliveira for the PR.

	fix #995: fixed internal error when filtering tracebacks where one entry
was generated by an exec() statement.
Thanks Daniel Hahler, Ashley C Straw, Philippe Gauthier and Pavel Savchenko
for contributing and Bruno Oliveira for the PR.

pytest-2.7.2: bug fixes

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is supposed to be drop-in compatible to 2.7.1.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

Bruno Oliveira
Floris Bruynooghe
Punyashloka Biswal
Aron Curzon
Benjamin Peterson
Thomas De Schampheleire
Edison Gustavo Muenz
Holger Krekel

Happy testing,
The py.test Development Team

2.7.2 (compared to 2.7.1)

	fix issue767: pytest.raises value attribute does not contain the exception
instance on Python 2.6. Thanks Eric Siegerman for providing the test
case and Bruno Oliveira for PR.

	Automatically create directory for junitxml and results log.
Thanks Aron Curzon.

	fix issue713: JUnit XML reports for doctest failures.
Thanks Punyashloka Biswal.

	fix issue735: assertion failures on debug versions of Python 3.4+
Thanks Benjamin Peterson.

	fix issue114: skipif marker reports to internal skipping plugin;
Thanks Floris Bruynooghe for reporting and Bruno Oliveira for the PR.

	fix issue748: unittest.SkipTest reports to internal pytest unittest plugin.
Thanks Thomas De Schampheleire for reporting and Bruno Oliveira for the PR.

	fix issue718: failed to create representation of sets containing unsortable
elements in python 2. Thanks Edison Gustavo Muenz

	fix issue756, fix issue752 (and similar issues): depend on py-1.4.29
which has a refined algorithm for traceback generation.

pytest-2.7.1: bug fixes

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is supposed to be drop-in compatible to 2.7.0.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed to this release, among them:

Bruno Oliveira
Holger Krekel
Ionel Maries Cristian
Floris Bruynooghe

Happy testing,
The py.test Development Team

2.7.1 (compared to 2.7.0)

	fix issue731: do not get confused by the braces which may be present
and unbalanced in an object’s repr while collapsing False
explanations. Thanks Carl Meyer for the report and test case.

	fix issue553: properly handling inspect.getsourcelines failures in
FixtureLookupError which would lead to an internal error,
obfuscating the original problem. Thanks talljosh for initial
diagnose/patch and Bruno Oliveira for final patch.

	fix issue660: properly report scope-mismatch-access errors
independently from ordering of fixture arguments. Also
avoid the pytest internal traceback which does not provide
information to the user. Thanks Holger Krekel.

	streamlined and documented release process. Also all versions
(in setup.py and documentation generation) are now read
from _pytest/__init__.py. Thanks Holger Krekel.

	fixed docs to remove the notion that yield-fixtures are experimental.
They are here to stay :) Thanks Bruno Oliveira.

	Support building wheels by using environment markers for the
requirements. Thanks Ionel Maries Cristian.

	fixed regression to 2.6.4 which surfaced e.g. in lost stdout capture printing
when tests raised SystemExit. Thanks Holger Krekel.

	reintroduced _pytest fixture of the pytester plugin which is used
at least by pytest-xdist.

pytest-2.7.0: fixes, features, speed improvements

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is supposed to be drop-in compatible to 2.6.X.

See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed, among them:

Anatoly Bubenkoff
Floris Bruynooghe
Brianna Laugher
Eric Siegerman
Daniel Hahler
Charles Cloud
Tom Viner
Holger Peters
Ldiary Translations
almarklein

have fun,
holger krekel

2.7.0 (compared to 2.6.4)

	fix issue435: make reload() work when assert rewriting is active.
Thanks Daniel Hahler.

	fix issue616: conftest.py files and their contained fixutres are now
properly considered for visibility, independently from the exact
current working directory and test arguments that are used.
Many thanks to Eric Siegerman and his PR235 which contains
systematic tests for conftest visibility and now passes.
This change also introduces the concept of a rootdir which
is printed as a new pytest header and documented in the pytest
customize web page.

	change reporting of “diverted” tests, i.e. tests that are collected
in one file but actually come from another (e.g. when tests in a test class
come from a base class in a different file). We now show the nodeid
and indicate via a postfix the other file.

	add ability to set command line options by environment variable PYTEST_ADDOPTS.

	added documentation on the new pytest-dev teams on bitbucket and
github. See https://pytest.org/latest/contributing.html .
Thanks to Anatoly for pushing and initial work on this.

	fix issue650: new option --docttest-ignore-import-errors which
will turn import errors in doctests into skips. Thanks Charles Cloud
for the complete PR.

	fix issue655: work around different ways that cause python2/3
to leak sys.exc_info into fixtures/tests causing failures in 3rd party code

	fix issue615: assertion rewriting did not correctly escape % signs
when formatting boolean operations, which tripped over mixing
booleans with modulo operators. Thanks to Tom Viner for the report,
triaging and fix.

	implement issue351: add ability to specify parametrize ids as a callable
to generate custom test ids. Thanks Brianna Laugher for the idea and
implementation.

	introduce and document new hookwrapper mechanism useful for plugins
which want to wrap the execution of certain hooks for their purposes.
This supersedes the undocumented __multicall__ protocol which
pytest itself and some external plugins use. Note that pytest-2.8
is scheduled to drop supporting the old __multicall__
and only support the hookwrapper protocol.

	majorly speed up invocation of plugin hooks

	use hookwrapper mechanism in builtin pytest plugins.

	add a doctest ini option for doctest flags, thanks Holger Peters.

	add note to docs that if you want to mark a parameter and the
parameter is a callable, you also need to pass in a reason to disambiguate
it from the “decorator” case. Thanks Tom Viner.

	“python_classes” and “python_functions” options now support glob-patterns
for test discovery, as discussed in issue600. Thanks Ldiary Translations.

	allow to override parametrized fixtures with non-parametrized ones and vice versa (bubenkoff).

	fix issue463: raise specific error for ‘parameterize’ misspelling (pfctdayelise).

	On failure, the sys.last_value, sys.last_type and
sys.last_traceback are set, so that a user can inspect the error
via postmortem debugging (almarklein).

pytest-2.6.3: fixes and little improvements

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is drop-in compatible to 2.5.2 and 2.6.X.
See below for the changes and see docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed, among them:

Floris Bruynooghe
Oleg Sinyavskiy
Uwe Schmitt
Charles Cloud
Wolfgang Schnerring

have fun,
holger krekel

Changes 2.6.3

	fix issue575: xunit-xml was reporting collection errors as failures
instead of errors, thanks Oleg Sinyavskiy.

	fix issue582: fix setuptools example, thanks Laszlo Papp and Ronny
Pfannschmidt.

	Fix infinite recursion bug when pickling capture.EncodedFile, thanks
Uwe Schmitt.

	fix issue589: fix bad interaction with numpy and others when showing
exceptions. Check for precise “maximum recursion depth exceed” exception
instead of presuming any RuntimeError is that one (implemented in py
dep). Thanks Charles Cloud for analysing the issue.

	fix conftest related fixture visibility issue: when running with a
CWD outside of a test package pytest would get fixture discovery wrong.
Thanks to Wolfgang Schnerring for figuring out a reproducible example.

	Introduce pytest_enter_pdb hook (needed e.g. by pytest_timeout to cancel the
timeout when interactively entering pdb). Thanks Wolfgang Schnerring.

	check xfail/skip also with non-python function test items. Thanks
Floris Bruynooghe.

pytest-2.6.2: few fixes and cx_freeze support

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
This release is drop-in compatible to 2.5.2 and 2.6.X. It also
brings support for including pytest with cx_freeze or similar
freezing tools into your single-file app distribution. For details
see the CHANGELOG below.

See docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed, among them:

Floris Bruynooghe
Benjamin Peterson
Bruno Oliveira

have fun,
holger krekel

2.6.2

	Added function pytest.freeze_includes(), which makes it easy to embed
pytest into executables using tools like cx_freeze.
See docs for examples and rationale. Thanks Bruno Oliveira.

	Improve assertion rewriting cache invalidation precision.

	fixed issue561: adapt autouse fixture example for python3.

	fixed issue453: assertion rewriting issue with __repr__ containing
“n{“, “n}” and “n~”.

	fix issue560: correctly display code if an “else:” or “finally:” is
followed by statements on the same line.

	Fix example in monkeypatch documentation, thanks t-8ch.

	fix issue572: correct tmpdir doc example for python3.

	Do not mark as universal wheel because Python 2.6 is different from
other builds due to the extra argparse dependency. Fixes issue566.
Thanks sontek.

pytest-2.6.1: fixes and new xfail feature

pytest is a mature Python testing tool with more than a 1100 tests
against itself, passing on many different interpreters and platforms.
The 2.6.1 release is drop-in compatible to 2.5.2 and actually fixes some
regressions introduced with 2.6.0. It also brings a little feature
to the xfail marker which now recognizes expected exceptions,
see the CHANGELOG below.

See docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed, among them:

Floris Bruynooghe
Bruno Oliveira
Nicolas Delaby

have fun,
holger krekel

Changes 2.6.1

	No longer show line numbers in the –verbose output, the output is now
purely the nodeid. The line number is still shown in failure reports.
Thanks Floris Bruynooghe.

	fix issue437 where assertion rewriting could cause pytest-xdist slaves
to collect different tests. Thanks Bruno Oliveira.

	fix issue555: add “errors” attribute to capture-streams to satisfy
some distutils and possibly other code accessing sys.stdout.errors.

	fix issue547 capsys/capfd also work when output capturing (“-s”) is disabled.

	address issue170: allow pytest.mark.xfail(…) to specify expected exceptions via
an optional “raises=EXC” argument where EXC can be a single exception
or a tuple of exception classes. Thanks David Mohr for the complete
PR.

	fix integration of pytest with unittest.mock.patch decorator when
it uses the “new” argument. Thanks Nicolas Delaby for test and PR.

	fix issue with detecting conftest files if the arguments contain
“::” node id specifications (copy pasted from “-v” output)

	fix issue544 by only removing “@NUM” at the end of “::” separated parts
and if the part has a “.py” extension

	don’t use py.std import helper, rather import things directly.
Thanks Bruno Oliveira.

pytest-2.6.0: shorter tracebacks, new warning system, test runner compat

pytest is a mature Python testing tool with more than a 1000 tests
against itself, passing on many different interpreters and platforms.

The 2.6.0 release should be drop-in backward compatible to 2.5.2 and
fixes a number of bugs and brings some new features, mainly:

	shorter tracebacks by default: only the first (test function) entry
and the last (failure location) entry are shown, the ones between
only in “short” format. Use --tb=long to get back the old
behaviour of showing “long” entries everywhere.

	a new warning system which reports oddities during collection
and execution. For example, ignoring collecting Test* classes with an
__init__ now produces a warning.

	various improvements to nose/mock/unittest integration

Note also that 2.6.0 departs with the “zero reported bugs” policy
because it has been too hard to keep up with it, unfortunately.
Instead we are for now rather bound to work on “upvoted” issues in
the https://bitbucket.org/pytest-dev/pytest/issues?status=new&status=open&sort=-votes
issue tracker.

See docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to all who contributed, among them:

Benjamin Peterson
Jurko Gospodnetić
Floris Bruynooghe
Marc Abramowitz
Marc Schlaich
Trevor Bekolay
Bruno Oliveira
Alex Groenholm

have fun,
holger krekel

2.6.0

	fix issue537: Avoid importing old assertion reinterpretation code by default.
Thanks Benjamin Peterson.

	fix issue364: shorten and enhance tracebacks representation by default.
The new “–tb=auto” option (default) will only display long tracebacks
for the first and last entry. You can get the old behaviour of printing
all entries as long entries with “–tb=long”. Also short entries by
default are now printed very similarly to “–tb=native” ones.

	fix issue514: teach assertion reinterpretation about private class attributes
Thanks Benjamin Peterson.

	change -v output to include full node IDs of tests. Users can copy
a node ID from a test run, including line number, and use it as a
positional argument in order to run only a single test.

	fix issue 475: fail early and comprehensible if calling
pytest.raises with wrong exception type.

	fix issue516: tell in getting-started about current dependencies.

	cleanup setup.py a bit and specify supported versions. Thanks Jurko
Gospodnetic for the PR.

	change XPASS colour to yellow rather then red when tests are run
with -v.

	fix issue473: work around mock putting an unbound method into a class
dict when double-patching.

	fix issue498: if a fixture finalizer fails, make sure that
the fixture is still invalidated.

	fix issue453: the result of the pytest_assertrepr_compare hook now gets
it’s newlines escaped so that format_exception does not blow up.

	internal new warning system: pytest will now produce warnings when
it detects oddities in your test collection or execution.
Warnings are ultimately sent to a new pytest_logwarning hook which is
currently only implemented by the terminal plugin which displays
warnings in the summary line and shows more details when -rw (report on
warnings) is specified.

	change skips into warnings for test classes with an __init__ and
callables in test modules which look like a test but are not functions.

	fix issue436: improved finding of initial conftest files from command
line arguments by using the result of parse_known_args rather than
the previous flaky heuristics. Thanks Marc Abramowitz for tests
and initial fixing approaches in this area.

	fix issue #479: properly handle nose/unittest(2) SkipTest exceptions
during collection/loading of test modules. Thanks to Marc Schlaich
for the complete PR.

	fix issue490: include pytest_load_initial_conftests in documentation
and improve docstring.

	fix issue472: clarify that pytest.config.getvalue() cannot work
if it’s triggered ahead of command line parsing.

	merge PR123: improved integration with mock.patch decorator on tests.

	fix issue412: messing with stdout/stderr FD-level streams is now
captured without crashes.

	fix issue483: trial/py33 works now properly. Thanks Daniel Grana for PR.

	improve example for pytest integration with “python setup.py test”
which now has a generic “-a” or “–pytest-args” option where you
can pass additional options as a quoted string. Thanks Trevor Bekolay.

	simplified internal capturing mechanism and made it more robust
against tests or setups changing FD1/FD2, also better integrated
now with pytest.pdb() in single tests.

	improvements to pytest’s own test-suite leakage detection, courtesy of PRs
from Marc Abramowitz

	fix issue492: avoid leak in test_writeorg. Thanks Marc Abramowitz.

	fix issue493: don’t run tests in doc directory with python setup.py test
(use tox -e doctesting for that)

	fix issue486: better reporting and handling of early conftest loading failures

	some cleanup and simplification of internal conftest handling.

	work a bit harder to break reference cycles when catching exceptions.
Thanks Jurko Gospodnetic.

	fix issue443: fix skip examples to use proper comparison. Thanks Alex
Groenholm.

	support nose-style __test__ attribute on modules, classes and
functions, including unittest-style Classes. If set to False, the
test will not be collected.

	fix issue512: show “<notset>” for arguments which might not be set
in monkeypatch plugin. Improves output in documentation.

	avoid importing “py.test” (an old alias module for “pytest”)

pytest-2.5.2: fixes

pytest is a mature Python testing tool with more than a 1000 tests
against itself, passing on many different interpreters and platforms.

The 2.5.2 release fixes a few bugs with two maybe-bugs remaining and
actively being worked on (and waiting for the bug reporter’s input).
We also have a new contribution guide thanks to Piotr Banaszkiewicz
and others.

See docs at:

http://pytest.org

As usual, you can upgrade from pypi via:

pip install -U pytest

Thanks to the following people who contributed to this release:

Anatoly Bubenkov
Ronny Pfannschmidt
Floris Bruynooghe
Bruno Oliveira
Andreas Pelme
Jurko Gospodnetić
Piotr Banaszkiewicz
Simon Liedtke
lakka
Lukasz Balcerzak
Philippe Muller
Daniel Hahler

have fun,
holger krekel

2.5.2

	fix issue409 – better interoperate with cx_freeze by not
trying to import from collections.abc which causes problems
for py27/cx_freeze. Thanks Wolfgang L. for reporting and tracking it down.

	fixed docs and code to use “pytest” instead of “py.test” almost everywhere.
Thanks Jurko Gospodnetic for the complete PR.

	fix issue425: mention at end of “py.test -h” that –markers
and –fixtures work according to specified test path (or current dir)

	fix issue413: exceptions with unicode attributes are now printed
correctly also on python2 and with pytest-xdist runs. (the fix
requires py-1.4.20)

	copy, cleanup and integrate py.io capture
from pylib 1.4.20.dev2 (rev 13d9af95547e)

	address issue416: clarify docs as to conftest.py loading semantics

	fix issue429: comparing byte strings with non-ascii chars in assert
expressions now work better. Thanks Floris Bruynooghe.

	make capfd/capsys.capture private, its unused and shouldn’t be exposed

pytest-2.5.1: fixes and new home page styling

pytest is a mature Python testing tool with more than a 1000 tests
against itself, passing on many different interpreters and platforms.

The 2.5.1 release maintains the “zero-reported-bugs” promise by fixing
the three bugs reported since the last release a few days ago. It also
features a new home page styling implemented by Tobias Bieniek, based on
the flask theme from Armin Ronacher:

http://pytest.org

If you have anything more to improve styling and docs,
we’d be very happy to merge further pull requests.

On the coding side, the release also contains a little enhancement to
fixture decorators allowing to directly influence generation of test
ids, thanks to Floris Bruynooghe. Other thanks for helping with
this release go to Anatoly Bubenkoff and Ronny Pfannschmidt.

As usual, you can upgrade from pypi via:

pip install -U pytest

have fun and a nice remaining “bug-free” time of the year :)
holger krekel

2.5.1

	merge new documentation styling PR from Tobias Bieniek.

	fix issue403: allow parametrize of multiple same-name functions within
a collection node. Thanks Andreas Kloeckner and Alex Gaynor for reporting
and analysis.

	Allow parameterized fixtures to specify the ID of the parameters by
adding an ids argument to pytest.fixture() and pytest.yield_fixture().
Thanks Floris Bruynooghe.

	fix issue404 by always using the binary xml escape in the junitxml
plugin. Thanks Ronny Pfannschmidt.

	fix issue407: fix addoption docstring to point to argparse instead of
optparse. Thanks Daniel D. Wright.

pytest-2.5.0: now down to ZERO reported bugs!

pytest-2.5.0 is a big fixing release, the result of two community bug
fixing days plus numerous additional works from many people and
reporters. The release should be fully compatible to 2.4.2, existing
plugins and test suites. We aim at maintaining this level of ZERO reported
bugs because it’s no fun if your testing tool has bugs, is it? Under a
condition, though: when submitting a bug report please provide
clear information about the circumstances and a simple example which
reproduces the problem.

The issue tracker is of course not empty now. We have many remaining
“enhacement” issues which we’ll hopefully can tackle in 2014 with your
help.

For those who use older Python versions, please note that pytest is not
automatically tested on python2.5 due to virtualenv, setuptools and tox
not supporting it anymore. Manual verification shows that it mostly
works fine but it’s not going to be part of the automated release
process and thus likely to break in the future.

As usual, current docs are at

http://pytest.org

and you can upgrade from pypi via:

pip install -U pytest

Particular thanks for helping with this release go to Anatoly Bubenkoff,
Floris Bruynooghe, Marc Abramowitz, Ralph Schmitt, Ronny Pfannschmidt,
Donald Stufft, James Lan, Rob Dennis, Jason R. Coombs, Mathieu Agopian,
Virgil Dupras, Bruno Oliveira, Alex Gaynor and others.

have fun,
holger krekel

2.5.0

	dropped python2.5 from automated release testing of pytest itself
which means it’s probably going to break soon (but still works
with this release we believe).

	simplified and fixed implementation for calling finalizers when
parametrized fixtures or function arguments are involved. finalization
is now performed lazily at setup time instead of in the “teardown phase”.
While this might sound odd at first, it helps to ensure that we are
correctly handling setup/teardown even in complex code. User-level code
should not be affected unless it’s implementing the pytest_runtest_teardown
hook and expecting certain fixture instances are torn down within (very
unlikely and would have been unreliable anyway).

	PR90: add –color=yes|no|auto option to force terminal coloring
mode (“auto” is default). Thanks Marc Abramowitz.

	fix issue319 - correctly show unicode in assertion errors. Many
thanks to Floris Bruynooghe for the complete PR. Also means
we depend on py>=1.4.19 now.

	fix issue396 - correctly sort and finalize class-scoped parametrized
tests independently from number of methods on the class.

	refix issue323 in a better way – parametrization should now never
cause Runtime Recursion errors because the underlying algorithm
for re-ordering tests per-scope/per-fixture is not recursive
anymore (it was tail-call recursive before which could lead
to problems for more than >966 non-function scoped parameters).

	fix issue290 - there is preliminary support now for parametrizing
with repeated same values (sometimes useful to test if calling
a second time works as with the first time).

	close issue240 - document precisely how pytest module importing
works, discuss the two common test directory layouts, and how it
interacts with PEP420-namespace packages.

	fix issue246 fix finalizer order to be LIFO on independent fixtures
depending on a parametrized higher-than-function scoped fixture.
(was quite some effort so please bear with the complexity of this sentence :)
Thanks Ralph Schmitt for the precise failure example.

	fix issue244 by implementing special index for parameters to only use
indices for paramentrized test ids

	fix issue287 by running all finalizers but saving the exception
from the first failing finalizer and re-raising it so teardown will
still have failed. We reraise the first failing exception because
it might be the cause for other finalizers to fail.

	fix ordering when mock.patch or other standard decorator-wrappings
are used with test methods. This fixues issue346 and should
help with random “xdist” collection failures. Thanks to
Ronny Pfannschmidt and Donald Stufft for helping to isolate it.

	fix issue357 - special case “-k” expressions to allow for
filtering with simple strings that are not valid python expressions.
Examples: “-k 1.3” matches all tests parametrized with 1.3.
“-k None” filters all tests that have “None” in their name
and conversely “-k ‘not None’”.
Previously these examples would raise syntax errors.

	fix issue384 by removing the trial support code
since the unittest compat enhancements allow
trial to handle it on its own

	don’t hide an ImportError when importing a plugin produces one.
fixes issue375.

	fix issue275 - allow usefixtures and autouse fixtures
for running doctest text files.

	fix issue380 by making –resultlog only rely on longrepr instead
of the “reprcrash” attribute which only exists sometimes.

	address issue122: allow @pytest.fixture(params=iterator) by exploding
into a list early on.

	fix pexpect-3.0 compatibility for pytest’s own tests.
(fixes issue386)

	allow nested parametrize-value markers, thanks James Lan for the PR.

	fix unicode handling with new monkeypatch.setattr(import_path, value)
API. Thanks Rob Dennis. Fixes issue371.

	fix unicode handling with junitxml, fixes issue368.

	In assertion rewriting mode on Python 2, fix the detection of coding
cookies. See issue #330.

	make “–runxfail” turn imperative pytest.xfail calls into no ops
(it already did neutralize pytest.mark.xfail markers)

	refine pytest / pkg_resources interactions: The AssertionRewritingHook
PEP302 compliant loader now registers itself with setuptools/pkg_resources
properly so that the pkg_resources.resource_stream method works properly.
Fixes issue366. Thanks for the investigations and full PR to Jason R. Coombs.

	pytestconfig fixture is now session-scoped as it is the same object during the
whole test run. Fixes issue370.

	avoid one surprising case of marker malfunction/confusion:

@pytest.mark.some(lambda arg: ...)
def test_function():

would not work correctly because pytest assumes @pytest.mark.some
gets a function to be decorated already. We now at least detect if this
arg is a lambda and thus the example will work. Thanks Alex Gaynor
for bringing it up.

	xfail a test on pypy that checks wrong encoding/ascii (pypy does
not error out). fixes issue385.

	internally make varnames() deal with classes’s __init__,
although it’s not needed by pytest itself atm. Also
fix caching. Fixes issue376.

	fix issue221 - handle importing of namespace-package with no
__init__.py properly.

	refactor internal FixtureRequest handling to avoid monkeypatching.
One of the positive user-facing effects is that the “request” object
can now be used in closures.

	fixed version comparison in pytest.importskip(modname, minverstring)

	fix issue377 by clarifying in the nose-compat docs that pytest
does not duplicate the unittest-API into the “plain” namespace.

	fix verbose reporting for @mock’d test functions

pytest-2.4.2: colorama on windows, plugin/tmpdir fixes

pytest-2.4.2 is another bug-fixing release:

	on Windows require colorama and a newer py lib so that py.io.TerminalWriter()
now uses colorama instead of its own ctypes hacks. (fixes issue365)
thanks Paul Moore for bringing it up.

	fix “-k” matching of tests where “repr” and “attr” and other names would
cause wrong matches because of an internal implementation quirk
(don’t ask) which is now properly implemented. fixes issue345.

	avoid tmpdir fixture to create too long filenames especially
when parametrization is used (issue354)

	fix pytest-pep8 and pytest-flakes / pytest interactions
(collection names in mark plugin was assuming an item always
has a function which is not true for those plugins etc.)
Thanks Andi Zeidler.

	introduce node.get_marker/node.add_marker API for plugins
like pytest-pep8 and pytest-flakes to avoid the messy
details of the node.keywords pseudo-dicts. Adapted
docs.

	remove attempt to “dup” stdout at startup as it’s icky.
the normal capturing should catch enough possibilities
of tests messing up standard FDs.

	add pluginmanager.do_configure(config) as a link to
config.do_configure() for plugin-compatibility

as usual, docs at http://pytest.org and upgrades via:

pip install -U pytest

have fun,
holger krekel

pytest-2.4.1: fixing three regressions compared to 2.3.5

pytest-2.4.1 is a quick follow up release to fix three regressions
compared to 2.3.5 before they hit more people:

	When using parser.addoption() unicode arguments to the
“type” keyword should also be converted to the respective types.
thanks Floris Bruynooghe, @dnozay. (fixes issue360 and issue362)

	fix dotted filename completion when using argcomplete
thanks Anthon van der Neuth. (fixes issue361)

	fix regression when a 1-tuple (“arg”,) is used for specifying
parametrization (the values of the parametrization were passed
nested in a tuple). Thanks Donald Stufft.

	also merge doc typo fixes, thanks Andy Dirnberger

as usual, docs at http://pytest.org and upgrades via:

pip install -U pytest

have fun,
holger krekel

pytest-2.4.0: new fixture features/hooks and bug fixes

The just released pytest-2.4.0 brings many improvements and numerous
bug fixes while remaining plugin- and test-suite compatible apart
from a few supposedly very minor incompatibilities. See below for
a full list of details. A few feature highlights:

	new yield-style fixtures pytest.yield_fixture [http://pytest.org/latest/yieldfixture.html], allowing to use
existing with-style context managers in fixture functions.

	improved pdb support: import pdb ; pdb.set_trace() now works
without requiring prior disabling of stdout/stderr capturing.
Also the --pdb options works now on collection and internal errors
and we introduced a new experimental hook for IDEs/plugins to
intercept debugging: pytest_exception_interact(node, call, report).

	shorter monkeypatch variant to allow specifying an import path as
a target, for example: monkeypatch.setattr("requests.get", myfunc)

	better unittest/nose compatibility: all teardown methods are now only
called if the corresponding setup method succeeded.

	integrate tab-completion on command line options if you
have argcomplete [https://pypi.org/project/argcomplete/]
configured.

	allow boolean expression directly with skipif/xfail
if a “reason” is also specified.

	a new hook pytest_load_initial_conftests allows plugins like
pytest-django [https://pypi.org/project/pytest-django/] to
influence the environment before conftest files import django.

	reporting: color the last line red or green depending if
failures/errors occurred or everything passed.

The documentation has been updated to accommodate the changes,
see http://pytest.org

To install or upgrade pytest:

pip install -U pytest # or
easy_install -U pytest

Many thanks to all who helped, including Floris Bruynooghe,
Brianna Laugher, Andreas Pelme, Anthon van der Neut, Anatoly Bubenkoff,
Vladimir Keleshev, Mathieu Agopian, Ronny Pfannschmidt, Christian
Theunert and many others.

may passing tests be with you,

holger krekel

Changes between 2.3.5 and 2.4

known incompatibilities:

	if calling –genscript from python2.7 or above, you only get a
standalone script which works on python2.7 or above. Use Python2.6
to also get a python2.5 compatible version.

	all xunit-style teardown methods (nose-style, pytest-style,
unittest-style) will not be called if the corresponding setup method failed,
see issue322 below.

	the pytest_plugin_unregister hook wasn’t ever properly called
and there is no known implementation of the hook - so it got removed.

	pytest.fixture-decorated functions cannot be generators (i.e. use
yield) anymore. This change might be reversed in 2.4.1 if it causes
unforeseen real-life issues. However, you can always write and return
an inner function/generator and change the fixture consumer to iterate
over the returned generator. This change was done in lieu of the new
pytest.yield_fixture decorator, see below.

new features:

	experimentally introduce a new pytest.yield_fixture decorator
which accepts exactly the same parameters as pytest.fixture but
mandates a yield statement instead of a return statement from
fixture functions. This allows direct integration with “with-style”
context managers in fixture functions and generally avoids registering
of finalization callbacks in favour of treating the “after-yield” as
teardown code. Thanks Andreas Pelme, Vladimir Keleshev, Floris
Bruynooghe, Ronny Pfannschmidt and many others for discussions.

	allow boolean expression directly with skipif/xfail
if a “reason” is also specified. Rework skipping documentation
to recommend “condition as booleans” because it prevents surprises
when importing markers between modules. Specifying conditions
as strings will remain fully supported.

	reporting: color the last line red or green depending if
failures/errors occurred or everything passed. thanks Christian
Theunert.

	make “import pdb ; pdb.set_trace()” work natively wrt capturing (no
“-s” needed anymore), making pytest.set_trace() a mere shortcut.

	fix issue181: –pdb now also works on collect errors (and
on internal errors) . This was implemented by a slight internal
refactoring and the introduction of a new hook
pytest_exception_interact hook (see next item).

	fix issue341: introduce new experimental hook for IDEs/terminals to
intercept debugging: pytest_exception_interact(node, call, report).

	new monkeypatch.setattr() variant to provide a shorter
invocation for patching out classes/functions from modules:

monkeypatch.setattr(“requests.get”, myfunc)

will replace the “get” function of the “requests” module with myfunc.

	fix issue322: tearDownClass is not run if setUpClass failed. Thanks
Mathieu Agopian for the initial fix. Also make all of pytest/nose
finalizer mimic the same generic behaviour: if a setupX exists and
fails, don’t run teardownX. This internally introduces a new method
“node.addfinalizer()” helper which can only be called during the setup
phase of a node.

	simplify pytest.mark.parametrize() signature: allow to pass a
CSV-separated string to specify argnames. For example:
pytest.mark.parametrize("input,expected", [(1,2), (2,3)])
works as well as the previous:
pytest.mark.parametrize(("input", "expected"), ...).

	add support for setUpModule/tearDownModule detection, thanks Brian Okken.

	integrate tab-completion on options through use of “argcomplete”.
Thanks Anthon van der Neut for the PR.

	change option names to be hyphen-separated long options but keep the
old spelling backward compatible. py.test -h will only show the
hyphenated version, for example “–collect-only” but “–collectonly”
will remain valid as well (for backward-compat reasons). Many thanks to
Anthon van der Neut for the implementation and to Hynek Schlawack for
pushing us.

	fix issue 308 - allow to mark/xfail/skip individual parameter sets
when parametrizing. Thanks Brianna Laugher.

	call new experimental pytest_load_initial_conftests hook to allow
3rd party plugins to do something before a conftest is loaded.

Bug fixes:

	fix issue358 - capturing options are now parsed more properly
by using a new parser.parse_known_args method.

	pytest now uses argparse instead of optparse (thanks Anthon) which
means that “argparse” is added as a dependency if installing into python2.6
environments or below.

	fix issue333: fix a case of bad unittest/pytest hook interaction.

	PR27: correctly handle nose.SkipTest during collection. Thanks
Antonio Cuni, Ronny Pfannschmidt.

	fix issue355: junitxml puts name=”pytest” attribute to testsuite tag.

	fix issue336: autouse fixture in plugins should work again.

	fix issue279: improve object comparisons on assertion failure
for standard datatypes and recognise collections.abc. Thanks to
Brianna Laugher and Mathieu Agopian.

	fix issue317: assertion rewriter support for the is_package method

	fix issue335: document py.code.ExceptionInfo() object returned
from pytest.raises(), thanks Mathieu Agopian.

	remove implicit distribute_setup support from setup.py.

	fix issue305: ignore any problems when writing pyc files.

	SO-17664702: call fixture finalizers even if the fixture function
partially failed (finalizers would not always be called before)

	fix issue320 - fix class scope for fixtures when mixed with
module-level functions. Thanks Anatloy Bubenkoff.

	you can specify “-q” or “-qq” to get different levels of “quieter”
reporting (thanks Katarzyna Jachim)

	fix issue300 - Fix order of conftest loading when starting py.test
in a subdirectory.

	fix issue323 - sorting of many module-scoped arg parametrizations

	make sessionfinish hooks execute with the same cwd-context as at
session start (helps fix plugin behaviour which write output files
with relative path such as pytest-cov)

	fix issue316 - properly reference collection hooks in docs

	fix issue 306 - cleanup of -k/-m options to only match markers/test
names/keywords respectively. Thanks Wouter van Ackooy.

	improved doctest counting for doctests in python modules –
files without any doctest items will not show up anymore
and doctest examples are counted as separate test items.
thanks Danilo Bellini.

	fix issue245 by depending on the released py-1.4.14
which fixes py.io.dupfile to work with files with no
mode. Thanks Jason R. Coombs.

	fix junitxml generation when test output contains control characters,
addressing issue267, thanks Jaap Broekhuizen

	fix issue338: honor –tb style for setup/teardown errors as well. Thanks Maho.

	fix issue307 - use yaml.safe_load in example, thanks Mark Eichin.

	better parametrize error messages, thanks Brianna Laugher

	pytest_terminal_summary(terminalreporter) hooks can now use
“.section(title)” and “.line(msg)” methods to print extra
information at the end of a test run.

pytest-2.3.5: bug fixes and little improvements

pytest-2.3.5 is a maintenance release with many bug fixes and little
improvements. See the changelog below for details. No backward
compatibility issues are foreseen and all plugins which worked with the
prior version are expected to work unmodified. Speaking of which, a
few interesting new plugins saw the light last month:

	pytest-instafail: show failure information while tests are running

	pytest-qt: testing of GUI applications written with QT/Pyside

	pytest-xprocess: managing external processes across test runs

	pytest-random: randomize test ordering

And several others like pytest-django saw maintenance releases.
For a more complete list, check out
https://pypi.org/search/?q=pytest

For general information see:

http://pytest.org/

To install or upgrade pytest:

pip install -U pytest # or
easy_install -U pytest

Particular thanks to Floris, Ronny, Benjamin and the many bug reporters
and fix providers.

may the fixtures be with you,
holger krekel

Changes between 2.3.4 and 2.3.5

	never consider a fixture function for test function collection

	allow re-running of test items / helps to fix pytest-reruntests plugin
and also help to keep less fixture/resource references alive

	put captured stdout/stderr into junitxml output even for passing tests
(thanks Adam Goucher)

	Issue 265 - integrate nose setup/teardown with setupstate
so it doesn’t try to teardown if it did not setup

	issue 271 - don’t write junitxml on slave nodes

	Issue 274 - don’t try to show full doctest example
when doctest does not know the example location

	issue 280 - disable assertion rewriting on buggy CPython 2.6.0

	inject “getfixture()” helper to retrieve fixtures from doctests,
thanks Andreas Zeidler

	issue 259 - when assertion rewriting, be consistent with the default
source encoding of ASCII on Python 2

	issue 251 - report a skip instead of ignoring classes with init

	issue250 unicode/str mixes in parametrization names and values now works

	issue257, assertion-triggered compilation of source ending in a
comment line doesn’t blow up in python2.5 (fixed through py>=1.4.13.dev6)

	fix –genscript option to generate standalone scripts that also
work with python3.3 (importer ordering)

	issue171 - in assertion rewriting, show the repr of some
global variables

	fix option help for “-k”

	move long description of distribution into README.rst

	improve docstring for metafunc.parametrize()

	fix bug where using capsys with pytest.set_trace() in a test
function would break when looking at capsys.readouterr()

	allow to specify prefixes starting with “_” when
customizing python_functions test discovery. (thanks Graham Horler)

	improve PYTEST_DEBUG tracing output by putting
extra data on a new lines with additional indent

	ensure OutcomeExceptions like skip/fail have initialized exception attributes

	issue 260 - don’t use nose special setup on plain unittest cases

	fix issue134 - print the collect errors that prevent running specified test items

	fix issue266 - accept unicode in MarkEvaluator expressions

pytest-2.3.4: stabilization, more flexible selection via “-k expr”

pytest-2.3.4 is a small stabilization release of the py.test tool
which offers uebersimple assertions, scalable fixture mechanisms
and deep customization for testing with Python. This release
comes with the following fixes and features:

	make “-k” option accept an expressions the same as with “-m” so that one
can write: -k “name1 or name2” etc. This is a slight usage incompatibility
if you used special syntax like “TestClass.test_method” which you now
need to write as -k “TestClass and test_method” to match a certain
method in a certain test class.

	allow to dynamically define markers via
item.keywords[…]=assignment integrating with “-m” option

	yielded test functions will now have autouse-fixtures active but
cannot accept fixtures as funcargs - it’s anyway recommended to
rather use the post-2.0 parametrize features instead of yield, see:
http://pytest.org/latest/example/parametrize.html

	fix autouse-issue where autouse-fixtures would not be discovered
if defined in an a/conftest.py file and tests in a/tests/test_some.py

	fix issue226 - LIFO ordering for fixture teardowns

	fix issue224 - invocations with >256 char arguments now work

	fix issue91 - add/discuss package/directory level setups in example

	fixes related to autouse discovery and calling

Thanks in particular to Thomas Waldmann for spotting and reporting issues.

See

http://pytest.org/

for general information. To install or upgrade pytest:

pip install -U pytest # or
easy_install -U pytest

best,
holger krekel

pytest-2.3.3: integration fixes, py24 support, */** shown in traceback

pytest-2.3.3 is another stabilization release of the py.test tool
which offers uebersimple assertions, scalable fixture mechanisms
and deep customization for testing with Python. Particularly,
this release provides:

	integration fixes and improvements related to flask, numpy, nose,
unittest, mock

	makes pytest work on py24 again (yes, people sometimes still need to use it)

	show *,** args in pytest tracebacks

Thanks to Manuel Jacob, Thomas Waldmann, Ronny Pfannschmidt, Pavel Repin
and Andreas Taumoefolau for providing patches and all for the issues.

See

http://pytest.org/

for general information. To install or upgrade pytest:

pip install -U pytest # or
easy_install -U pytest

best,
holger krekel

Changes between 2.3.2 and 2.3.3

	fix issue214 - parse modules that contain special objects like e. g.
flask’s request object which blows up on getattr access if no request
is active. thanks Thomas Waldmann.

	fix issue213 - allow to parametrize with values like numpy arrays that
do not support an __eq__ operator

	fix issue215 - split test_python.org into multiple files

	fix issue148 - @unittest.skip on classes is now recognized and avoids
calling setUpClass/tearDownClass, thanks Pavel Repin

	fix issue209 - reintroduce python2.4 support by depending on newer
pylib which re-introduced statement-finding for pre-AST interpreters

	nose support: only call setup if it’s a callable, thanks Andrew
Taumoefolau

	fix issue219 - add py2.4-3.3 classifiers to TROVE list

	in tracebacks ,* arg values are now shown next to normal arguments
(thanks Manuel Jacob)

	fix issue217 - support mock.patch with pytest’s fixtures - note that
you need either mock-1.0.1 or the python3.3 builtin unittest.mock.

	fix issue127 - improve documentation for pytest_addoption() and
add a config.getoption(name) helper function for consistency.

pytest-2.3.2: some fixes and more traceback-printing speed

pytest-2.3.2 is another stabilization release:

	issue 205: fixes a regression with conftest detection

	issue 208/29: fixes traceback-printing speed in some bad cases

	fix teardown-ordering for parametrized setups

	fix unittest and trial compat behaviour with respect to runTest() methods

	issue 206 and others: some improvements to packaging

	fix issue127 and others: improve some docs

See

http://pytest.org/

for general information. To install or upgrade pytest:

pip install -U pytest # or
easy_install -U pytest

best,
holger krekel

Changes between 2.3.1 and 2.3.2

	fix issue208 and fix issue29 use new py version to avoid long pauses
when printing tracebacks in long modules

	fix issue205 - conftests in subdirs customizing
pytest_pycollect_makemodule and pytest_pycollect_makeitem
now work properly

	fix teardown-ordering for parametrized setups

	fix issue127 - better documentation for pytest_addoption
and related objects.

	fix unittest behaviour: TestCase.runtest only called if there are
test methods defined

	improve trial support: don’t collect its empty
unittest.TestCase.runTest() method

	“python setup.py test” now works with pytest itself

	fix/improve internal/packaging related bits:

	exception message check of test_nose.py now passes on python33 as well

	issue206 - fix test_assertrewrite.py to work when a global
PYTHONDONTWRITEBYTECODE=1 is present

	add tox.ini to pytest distribution so that ignore-dirs and others config
bits are properly distributed for maintainers who run pytest-own tests

pytest-2.3.1: fix regression with factory functions

pytest-2.3.1 is a quick follow-up release:

	fix issue202 - regression with fixture functions/funcarg factories:
using “self” is now safe again and works as in 2.2.4. Thanks
to Eduard Schettino for the quick bug report.

	disable pexpect pytest self tests on Freebsd - thanks Koob for the
quick reporting

	fix/improve interactive docs with –markers

See

http://pytest.org/

for general information. To install or upgrade pytest:

pip install -U pytest # or
easy_install -U pytest

best,
holger krekel

Changes between 2.3.0 and 2.3.1

	fix issue202 - fix regression: using “self” from fixture functions now
works as expected (it’s the same “self” instance that a test method
which uses the fixture sees)

	skip pexpect using tests (test_pdb.py mostly) on freebsd* systems
due to pexpect not supporting it properly (hanging)

	link to web pages from –markers output which provides help for
pytest.mark.* usage.

pytest-2.3: improved fixtures / better unittest integration

pytest-2.3 comes with many major improvements for fixture/funcarg management
and parametrized testing in Python. It is now easier, more efficient and
more predicatable to re-run the same tests with different fixture
instances. Also, you can directly declare the caching “scope” of
fixtures so that dependent tests throughout your whole test suite can
re-use database or other expensive fixture objects with ease. Lastly,
it’s possible for fixture functions (formerly known as funcarg
factories) to use other fixtures, allowing for a completely modular and
re-useable fixture design.

For detailed info and tutorial-style examples, see:

http://pytest.org/latest/fixture.html

Moreover, there is now support for using pytest fixtures/funcargs with
unittest-style suites, see here for examples:

http://pytest.org/latest/unittest.html

Besides, more unittest-test suites are now expected to “simply work”
with pytest.

All changes are backward compatible and you should be able to continue
to run your test suites and 3rd party plugins that worked with
pytest-2.2.4.

If you are interested in the precise reasoning (including examples) of the
pytest-2.3 fixture evolution, please consult
http://pytest.org/latest/funcarg_compare.html

For general info on installation and getting started:

http://pytest.org/latest/getting-started.html

Docs and PDF access as usual at:

http://pytest.org

and more details for those already in the knowing of pytest can be found
in the CHANGELOG below.

Particular thanks for this release go to Floris Bruynooghe, Alex Okrushko
Carl Meyer, Ronny Pfannschmidt, Benjamin Peterson and Alex Gaynor for helping
to get the new features right and well integrated. Ronny and Floris
also helped to fix a number of bugs and yet more people helped by
providing bug reports.

have fun,
holger krekel

Changes between 2.2.4 and 2.3.0

	fix issue202 - better automatic names for parametrized test functions

	fix issue139 - introduce @pytest.fixture which allows direct scoping
and parametrization of funcarg factories. Introduce new @pytest.setup
marker to allow the writing of setup functions which accept funcargs.

	fix issue198 - conftest fixtures were not found on windows32 in some
circumstances with nested directory structures due to path manipulation issues

	fix issue193 skip test functions with were parametrized with empty
parameter sets

	fix python3.3 compat, mostly reporting bits that previously depended
on dict ordering

	introduce re-ordering of tests by resource and parametrization setup
which takes precedence to the usual file-ordering

	fix issue185 monkeypatching time.time does not cause pytest to fail

	fix issue172 duplicate call of pytest.setup-decoratored setup_module
functions

	fix junitxml=path construction so that if tests change the
current working directory and the path is a relative path
it is constructed correctly from the original current working dir.

	fix “python setup.py test” example to cause a proper “errno” return

	fix issue165 - fix broken doc links and mention stackoverflow for FAQ

	catch unicode-issues when writing failure representations
to terminal to prevent the whole session from crashing

	fix xfail/skip confusion: a skip-mark or an imperative pytest.skip
will now take precedence before xfail-markers because we
can’t determine xfail/xpass status in case of a skip. see also:
http://stackoverflow.com/questions/11105828/in-py-test-when-i-explicitly-skip-a-test-that-is-marked-as-xfail-how-can-i-get

	always report installed 3rd party plugins in the header of a test run

	fix issue160: a failing setup of an xfail-marked tests should
be reported as xfail (not xpass)

	fix issue128: show captured output when capsys/capfd are used

	fix issue179: properly show the dependency chain of factories

	pluginmanager.register(…) now raises ValueError if the
plugin has been already registered or the name is taken

	fix issue159: improve http://pytest.org/latest/faq.html
especially with respect to the “magic” history, also mention
pytest-django, trial and unittest integration.

	make request.keywords and node.keywords writable. All descendant
collection nodes will see keyword values. Keywords are dictionaries
containing markers and other info.

	fix issue 178: xml binary escapes are now wrapped in py.xml.raw

	fix issue 176: correctly catch the builtin AssertionError
even when we replaced AssertionError with a subclass on the
python level

	factory discovery no longer fails with magic global callables
that provide no sane __code__ object (mock.call for example)

	fix issue 182: testdir.inprocess_run now considers passed plugins

	
	fix issue 188: ensure sys.exc_info is clear on python2

	before calling into a test

	fix issue 191: add unittest TestCase runTest method support

	fix issue 156: monkeypatch correctly handles class level descriptors

	reporting refinements:

	pytest_report_header now receives a “startdir” so that
you can use startdir.bestrelpath(yourpath) to show
nice relative path

	allow plugins to implement both pytest_report_header and
pytest_sessionstart (sessionstart is invoked first).

	don’t show deselected reason line if there is none

	py.test -vv will show all of assert comparisons instead of truncating

pytest-2.2.4: bug fixes, better junitxml/unittest/python3 compat

pytest-2.2.4 is a minor backward-compatible release of the versatile
py.test testing tool. It contains bug fixes and a few refinements
to junitxml reporting, better unittest- and python3 compatibility.

For general information see here:

http://pytest.org/

To install or upgrade pytest:

pip install -U pytest # or
easy_install -U pytest

Special thanks for helping on this release to Ronny Pfannschmidt
and Benjamin Peterson and the contributors of issues.

best,
holger krekel

Changes between 2.2.3 and 2.2.4

	fix error message for rewritten assertions involving the % operator

	fix issue 126: correctly match all invalid xml characters for junitxml
binary escape

	fix issue with unittest: now @unittest.expectedFailure markers should
be processed correctly (you can also use @pytest.mark markers)

	document integration with the extended distribute/setuptools test commands

	fix issue 140: properly get the real functions
of bound classmethods for setup/teardown_class

	fix issue #141: switch from the deceased paste.pocoo.org to bpaste.net

	fix issue #143: call unconfigure/sessionfinish always when
configure/sessionstart where called

	fix issue #144: better mangle test ids to junitxml classnames

	upgrade distribute_setup.py to 0.6.27

pytest-2.2.2: bug fixes

pytest-2.2.2 (updated to 2.2.3 to fix packaging issues) is a minor
backward-compatible release of the versatile py.test testing tool. It
contains bug fixes and a few refinements particularly to reporting with
“–collectonly”, see below for betails.

For general information see here:

http://pytest.org/

To install or upgrade pytest:

pip install -U pytest # or
easy_install -U pytest

Special thanks for helping on this release to Ronny Pfannschmidt
and Ralf Schmitt and the contributors of issues.

best,
holger krekel

Changes between 2.2.1 and 2.2.2

	fix issue101: wrong args to unittest.TestCase test function now
produce better output

	fix issue102: report more useful errors and hints for when a
test directory was renamed and some pyc/__pycache__ remain

	fix issue106: allow parametrize to be applied multiple times
e.g. from module, class and at function level.

	fix issue107: actually perform session scope finalization

	don’t check in parametrize if indirect parameters are funcarg names

	add chdir method to monkeypatch funcarg

	fix crash resulting from calling monkeypatch undo a second time

	fix issue115: make –collectonly robust against early failure
(missing files/directories)

	“-qq –collectonly” now shows only files and the number of tests in them

	“-q –collectonly” now shows test ids

	allow adding of attributes to test reports such that it also works
with distributed testing (no upgrade of pytest-xdist needed)

pytest-2.2.1: bug fixes, perfect teardowns

pytest-2.2.1 is a minor backward-compatible release of the py.test
testing tool. It contains bug fixes and little improvements, including
documentation fixes. If you are using the distributed testing
pluginmake sure to upgrade it to pytest-xdist-1.8.

For general information see here:

http://pytest.org/

To install or upgrade pytest:

pip install -U pytest # or
easy_install -U pytest

Special thanks for helping on this release to Ronny Pfannschmidt, Jurko
Gospodnetic and Ralf Schmitt.

best,
holger krekel

Changes between 2.2.0 and 2.2.1

	fix issue99 (in pytest and py) internallerrors with resultlog now
produce better output - fixed by normalizing pytest_internalerror
input arguments.

	fix issue97 / traceback issues (in pytest and py) improve traceback output
in conjunction with jinja2 and cython which hack tracebacks

	fix issue93 (in pytest and pytest-xdist) avoid “delayed teardowns”:
the final test in a test node will now run its teardown directly
instead of waiting for the end of the session. Thanks Dave Hunt for
the good reporting and feedback. The pytest_runtest_protocol as well
as the pytest_runtest_teardown hooks now have “nextitem” available
which will be None indicating the end of the test run.

	fix collection crash due to unknown-source collected items, thanks
to Ralf Schmitt (fixed by depending on a more recent pylib)

py.test 2.2.0: test marking++, parametrization++ and duration profiling

pytest-2.2.0 is a test-suite compatible release of the popular
py.test testing tool. Plugins might need upgrades. It comes
with these improvements:

	easier and more powerful parametrization of tests:

	new @pytest.mark.parametrize decorator to run tests with different arguments

	new metafunc.parametrize() API for parametrizing arguments independently

	see examples at http://pytest.org/latest/example/parametrize.html

	NOTE that parametrize() related APIs are still a bit experimental
and might change in future releases.

	improved handling of test markers and refined marking mechanism:

	“-m markexpr” option for selecting tests according to their mark

	a new “markers” ini-variable for registering test markers for your project

	the new “–strict” bails out with an error if using unregistered markers.

	see examples at http://pytest.org/latest/example/markers.html

	duration profiling: new “–duration=N” option showing the N slowest test
execution or setup/teardown calls. This is most useful if you want to
find out where your slowest test code is.

	also 2.2.0 performs more eager calling of teardown/finalizers functions
resulting in better and more accurate reporting when they fail

Besides there is the usual set of bug fixes along with a cleanup of
pytest’s own test suite allowing it to run on a wider range of environments.

For general information, see extensive docs with examples here:

http://pytest.org/

If you want to install or upgrade pytest you might just type:

pip install -U pytest # or
easy_install -U pytest

Thanks to Ronny Pfannschmidt, David Burns, Jeff Donner, Daniel Nouri, Alfredo Deza and all who gave feedback or sent bug reports.

best,
holger krekel

notes on incompatibility

While test suites should work unchanged you might need to upgrade plugins:

	You need a new version of the pytest-xdist plugin (1.7) for distributing
test runs.

	Other plugins might need an upgrade if they implement
the pytest_runtest_logreport hook which now is called unconditionally
for the setup/teardown fixture phases of a test. You may choose to
ignore setup/teardown failures by inserting “if rep.when != ‘call’: return”
or something similar. Note that most code probably “just” works because
the hook was already called for failing setup/teardown phases of a test
so a plugin should have been ready to grok such reports already.

Changes between 2.1.3 and 2.2.0

	fix issue90: introduce eager tearing down of test items so that
teardown function are called earlier.

	add an all-powerful metafunc.parametrize function which allows to
parametrize test function arguments in multiple steps and therefore
from independent plugins and places.

	add a @pytest.mark.parametrize helper which allows to easily
call a test function with different argument values.

	Add examples to the “parametrize” example page, including a quick port
of Test scenarios and the new parametrize function and decorator.

	introduce registration for “pytest.mark.*” helpers via ini-files
or through plugin hooks. Also introduce a “–strict” option which
will treat unregistered markers as errors
allowing to avoid typos and maintain a well described set of markers
for your test suite. See examples at http://pytest.org/latest/mark.html
and its links.

	issue50: introduce “-m marker” option to select tests based on markers
(this is a stricter and more predictable version of “-k” in that “-m”
only matches complete markers and has more obvious rules for and/or
semantics.

	new feature to help optimizing the speed of your tests:
–durations=N option for displaying N slowest test calls
and setup/teardown methods.

	fix issue87: –pastebin now works with python3

	fix issue89: –pdb with unexpected exceptions in doctest work more sensibly

	fix and cleanup pytest’s own test suite to not leak FDs

	fix issue83: link to generated funcarg list

	fix issue74: pyarg module names are now checked against imp.find_module false positives

	fix compatibility with twisted/trial-11.1.0 use cases

py.test 2.1.3: just some more fixes

pytest-2.1.3 is a minor backward compatible maintenance release of the
popular py.test testing tool. It is commonly used for unit, functional-
and integration testing. See extensive docs with examples here:

http://pytest.org/

The release contains another fix to the perfected assertions introduced
with the 2.1 series as well as the new possibility to customize reporting
for assertion expressions on a per-directory level.

If you want to install or upgrade pytest, just type one of:

pip install -U pytest # or
easy_install -U pytest

Thanks to the bug reporters and to Ronny Pfannschmidt, Benjamin Peterson
and Floris Bruynooghe who implemented the fixes.

best,
holger krekel

Changes between 2.1.2 and 2.1.3

	fix issue79: assertion rewriting failed on some comparisons in boolops,

	correctly handle zero length arguments (a la pytest ‘’)

	fix issue67 / junitxml now contains correct test durations

	fix issue75 / skipping test failure on jython

	fix issue77 / Allow assertrepr_compare hook to apply to a subset of tests

py.test 2.1.2: bug fixes and fixes for jython

pytest-2.1.2 is a minor backward compatible maintenance release of the
popular py.test testing tool. pytest is commonly used for unit,
functional- and integration testing. See extensive docs with examples
here:

http://pytest.org/

Most bug fixes address remaining issues with the perfected assertions
introduced in the 2.1 series - many thanks to the bug reporters and to Benjamin
Peterson for helping to fix them. pytest should also work better with
Jython-2.5.1 (and Jython trunk).

If you want to install or upgrade pytest, just type one of:

pip install -U pytest # or
easy_install -U pytest

best,
holger krekel / http://merlinux.eu

Changes between 2.1.1 and 2.1.2

	fix assertion rewriting on files with windows newlines on some Python versions

	refine test discovery by package/module name (–pyargs), thanks Florian Mayer

	fix issue69 / assertion rewriting fixed on some boolean operations

	fix issue68 / packages now work with assertion rewriting

	fix issue66: use different assertion rewriting caches when the -O option is passed

	don’t try assertion rewriting on Jython, use reinterp

py.test 2.1.1: assertion fixes and improved junitxml output

pytest-2.1.1 is a backward compatible maintenance release of the
popular py.test testing tool. See extensive docs with examples here:

http://pytest.org/

Most bug fixes address remaining issues with the perfected assertions
introduced with 2.1.0 - many thanks to the bug reporters and to Benjamin
Peterson for helping to fix them. Also, junitxml output now produces
system-out/err tags which lead to better displays of tracebacks with Jenkins.

Also a quick note to package maintainers and others interested: there now
is a “pytest” man page which can be generated with “make man” in doc/.

If you want to install or upgrade pytest, just type one of:

pip install -U pytest # or
easy_install -U pytest

best,
holger krekel / http://merlinux.eu

Changes between 2.1.0 and 2.1.1

	fix issue64 / pytest.set_trace now works within pytest_generate_tests hooks

	fix issue60 / fix error conditions involving the creation of __pycache__

	fix issue63 / assertion rewriting on inserts involving strings containing ‘%’

	fix assertion rewriting on calls with a ** arg

	don’t cache rewritten modules if bytecode generation is disabled

	fix assertion rewriting in read-only directories

	fix issue59: provide system-out/err tags for junitxml output

	fix issue61: assertion rewriting on boolean operations with 3 or more operands

	you can now build a man page with “cd doc ; make man”

py.test 2.1.0: perfected assertions and bug fixes

Welcome to the release of pytest-2.1, a mature testing tool for Python,
supporting CPython 2.4-3.2, Jython and latest PyPy interpreters. See
the improved extensive docs (now also as PDF!) with tested examples here:

http://pytest.org/

The single biggest news about this release are perfected assertions
courtesy of Benjamin Peterson. You can now safely use assert
statements in test modules without having to worry about side effects
or python optimization (“-OO”) options. This is achieved by rewriting
assert statements in test modules upon import, using a PEP302 hook.
See http://pytest.org/assert.html#advanced-assertion-introspection for
detailed information. The work has been partly sponsored by my company,
merlinux GmbH.

For further details on bug fixes and smaller enhancements see below.

If you want to install or upgrade pytest, just type one of:

pip install -U pytest # or
easy_install -U pytest

best,
holger krekel / http://merlinux.eu

Changes between 2.0.3 and 2.1.0

	fix issue53 call nosestyle setup functions with correct ordering

	fix issue58 and issue59: new assertion code fixes

	merge Benjamin’s assertionrewrite branch: now assertions
for test modules on python 2.6 and above are done by rewriting
the AST and saving the pyc file before the test module is imported.
see doc/assert.txt for more info.

	fix issue43: improve doctests with better traceback reporting on
unexpected exceptions

	fix issue47: timing output in junitxml for test cases is now correct

	fix issue48: typo in MarkInfo repr leading to exception

	fix issue49: avoid confusing error when initialization partially fails

	fix issue44: env/username expansion for junitxml file path

	show releaselevel information in test runs for pypy

	reworked doc pages for better navigation and PDF generation

	report KeyboardInterrupt even if interrupted during session startup

	fix issue 35 - provide PDF doc version and download link from index page

py.test 2.0.3: bug fixes and speed ups

Welcome to pytest-2.0.3, a maintenance and bug fix release of pytest,
a mature testing tool for Python, supporting CPython 2.4-3.2, Jython
and latest PyPy interpreters. See the extensive docs with tested examples here:

http://pytest.org/

If you want to install or upgrade pytest, just type one of:

pip install -U pytest # or
easy_install -U pytest

There also is a bugfix release 1.6 of pytest-xdist, the plugin
that enables seamless distributed and “looponfail” testing for Python.

best,
holger krekel

Changes between 2.0.2 and 2.0.3

	fix issue38: nicer tracebacks on calls to hooks, particularly early
configure/sessionstart ones

	fix missing skip reason/meta information in junitxml files, reported
via http://lists.idyll.org/pipermail/testing-in-python/2011-March/003928.html

	fix issue34: avoid collection failure with “test” prefixed classes
deriving from object.

	don’t require zlib (and other libs) for genscript plugin without
–genscript actually being used.

	speed up skips (by not doing a full traceback representation
internally)

	fix issue37: avoid invalid characters in junitxml’s output

py.test 2.0.2: bug fixes, improved xfail/skip expressions, speed ups

Welcome to pytest-2.0.2, a maintenance and bug fix release of pytest,
a mature testing tool for Python, supporting CPython 2.4-3.2, Jython
and latest PyPy interpreters. See the extensive docs with tested examples here:

http://pytest.org/

If you want to install or upgrade pytest, just type one of:

pip install -U pytest # or
easy_install -U pytest

Many thanks to all issue reporters and people asking questions
or complaining, particularly Jurko for his insistence,
Laura, Victor and Brianna for helping with improving
and Ronny for his general advise.

best,
holger krekel

Changes between 2.0.1 and 2.0.2

	tackle issue32 - speed up test runs of very quick test functions
by reducing the relative overhead

	fix issue30 - extended xfail/skipif handling and improved reporting.
If you have a syntax error in your skip/xfail
expressions you now get nice error reports.

Also you can now access module globals from xfail/skipif
expressions so that this for example works now:

import pytest
import mymodule
@pytest.mark.skipif("mymodule.__version__[0] == "1")
def test_function():
 pass

This will not run the test function if the module’s version string
does not start with a “1”. Note that specifying a string instead
of a boolean expressions allows py.test to report meaningful information
when summarizing a test run as to what conditions lead to skipping
(or xfail-ing) tests.

	fix issue28 - setup_method and pytest_generate_tests work together
The setup_method fixture method now gets called also for
test function invocations generated from the pytest_generate_tests
hook.

	fix issue27 - collectonly and keyword-selection (-k) now work together
Also, if you do “py.test –collectonly -q” you now get a flat list
of test ids that you can use to paste to the py.test commandline
in order to execute a particular test.

	fix issue25 avoid reported problems with –pdb and python3.2/encodings output

	fix issue23 - tmpdir argument now works on Python3.2 and WindowsXP
Starting with Python3.2 os.symlink may be supported. By requiring
a newer py lib version the py.path.local() implementation acknowledges
this.

	fixed typos in the docs (thanks Victor Garcia, Brianna Laugher) and particular
thanks to Laura Creighton who also reviewed parts of the documentation.

	fix slightly wrong output of verbose progress reporting for classes
(thanks Amaury)

	more precise (avoiding of) deprecation warnings for node.Class|Function accesses

	avoid std unittest assertion helper code in tracebacks (thanks Ronny)

py.test 2.0.1: bug fixes

Welcome to pytest-2.0.1, a maintenance and bug fix release of pytest,
a mature testing tool for Python, supporting CPython 2.4-3.2, Jython
and latest PyPy interpreters. See extensive docs with tested examples here:

http://pytest.org/

If you want to install or upgrade pytest, just type one of:

pip install -U pytest # or
easy_install -U pytest

Many thanks to all issue reporters and people asking questions or
complaining. Particular thanks to Floris Bruynooghe and Ronny Pfannschmidt
for their great coding contributions and many others for feedback and help.

best,
holger krekel

Changes between 2.0.0 and 2.0.1

	refine and unify initial capturing so that it works nicely
even if the logging module is used on an early-loaded conftest.py
file or plugin.

	fix issue12 - show plugin versions with “–version” and
“–traceconfig” and also document how to add extra information
to reporting test header

	fix issue17 (import-* reporting issue on python3) by
requiring py>1.4.0 (1.4.1 is going to include it)

	fix issue10 (numpy arrays truth checking) by refining
assertion interpretation in py lib

	fix issue15: make nose compatibility tests compatible
with python3 (now that nose-1.0 supports python3)

	remove somewhat surprising “same-conftest” detection because
it ignores conftest.py when they appear in several subdirs.

	improve assertions (“not in”), thanks Floris Bruynooghe

	improve behaviour/warnings when running on top of “python -OO”
(assertions and docstrings are turned off, leading to potential
false positives)

	introduce a pytest_cmdline_processargs(args) hook
to allow dynamic computation of command line arguments.
This fixes a regression because py.test prior to 2.0
allowed to set command line options from conftest.py
files which so far pytest-2.0 only allowed from ini-files now.

	fix issue7: assert failures in doctest modules.
unexpected failures in doctests will not generally
show nicer, i.e. within the doctest failing context.

	fix issue9: setup/teardown functions for an xfail-marked
test will report as xfail if they fail but report as normally
passing (not xpassing) if they succeed. This only is true
for “direct” setup/teardown invocations because teardown_class/
teardown_module cannot closely relate to a single test.

	fix issue14: no logging errors at process exit

	refinements to “collecting” output on non-ttys

	refine internal plugin registration and –traceconfig output

	introduce a mechanism to prevent/unregister plugins from the
command line, see http://pytest.org/latest/plugins.html#cmdunregister

	activate resultlog plugin by default

	fix regression wrt yielded tests which due to the
collection-before-running semantics were not
setup as with pytest 1.3.4. Note, however, that
the recommended and much cleaner way to do test
parametrization remains the “pytest_generate_tests”
mechanism, see the docs.

py.test 2.0.0: asserts++, unittest++, reporting++, config++, docs++

Welcome to pytest-2.0.0, a major new release of “py.test”, the rapid
easy Python testing tool. There are many new features and enhancements,
see below for summary and detailed lists. A lot of long-deprecated code
has been removed, resulting in a much smaller and cleaner
implementation. See the new docs with examples here:

http://pytest.org/2.0.0/index.html

A note on packaging: pytest used to part of the “py” distribution up
until version py-1.3.4 but this has changed now: pytest-2.0.0 only
contains py.test related code and is expected to be backward-compatible
to existing test code. If you want to install pytest, just type one of:

pip install -U pytest
easy_install -U pytest

Many thanks to all issue reporters and people asking questions or
complaining. Particular thanks to Floris Bruynooghe and Ronny Pfannschmidt
for their great coding contributions and many others for feedback and help.

best,
holger krekel

New Features

	new invocations through Python interpreter and from Python:

python -m pytest # on all pythons >= 2.5

or from a python program:

import pytest ; pytest.main(arglist, pluginlist)

see http://pytest.org/2.0.0/usage.html for details.

	new and better reporting information in assert expressions
if comparing lists, sequences or strings.

see http://pytest.org/2.0.0/assert.html#newreport

	new configuration through ini-files (setup.cfg or tox.ini recognized),
for example:

[pytest]
norecursedirs = .hg data* # don't ever recurse in such dirs
addopts = -x --pyargs # add these command line options by default

see http://pytest.org/2.0.0/customize.html

	improved standard unittest support. In general py.test should now
better be able to run custom unittest.TestCases like twisted trial
or Django based TestCases. Also you can now run the tests of an
installed ‘unittest’ package with py.test:

py.test --pyargs unittest

	new “-q” option which decreases verbosity and prints a more
nose/unittest-style “dot” output.

	many many more detailed improvements details

Fixes

	fix issue126 - introduce py.test.set_trace() to trace execution via
PDB during the running of tests even if capturing is ongoing.

	fix issue124 - make reporting more resilient against tests opening
files on filedescriptor 1 (stdout).

	fix issue109 - sibling conftest.py files will not be loaded.
(and Directory collectors cannot be customized anymore from a Directory’s
conftest.py - this needs to happen at least one level up).

	fix issue88 (finding custom test nodes from command line arg)

	fix issue93 stdout/stderr is captured while importing conftest.py

	fix bug: unittest collected functions now also can have “pytestmark”
applied at class/module level

Important Notes

	The usual way in pre-2.0 times to use py.test in python code was
to import “py” and then e.g. use “py.test.raises” for the helper.
This remains valid and is not planned to be deprecated. However,
in most examples and internal code you’ll find “import pytest”
and “pytest.raises” used as the recommended default way.

	pytest now first performs collection of the complete test suite
before running any test. This changes for example the semantics of when
pytest_collectstart/pytest_collectreport are called. Some plugins may
need upgrading.

	The pytest package consists of a 400 LOC core.py and about 20 builtin plugins,
summing up to roughly 5000 LOCs, including docstrings. To be fair, it also
uses generic code from the “pylib”, and the new “py” package to help
with filesystem and introspection/code manipulation.

(Incompatible) Removals

	py.test.config is now only available if you are in a test run.

	the following (mostly already deprecated) functionality was removed:

	removed support for Module/Class/… collection node definitions
in conftest.py files. They will cause nothing special.

	removed support for calling the pre-1.0 collection API of “run()” and “join”

	removed reading option values from conftest.py files or env variables.
This can now be done much much better and easier through the ini-file
mechanism and the “addopts” entry in particular.

	removed the “disabled” attribute in test classes. Use the skipping
and pytestmark mechanism to skip or xfail a test class.

	py.test.collect.Directory does not exist anymore and it
is not possible to provide an own “Directory” object.
If you have used this and don’t know what to do, get
in contact. We’ll figure something out.

Note that pytest_collect_directory() is still called but
any return value will be ignored. This allows to keep
old code working that performed for example “py.test.skip()”
in collect() to prevent recursion into directory trees
if a certain dependency or command line option is missing.

see Changelog history for more detailed changes.

Changelog history

Versions follow Semantic Versioning [https://semver.org/] (<major>.<minor>.<patch>).

Backward incompatible (breaking) changes will only be introduced in major versions
with advance notice in the Deprecations section of releases.

pytest 4.6.11 (2020-06-04)

Bug Fixes

	#6334 [https://github.com/pytest-dev/pytest/issues/6334]: Fix summary entries appearing twice when f/F and s/S report chars were used at the same time in the -r command-line option (for example -rFf).

The upper case variants were never documented and the preferred form should be the lower case.

	#7310 [https://github.com/pytest-dev/pytest/issues/7310]: Fix UnboundLocalError: local variable 'letter' referenced before
assignment in _pytest.terminal.pytest_report_teststatus()
when plugins return report objects in an unconventional state.

This was making pytest_report_teststatus() skip
entering if-block branches that declare the letter variable.

The fix was to set the initial value of the letter before
the if-block cascade so that it always has a value.

pytest 4.6.10 (2020-05-08)

Features

	#6870 [https://github.com/pytest-dev/pytest/issues/6870]: New Config.invocation_args attribute containing the unchanged arguments passed to pytest.main().

Remark: while this is technically a new feature and according to our policy [https://docs.pytest.org/en/latest/py27-py34-deprecation.html#what-goes-into-4-6-x-releases] it should not have been backported, we have opened an exception in this particular case because it fixes a serious interaction with pytest-xdist, so it can also be considered a bugfix.

Trivial/Internal Changes

	#6404 [https://github.com/pytest-dev/pytest/issues/6404]: Remove usage of parser module, deprecated in Python 3.9.

pytest 4.6.9 (2020-01-04)

Bug Fixes

	#6301 [https://github.com/pytest-dev/pytest/issues/6301]: Fix assertion rewriting for egg-based distributions and editable installs (pip install --editable).

pytest 4.6.8 (2019-12-19)

Features

	#5471 [https://github.com/pytest-dev/pytest/issues/5471]: JUnit XML now includes a timestamp and hostname in the testsuite tag.

Bug Fixes

	#5430 [https://github.com/pytest-dev/pytest/issues/5430]: junitxml: Logs for failed test are now passed to junit report in case the test fails during call phase.

Trivial/Internal Changes

	#6345 [https://github.com/pytest-dev/pytest/issues/6345]: Pin colorama to 0.4.1 only for Python 3.4 so newer Python versions can still receive colorama updates.

pytest 4.6.7 (2019-12-05)

Bug Fixes

	#5477 [https://github.com/pytest-dev/pytest/issues/5477]: The XML file produced by --junitxml now correctly contain a <testsuites> root element.

	#6044 [https://github.com/pytest-dev/pytest/issues/6044]: Properly ignore FileNotFoundError (OSError.errno == NOENT in Python 2) exceptions when trying to remove old temporary directories,
for instance when multiple processes try to remove the same directory (common with pytest-xdist
for example).

pytest 4.6.6 (2019-10-11)

Bug Fixes

	#5523 [https://github.com/pytest-dev/pytest/issues/5523]: Fixed using multiple short options together in the command-line (for example -vs) in Python 3.8+.

	#5537 [https://github.com/pytest-dev/pytest/issues/5537]: Replace importlib_metadata backport with importlib.metadata from the
standard library on Python 3.8+.

	#5806 [https://github.com/pytest-dev/pytest/issues/5806]: Fix “lexer” being used when uploading to bpaste.net from --pastebin to “text”.

	#5902 [https://github.com/pytest-dev/pytest/issues/5902]: Fix warnings about deprecated cmp attribute in attrs>=19.2.

Trivial/Internal Changes

	#5801 [https://github.com/pytest-dev/pytest/issues/5801]: Fixes python version checks (detected by flake8-2020) in case python4 becomes a thing.

pytest 4.6.5 (2019-08-05)

Bug Fixes

	#4344 [https://github.com/pytest-dev/pytest/issues/4344]: Fix RuntimeError/StopIteration when trying to collect package with “__init__.py” only.

	#5478 [https://github.com/pytest-dev/pytest/issues/5478]: Fix encode error when using unicode strings in exceptions with pytest.raises.

	#5524 [https://github.com/pytest-dev/pytest/issues/5524]: Fix issue where tmp_path and tmpdir would not remove directories containing files marked as read-only,
which could lead to pytest crashing when executed a second time with the --basetemp option.

	#5547 [https://github.com/pytest-dev/pytest/issues/5547]: --step-wise now handles xfail(strict=True) markers properly.

	#5650 [https://github.com/pytest-dev/pytest/issues/5650]: Improved output when parsing an ini configuration file fails.

pytest 4.6.4 (2019-06-28)

Bug Fixes

	#5404 [https://github.com/pytest-dev/pytest/issues/5404]: Emit a warning when attempting to unwrap a broken object raises an exception,
for easier debugging (#5080 [https://github.com/pytest-dev/pytest/issues/5080]).

	#5444 [https://github.com/pytest-dev/pytest/issues/5444]: Fix --stepwise mode when the first file passed on the command-line fails to collect.

	#5482 [https://github.com/pytest-dev/pytest/issues/5482]: Fix bug introduced in 4.6.0 causing collection errors when passing
more than 2 positional arguments to pytest.mark.parametrize.

	#5505 [https://github.com/pytest-dev/pytest/issues/5505]: Fix crash when discovery fails while using -p no:terminal.

pytest 4.6.3 (2019-06-11)

Bug Fixes

	#5383 [https://github.com/pytest-dev/pytest/issues/5383]: -q has again an impact on the style of the collected items
(--collect-only) when --log-cli-level is used.

	#5389 [https://github.com/pytest-dev/pytest/issues/5389]: Fix regressions of #5063 [https://github.com/pytest-dev/pytest/pull/5063] for importlib_metadata.PathDistribution which have their files attribute being None.

	#5390 [https://github.com/pytest-dev/pytest/issues/5390]: Fix regression where the obj attribute of TestCase items was no longer bound to methods.

pytest 4.6.2 (2019-06-03)

Bug Fixes

	#5370 [https://github.com/pytest-dev/pytest/issues/5370]: Revert unrolling of all() to fix NameError on nested comprehensions.

	#5371 [https://github.com/pytest-dev/pytest/issues/5371]: Revert unrolling of all() to fix incorrect handling of generators with if.

	#5372 [https://github.com/pytest-dev/pytest/issues/5372]: Revert unrolling of all() to fix incorrect assertion when using all() in an expression.

pytest 4.6.1 (2019-06-02)

Bug Fixes

	#5354 [https://github.com/pytest-dev/pytest/issues/5354]: Fix pytest.mark.parametrize when the argvalues is an iterator.

	#5358 [https://github.com/pytest-dev/pytest/issues/5358]: Fix assertion rewriting of all() calls to deal with non-generators.

pytest 4.6.0 (2019-05-31)

Important

The 4.6.X series will be the last series to support Python 2 and Python 3.4.

For more details, see our Python 2.7 and 3.4 support plan [https://docs.pytest.org/en/latest/py27-py34-deprecation.html].

Features

	#4559 [https://github.com/pytest-dev/pytest/issues/4559]: Added the junit_log_passing_tests ini value which can be used to enable or disable logging of passing test output in the Junit XML file.

	#4956 [https://github.com/pytest-dev/pytest/issues/4956]: pytester’s testdir.spawn uses tmpdir as HOME/USERPROFILE directory.

	#5062 [https://github.com/pytest-dev/pytest/issues/5062]: Unroll calls to all to full for-loops with assertion rewriting for better failure messages, especially when using Generator Expressions.

	#5063 [https://github.com/pytest-dev/pytest/issues/5063]: Switch from pkg_resources to importlib-metadata for entrypoint detection for improved performance and import time.

	#5091 [https://github.com/pytest-dev/pytest/issues/5091]: The output for ini options in --help has been improved.

	#5269 [https://github.com/pytest-dev/pytest/issues/5269]: pytest.importorskip includes the ImportError now in the default reason.

	#5311 [https://github.com/pytest-dev/pytest/issues/5311]: Captured logs that are output for each failing test are formatted using the
ColoredLevelFormatter.

	#5312 [https://github.com/pytest-dev/pytest/issues/5312]: Improved formatting of multiline log messages in Python 3.

Bug Fixes

	#2064 [https://github.com/pytest-dev/pytest/issues/2064]: The debugging plugin imports the wrapped Pdb class (--pdbcls) on-demand now.

	#4908 [https://github.com/pytest-dev/pytest/issues/4908]: The pytest_enter_pdb hook gets called with post-mortem (--pdb).

	#5036 [https://github.com/pytest-dev/pytest/issues/5036]: Fix issue where fixtures dependent on other parametrized fixtures would be erroneously parametrized.

	#5256 [https://github.com/pytest-dev/pytest/issues/5256]: Handle internal error due to a lone surrogate unicode character not being representable in Jython.

	#5257 [https://github.com/pytest-dev/pytest/issues/5257]: Ensure that sys.stdout.mode does not include 'b' as it is a text stream.

	#5278 [https://github.com/pytest-dev/pytest/issues/5278]: Pytest’s internal python plugin can be disabled using -p no:python again.

	#5286 [https://github.com/pytest-dev/pytest/issues/5286]: Fix issue with disable_test_id_escaping_and_forfeit_all_rights_to_community_support option not working when using a list of test IDs in parametrized tests.

	#5330 [https://github.com/pytest-dev/pytest/issues/5330]: Show the test module being collected when emitting PytestCollectionWarning messages for
test classes with __init__ and __new__ methods to make it easier to pin down the problem.

	#5333 [https://github.com/pytest-dev/pytest/issues/5333]: Fix regression in 4.5.0 with --lf not re-running all tests with known failures from non-selected tests.

Improved Documentation

	#5250 [https://github.com/pytest-dev/pytest/issues/5250]: Expand docs on use of setenv and delenv with monkeypatch.

pytest 4.5.0 (2019-05-11)

Features

	#4826 [https://github.com/pytest-dev/pytest/issues/4826]: A warning is now emitted when unknown marks are used as a decorator.
This is often due to a typo, which can lead to silently broken tests.

	#4907 [https://github.com/pytest-dev/pytest/issues/4907]: Show XFail reason as part of JUnitXML message field.

	#5013 [https://github.com/pytest-dev/pytest/issues/5013]: Messages from crash reports are displayed within test summaries now, truncated to the terminal width.

	#5023 [https://github.com/pytest-dev/pytest/issues/5023]: New flag --strict-markers that triggers an error when unknown markers (e.g. those not registered using the markers option [https://docs.pytest.org/en/latest/reference.html#confval-markers] in the configuration file) are used in the test suite.

The existing --strict option has the same behavior currently, but can be augmented in the future for additional checks.

	#5026 [https://github.com/pytest-dev/pytest/issues/5026]: Assertion failure messages for sequences and dicts contain the number of different items now.

	#5034 [https://github.com/pytest-dev/pytest/issues/5034]: Improve reporting with --lf and --ff (run-last-failure).

	#5035 [https://github.com/pytest-dev/pytest/issues/5035]: The --cache-show option/action accepts an optional glob to show only matching cache entries.

	#5059 [https://github.com/pytest-dev/pytest/issues/5059]: Standard input (stdin) can be given to pytester’s Testdir.run() and Testdir.popen().

	#5068 [https://github.com/pytest-dev/pytest/issues/5068]: The -r option learnt about A to display all reports (including passed ones) in the short test summary.

	#5108 [https://github.com/pytest-dev/pytest/issues/5108]: The short test summary is displayed after passes with output (-rP).

	#5172 [https://github.com/pytest-dev/pytest/issues/5172]: The --last-failed (--lf) option got smarter and will now skip entire files if all tests
of that test file have passed in previous runs, greatly speeding up collection.

	#5177 [https://github.com/pytest-dev/pytest/issues/5177]: Introduce new specific warning PytestWarning subclasses to make it easier to filter warnings based on the class, rather than on the message. The new subclasses are:

	PytestAssertRewriteWarning

	PytestCacheWarning

	PytestCollectionWarning

	PytestConfigWarning

	PytestUnhandledCoroutineWarning

	PytestUnknownMarkWarning

	#5202 [https://github.com/pytest-dev/pytest/issues/5202]: New record_testsuite_property session-scoped fixture allows users to log <property> tags at the testsuite
level with the junitxml plugin.

The generated XML is compatible with the latest xunit standard, contrary to
the properties recorded by record_property and record_xml_attribute.

	#5214 [https://github.com/pytest-dev/pytest/issues/5214]: The default logging format has been changed to improve readability. Here is an
example of a previous logging message:

test_log_cli_enabled_disabled.py 3 CRITICAL critical message logged by test

This has now become:

CRITICAL root:test_log_cli_enabled_disabled.py:3 critical message logged by test

The formatting can be changed through the log_format [https://docs.pytest.org/en/latest/reference.html#confval-log_format] configuration option.

	#5220 [https://github.com/pytest-dev/pytest/issues/5220]: --fixtures now also shows fixture scope for scopes other than "function".

Bug Fixes

	#5113 [https://github.com/pytest-dev/pytest/issues/5113]: Deselected items from plugins using pytest_collect_modifyitems as a hookwrapper are correctly reported now.

	#5144 [https://github.com/pytest-dev/pytest/issues/5144]: With usage errors exitstatus is set to EXIT_USAGEERROR in the pytest_sessionfinish hook now as expected.

	#5235 [https://github.com/pytest-dev/pytest/issues/5235]: outcome.exit is not used with EOF in the pdb wrapper anymore, but only with quit.

Improved Documentation

	#4935 [https://github.com/pytest-dev/pytest/issues/4935]: Expand docs on registering marks and the effect of --strict.

Trivial/Internal Changes

	#4942 [https://github.com/pytest-dev/pytest/issues/4942]: logging.raiseExceptions is not set to False anymore.

	#5013 [https://github.com/pytest-dev/pytest/issues/5013]: pytest now depends on wcwidth [https://pypi.org/project/wcwidth] to properly track unicode character sizes for more precise terminal output.

	#5059 [https://github.com/pytest-dev/pytest/issues/5059]: pytester’s Testdir.popen() uses stdout and stderr via keyword arguments with defaults now (subprocess.PIPE).

	#5069 [https://github.com/pytest-dev/pytest/issues/5069]: The code for the short test summary in the terminal was moved to the terminal plugin.

	#5082 [https://github.com/pytest-dev/pytest/issues/5082]: Improved validation of kwargs for various methods in the pytester plugin.

	#5202 [https://github.com/pytest-dev/pytest/issues/5202]: record_property now emits a PytestWarning when used with junit_family=xunit2: the fixture generates
property tags as children of testcase, which is not permitted according to the most
recent schema [https://github.com/jenkinsci/xunit-plugin/blob/master/src/main/resources/org/jenkinsci/plugins/xunit/types/model/xsd/junit-10.xsd].

	#5239 [https://github.com/pytest-dev/pytest/issues/5239]: Pin pluggy to < 1.0 so we don’t update to 1.0 automatically when
it gets released: there are planned breaking changes, and we want to ensure
pytest properly supports pluggy 1.0.

pytest 4.4.2 (2019-05-08)

Bug Fixes

	#5089 [https://github.com/pytest-dev/pytest/issues/5089]: Fix crash caused by error in __repr__ function with both showlocals and verbose output enabled.

	#5139 [https://github.com/pytest-dev/pytest/issues/5139]: Eliminate core dependency on ‘terminal’ plugin.

	#5229 [https://github.com/pytest-dev/pytest/issues/5229]: Require pluggy>=0.11.0 which reverts a dependency to importlib-metadata added in 0.10.0.
The importlib-metadata package cannot be imported when installed as an egg and causes issues when relying on setup.py to install test dependencies.

Improved Documentation

	#5171 [https://github.com/pytest-dev/pytest/issues/5171]: Doc: pytest_ignore_collect, pytest_collect_directory, pytest_collect_file and pytest_pycollect_makemodule hooks’s ‘path’ parameter documented type is now py.path.local

	#5188 [https://github.com/pytest-dev/pytest/issues/5188]: Improve help for --runxfail flag.

Trivial/Internal Changes

	#5182 [https://github.com/pytest-dev/pytest/issues/5182]: Removed internal and unused _pytest.deprecated.MARK_INFO_ATTRIBUTE.

pytest 4.4.1 (2019-04-15)

Bug Fixes

	#5031 [https://github.com/pytest-dev/pytest/issues/5031]: Environment variables are properly restored when using pytester’s testdir fixture.

	#5039 [https://github.com/pytest-dev/pytest/issues/5039]: Fix regression with --pdbcls, which stopped working with local modules in 4.0.0.

	#5092 [https://github.com/pytest-dev/pytest/issues/5092]: Produce a warning when unknown keywords are passed to pytest.param(...).

	#5098 [https://github.com/pytest-dev/pytest/issues/5098]: Invalidate import caches with monkeypatch.syspath_prepend, which is required with namespace packages being used.

pytest 4.4.0 (2019-03-29)

Features

	#2224 [https://github.com/pytest-dev/pytest/issues/2224]: async test functions are skipped and a warning is emitted when a suitable
async plugin is not installed (such as pytest-asyncio or pytest-trio).

Previously async functions would not execute at all but still be marked as “passed”.

	#2482 [https://github.com/pytest-dev/pytest/issues/2482]: Include new disable_test_id_escaping_and_forfeit_all_rights_to_community_support option to disable ascii-escaping in parametrized values. This may cause a series of problems and as the name makes clear, use at your own risk.

	#4718 [https://github.com/pytest-dev/pytest/issues/4718]: The -p option can now be used to early-load plugins also by entry-point name, instead of just
by module name.

This makes it possible to early load external plugins like pytest-cov in the command-line:

pytest -p pytest_cov

	#4855 [https://github.com/pytest-dev/pytest/issues/4855]: The --pdbcls option handles classes via module attributes now (e.g.
pdb:pdb.Pdb with pdb++ [https://pypi.org/project/pdbpp/]), and its validation was improved.

	#4875 [https://github.com/pytest-dev/pytest/issues/4875]: The testpaths [https://docs.pytest.org/en/latest/reference.html#confval-testpaths] configuration option is now displayed next
to the rootdir and inifile lines in the pytest header if the option is in effect, i.e., directories or file names were
not explicitly passed in the command line.

Also, inifile is only displayed if there’s a configuration file, instead of an empty inifile: string.

	#4911 [https://github.com/pytest-dev/pytest/issues/4911]: Doctests can be skipped now dynamically using pytest.skip().

	#4920 [https://github.com/pytest-dev/pytest/issues/4920]: Internal refactorings have been made in order to make the implementation of the
pytest-subtests [https://github.com/pytest-dev/pytest-subtests] plugin
possible, which adds unittest sub-test support and a new subtests fixture as discussed in
#1367 [https://github.com/pytest-dev/pytest/issues/1367].

For details on the internal refactorings, please see the details on the related PR.

	#4931 [https://github.com/pytest-dev/pytest/issues/4931]: pytester’s LineMatcher asserts that the passed lines are a sequence.

	#4936 [https://github.com/pytest-dev/pytest/issues/4936]: Handle -p plug after -p no:plug.

This can be used to override a blocked plugin (e.g. in “addopts”) from the
command line etc.

	#4951 [https://github.com/pytest-dev/pytest/issues/4951]: Output capturing is handled correctly when only capturing via fixtures (capsys, capfs) with pdb.set_trace().

	#4956 [https://github.com/pytest-dev/pytest/issues/4956]: pytester sets $HOME and $USERPROFILE to the temporary directory during test runs.

This ensures to not load configuration files from the real user’s home directory.

	#4980 [https://github.com/pytest-dev/pytest/issues/4980]: Namespace packages are handled better with monkeypatch.syspath_prepend and testdir.syspathinsert (via pkg_resources.fixup_namespace_packages).

	#4993 [https://github.com/pytest-dev/pytest/issues/4993]: The stepwise plugin reports status information now.

	#5008 [https://github.com/pytest-dev/pytest/issues/5008]: If a setup.cfg file contains [tool:pytest] and also the no longer supported [pytest] section, pytest will use [tool:pytest] ignoring [pytest]. Previously it would unconditionally error out.

This makes it simpler for plugins to support old pytest versions.

Bug Fixes

	#1895 [https://github.com/pytest-dev/pytest/issues/1895]: Fix bug where fixtures requested dynamically via request.getfixturevalue() might be teardown
before the requesting fixture.

	#4851 [https://github.com/pytest-dev/pytest/issues/4851]: pytester unsets PYTEST_ADDOPTS now to not use outer options with testdir.runpytest().

	#4903 [https://github.com/pytest-dev/pytest/issues/4903]: Use the correct modified time for years after 2038 in rewritten .pyc files.

	#4928 [https://github.com/pytest-dev/pytest/issues/4928]: Fix line offsets with ScopeMismatch errors.

	#4957 [https://github.com/pytest-dev/pytest/issues/4957]: -p no:plugin is handled correctly for default (internal) plugins now, e.g. with -p no:capture.

Previously they were loaded (imported) always, making e.g. the capfd fixture available.

	#4968 [https://github.com/pytest-dev/pytest/issues/4968]: The pdb quit command is handled properly when used after the debug command with pdb++ [https://pypi.org/project/pdbpp/].

	#4975 [https://github.com/pytest-dev/pytest/issues/4975]: Fix the interpretation of -qq option where it was being considered as -v instead.

	#4978 [https://github.com/pytest-dev/pytest/issues/4978]: outcomes.Exit is not swallowed in assertrepr_compare anymore.

	#4988 [https://github.com/pytest-dev/pytest/issues/4988]: Close logging’s file handler explicitly when the session finishes.

	#5003 [https://github.com/pytest-dev/pytest/issues/5003]: Fix line offset with mark collection error (off by one).

Improved Documentation

	#4974 [https://github.com/pytest-dev/pytest/issues/4974]: Update docs for pytest_cmdline_parse hook to note availability liminations

Trivial/Internal Changes

	#4718 [https://github.com/pytest-dev/pytest/issues/4718]: pluggy>=0.9 is now required.

	#4815 [https://github.com/pytest-dev/pytest/issues/4815]: funcsigs>=1.0 is now required for Python 2.7.

	#4829 [https://github.com/pytest-dev/pytest/issues/4829]: Some left-over internal code related to yield tests has been removed.

	#4890 [https://github.com/pytest-dev/pytest/issues/4890]: Remove internally unused anypython fixture from the pytester plugin.

	#4912 [https://github.com/pytest-dev/pytest/issues/4912]: Remove deprecated Sphinx directive, add_description_unit(),
pin sphinx-removed-in to >= 0.2.0 to support Sphinx 2.0.

	#4913 [https://github.com/pytest-dev/pytest/issues/4913]: Fix pytest tests invocation with custom PYTHONPATH.

	#4965 [https://github.com/pytest-dev/pytest/issues/4965]: New pytest_report_to_serializable and pytest_report_from_serializable experimental hooks.

These hooks will be used by pytest-xdist, pytest-subtests, and the replacement for
resultlog to serialize and customize reports.

They are experimental, meaning that their details might change or even be removed
completely in future patch releases without warning.

Feedback is welcome from plugin authors and users alike.

	#4987 [https://github.com/pytest-dev/pytest/issues/4987]: Collector.repr_failure respects the --tb option, but only defaults to short now (with auto).

pytest 4.3.1 (2019-03-11)

Bug Fixes

	#4810 [https://github.com/pytest-dev/pytest/issues/4810]: Logging messages inside pytest_runtest_logreport() are now properly captured and displayed.

	#4861 [https://github.com/pytest-dev/pytest/issues/4861]: Improve validation of contents written to captured output so it behaves the same as when capture is disabled.

	#4898 [https://github.com/pytest-dev/pytest/issues/4898]: Fix AttributeError: FixtureRequest has no 'confg' attribute bug in testdir.copy_example.

Trivial/Internal Changes

	#4768 [https://github.com/pytest-dev/pytest/issues/4768]: Avoid pkg_resources import at the top-level.

pytest 4.3.0 (2019-02-16)

Deprecations

	#4724 [https://github.com/pytest-dev/pytest/issues/4724]: pytest.warns() now emits a warning when it receives unknown keyword arguments.

This will be changed into an error in the future.

Features

	#2753 [https://github.com/pytest-dev/pytest/issues/2753]: Usage errors from argparse are mapped to pytest’s UsageError.

	#3711 [https://github.com/pytest-dev/pytest/issues/3711]: Add the --ignore-glob parameter to exclude test-modules with Unix shell-style wildcards.
Add the collect_ignore_glob for conftest.py to exclude test-modules with Unix shell-style wildcards.

	#4698 [https://github.com/pytest-dev/pytest/issues/4698]: The warning about Python 2.7 and 3.4 not being supported in pytest 5.0 has been removed.

In the end it was considered to be more
of a nuisance than actual utility and users of those Python versions shouldn’t have problems as pip will not
install pytest 5.0 on those interpreters.

	#4707 [https://github.com/pytest-dev/pytest/issues/4707]: With the help of new set_log_path() method there is a way to set log_file paths from hooks.

Bug Fixes

	#4651 [https://github.com/pytest-dev/pytest/issues/4651]: --help and --version are handled with UsageError.

	#4782 [https://github.com/pytest-dev/pytest/issues/4782]: Fix AssertionError with collection of broken symlinks with packages.

pytest 4.2.1 (2019-02-12)

Bug Fixes

	#2895 [https://github.com/pytest-dev/pytest/issues/2895]: The pytest_report_collectionfinish hook now is also called with --collect-only.

	#3899 [https://github.com/pytest-dev/pytest/issues/3899]: Do not raise UsageError when an imported package has a pytest_plugins.py child module.

	#4347 [https://github.com/pytest-dev/pytest/issues/4347]: Fix output capturing when using pdb++ with recursive debugging.

	#4592 [https://github.com/pytest-dev/pytest/issues/4592]: Fix handling of collect_ignore via parent conftest.py.

	#4700 [https://github.com/pytest-dev/pytest/issues/4700]: Fix regression where setUpClass would always be called in subclasses even if all tests
were skipped by a unittest.skip() decorator applied in the subclass.

	#4739 [https://github.com/pytest-dev/pytest/issues/4739]: Fix parametrize(... ids=<function>) when the function returns non-strings.

	#4745 [https://github.com/pytest-dev/pytest/issues/4745]: Fix/improve collection of args when passing in __init__.py and a test file.

	#4770 [https://github.com/pytest-dev/pytest/issues/4770]: more_itertools is now constrained to <6.0.0 when required for Python 2.7 compatibility.

	#526 [https://github.com/pytest-dev/pytest/issues/526]: Fix “ValueError: Plugin already registered” exceptions when running in build directories that symlink to actual source.

Improved Documentation

	#3899 [https://github.com/pytest-dev/pytest/issues/3899]: Add note to plugins.rst that pytest_plugins should not be used as a name for a user module containing plugins.

	#4324 [https://github.com/pytest-dev/pytest/issues/4324]: Document how to use raises and does_not_raise to write parametrized tests with conditional raises.

	#4709 [https://github.com/pytest-dev/pytest/issues/4709]: Document how to customize test failure messages when using
pytest.warns.

Trivial/Internal Changes

	#4741 [https://github.com/pytest-dev/pytest/issues/4741]: Some verbosity related attributes of the TerminalReporter plugin are now
read only properties.

pytest 4.2.0 (2019-01-30)

Features

	#3094 [https://github.com/pytest-dev/pytest/issues/3094]: Classic xunit-style [https://docs.pytest.org/en/latest/xunit_setup.html] functions and methods
now obey the scope of autouse fixtures.

This fixes a number of surprising issues like setup_method being called before session-scoped
autouse fixtures (see #517 [https://github.com/pytest-dev/pytest/issues/517] for an example).

	#4627 [https://github.com/pytest-dev/pytest/issues/4627]: Display a message at the end of the test session when running under Python 2.7 and 3.4 that pytest 5.0 will no longer
support those Python versions.

	#4660 [https://github.com/pytest-dev/pytest/issues/4660]: The number of selected tests now are also displayed when the -k or -m flags are used.

	#4688 [https://github.com/pytest-dev/pytest/issues/4688]: pytest_report_teststatus hook now can also receive a config parameter.

	#4691 [https://github.com/pytest-dev/pytest/issues/4691]: pytest_terminal_summary hook now can also receive a config parameter.

Bug Fixes

	#3547 [https://github.com/pytest-dev/pytest/issues/3547]: --junitxml can emit XML compatible with Jenkins xUnit.
junit_family INI option accepts legacy|xunit1, which produces old style output, and xunit2 that conforms more strictly to https://github.com/jenkinsci/xunit-plugin/blob/xunit-2.3.2/src/main/resources/org/jenkinsci/plugins/xunit/types/model/xsd/junit-10.xsd

	#4280 [https://github.com/pytest-dev/pytest/issues/4280]: Improve quitting from pdb, especially with --trace.

Using q[quit] after pdb.set_trace() will quit pytest also.

	#4402 [https://github.com/pytest-dev/pytest/issues/4402]: Warning summary now groups warnings by message instead of by test id.

This makes the output more compact and better conveys the general idea of how much code is
actually generating warnings, instead of how many tests call that code.

	#4536 [https://github.com/pytest-dev/pytest/issues/4536]: monkeypatch.delattr handles class descriptors like staticmethod/classmethod.

	#4649 [https://github.com/pytest-dev/pytest/issues/4649]: Restore marks being considered keywords for keyword expressions.

	#4653 [https://github.com/pytest-dev/pytest/issues/4653]: tmp_path fixture and other related ones provides resolved path (a.k.a real path)

	#4667 [https://github.com/pytest-dev/pytest/issues/4667]: pytest_terminal_summary uses result from pytest_report_teststatus hook, rather than hardcoded strings.

	#4669 [https://github.com/pytest-dev/pytest/issues/4669]: Correctly handle unittest.SkipTest exception containing non-ascii characters on Python 2.

	#4680 [https://github.com/pytest-dev/pytest/issues/4680]: Ensure the tmpdir and the tmp_path fixtures are the same folder.

	#4681 [https://github.com/pytest-dev/pytest/issues/4681]: Ensure tmp_path is always a real path.

Trivial/Internal Changes

	#4643 [https://github.com/pytest-dev/pytest/issues/4643]: Use a.item() instead of the deprecated np.asscalar(a) in pytest.approx.

np.asscalar has been deprecated [https://github.com/numpy/numpy/blob/master/doc/release/1.16.0-notes.rst#new-deprecations] in numpy 1.16..

	#4657 [https://github.com/pytest-dev/pytest/issues/4657]: Copy saferepr from pylib

	#4668 [https://github.com/pytest-dev/pytest/issues/4668]: The verbose word for expected failures in the teststatus report changes from xfail to XFAIL to be consistent with other test outcomes.

pytest 4.1.1 (2019-01-12)

Bug Fixes

	#2256 [https://github.com/pytest-dev/pytest/issues/2256]: Show full repr with assert a==b and -vv.

	#3456 [https://github.com/pytest-dev/pytest/issues/3456]: Extend Doctest-modules to ignore mock objects.

	#4617 [https://github.com/pytest-dev/pytest/issues/4617]: Fixed pytest.warns bug when context manager is reused (e.g. multiple parametrization).

	#4631 [https://github.com/pytest-dev/pytest/issues/4631]: Don’t rewrite assertion when __getattr__ is broken

Improved Documentation

	#3375 [https://github.com/pytest-dev/pytest/issues/3375]: Document that using setup.cfg may crash other tools or cause hard to track down problems because it uses a different parser than pytest.ini or tox.ini files.

Trivial/Internal Changes

	#4602 [https://github.com/pytest-dev/pytest/issues/4602]: Uninstall hypothesis in regen tox env.

pytest 4.1.0 (2019-01-05)

Removals

	#2169 [https://github.com/pytest-dev/pytest/issues/2169]: pytest.mark.parametrize: in previous versions, errors raised by id functions were suppressed and changed into warnings. Now the exceptions are propagated, along with a pytest message informing the node, parameter value and index where the exception occurred.

	#3078 [https://github.com/pytest-dev/pytest/issues/3078]: Remove legacy internal warnings system: config.warn, Node.warn. The pytest_logwarning now issues a warning when implemented.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#config-warn-and-node-warn] on information on how to update your code.

	#3079 [https://github.com/pytest-dev/pytest/issues/3079]: Removed support for yield tests - they are fundamentally broken because they don’t support fixtures properly since collection and test execution were separated.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#yield-tests] on information on how to update your code.

	#3082 [https://github.com/pytest-dev/pytest/issues/3082]: Removed support for applying marks directly to values in @pytest.mark.parametrize. Use pytest.param instead.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize] on information on how to update your code.

	#3083 [https://github.com/pytest-dev/pytest/issues/3083]: Removed Metafunc.addcall. This was the predecessor mechanism to @pytest.mark.parametrize.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#metafunc-addcall] on information on how to update your code.

	#3085 [https://github.com/pytest-dev/pytest/issues/3085]: Removed support for passing strings to pytest.main. Now, always pass a list of strings instead.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#passing-command-line-string-to-pytest-main] on information on how to update your code.

	#3086 [https://github.com/pytest-dev/pytest/issues/3086]: [pytest] section in setup.cfg files is no longer supported, use [tool:pytest] instead. setup.cfg files
are meant for use with distutils, and a section named pytest has notoriously been a source of conflicts and bugs.

Note that for pytest.ini and tox.ini files the section remains [pytest].

	#3616 [https://github.com/pytest-dev/pytest/issues/3616]: Removed the deprecated compat properties for node.Class/Function/Module - use pytest.Class/Function/Module now.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#internal-classes-accessed-through-node] on information on how to update your code.

	#4421 [https://github.com/pytest-dev/pytest/issues/4421]: Removed the implementation of the pytest_namespace hook.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#pytest-namespace] on information on how to update your code.

	#4489 [https://github.com/pytest-dev/pytest/issues/4489]: Removed request.cached_setup. This was the predecessor mechanism to modern fixtures.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#cached-setup] on information on how to update your code.

	#4535 [https://github.com/pytest-dev/pytest/issues/4535]: Removed the deprecated PyCollector.makeitem method. This method was made public by mistake a long time ago.

	#4543 [https://github.com/pytest-dev/pytest/issues/4543]: Removed support to define fixtures using the pytest_funcarg__ prefix. Use the @pytest.fixture decorator instead.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#pytest-funcarg-prefix] on information on how to update your code.

	#4545 [https://github.com/pytest-dev/pytest/issues/4545]: Calling fixtures directly is now always an error instead of a warning.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#calling-fixtures-directly] on information on how to update your code.

	#4546 [https://github.com/pytest-dev/pytest/issues/4546]: Remove Node.get_marker(name) the return value was not usable for more than a existence check.

Use Node.get_closest_marker(name) as a replacement.

	#4547 [https://github.com/pytest-dev/pytest/issues/4547]: The deprecated record_xml_property fixture has been removed, use the more generic record_property instead.

See our docs [https://docs.pytest.org/en/latest/deprecations.html#record-xml-property] for more information.

	#4548 [https://github.com/pytest-dev/pytest/issues/4548]: An error is now raised if the pytest_plugins variable is defined in a non-top-level conftest.py file (i.e., not residing in the rootdir).

See our docs [https://docs.pytest.org/en/latest/deprecations.html#pytest-plugins-in-non-top-level-conftest-files] for more information.

	#891 [https://github.com/pytest-dev/pytest/issues/891]: Remove testfunction.markername attributes - use Node.iter_markers(name=None) to iterate them.

Deprecations

	#3050 [https://github.com/pytest-dev/pytest/issues/3050]: Deprecated the pytest.config global.

See https://docs.pytest.org/en/latest/deprecations.html#pytest-config-global for rationale.

	#3974 [https://github.com/pytest-dev/pytest/issues/3974]: Passing the message parameter of pytest.raises now issues a DeprecationWarning.

It is a common mistake to think this parameter will match the exception message, while in fact
it only serves to provide a custom message in case the pytest.raises check fails. To avoid this
mistake and because it is believed to be little used, pytest is deprecating it without providing
an alternative for the moment.

If you have concerns about this, please comment on issue #3974 [https://github.com/pytest-dev/pytest/issues/3974].

	#4435 [https://github.com/pytest-dev/pytest/issues/4435]: Deprecated raises(..., 'code(as_a_string)') and warns(..., 'code(as_a_string)').

See https://docs.pytest.org/en/latest/deprecations.html#raises-warns-exec for rationale and examples.

Features

	#3191 [https://github.com/pytest-dev/pytest/issues/3191]: A warning is now issued when assertions are made for None.

This is a common source of confusion among new users, which write:

assert mocked_object.assert_called_with(3, 4, 5, key="value")

When they should write:

mocked_object.assert_called_with(3, 4, 5, key="value")

Because the assert_called_with method of mock objects already executes an assertion.

This warning will not be issued when None is explicitly checked. An assertion like:

assert variable is None

will not issue the warning.

	#3632 [https://github.com/pytest-dev/pytest/issues/3632]: Richer equality comparison introspection on AssertionError for objects created using attrs [http://www.attrs.org/en/stable/] or dataclasses [https://docs.python.org/3/library/dataclasses.html] (Python 3.7+, backported to 3.6 [https://pypi.org/project/dataclasses]).

	#4278 [https://github.com/pytest-dev/pytest/issues/4278]: CACHEDIR.TAG files are now created inside cache directories.

Those files are part of the Cache Directory Tagging Standard [http://www.bford.info/cachedir/spec.html], and can
be used by backup or synchronization programs to identify pytest’s cache directory as such.

	#4292 [https://github.com/pytest-dev/pytest/issues/4292]: pytest.outcomes.Exit is derived from SystemExit instead of KeyboardInterrupt. This allows us to better handle pdb exiting.

	#4371 [https://github.com/pytest-dev/pytest/issues/4371]: Updated the --collect-only option to display test descriptions when ran using --verbose.

	#4386 [https://github.com/pytest-dev/pytest/issues/4386]: Restructured ExceptionInfo object construction and ensure incomplete instances have a repr/str.

	#4416 [https://github.com/pytest-dev/pytest/issues/4416]: pdb: added support for keyword arguments with pdb.set_trace.

It handles header similar to Python 3.7 does it, and forwards any
other keyword arguments to the Pdb constructor.

This allows for __import__("pdb").set_trace(skip=["foo.*"]).

	#4483 [https://github.com/pytest-dev/pytest/issues/4483]: Added ini parameter junit_duration_report to optionally report test call durations, excluding setup and teardown times.

The JUnit XML specification and the default pytest behavior is to include setup and teardown times in the test duration
report. You can include just the call durations instead (excluding setup and teardown) by adding this to your pytest.ini file:

[pytest]
junit_duration_report = call

	#4532 [https://github.com/pytest-dev/pytest/issues/4532]: -ra now will show errors and failures last, instead of as the first items in the summary.

This makes it easier to obtain a list of errors and failures to run tests selectively.

	#4599 [https://github.com/pytest-dev/pytest/issues/4599]: pytest.importorskip now supports a reason parameter, which will be shown when the
requested module cannot be imported.

Bug Fixes

	#3532 [https://github.com/pytest-dev/pytest/issues/3532]: -p now accepts its argument without a space between the value, for example -pmyplugin.

	#4327 [https://github.com/pytest-dev/pytest/issues/4327]: approx again works with more generic containers, more precisely instances of Iterable and Sized instead of more restrictive Sequence.

	#4397 [https://github.com/pytest-dev/pytest/issues/4397]: Ensure that node ids are printable.

	#4435 [https://github.com/pytest-dev/pytest/issues/4435]: Fixed raises(..., 'code(string)') frame filename.

	#4458 [https://github.com/pytest-dev/pytest/issues/4458]: Display actual test ids in --collect-only.

Improved Documentation

	#4557 [https://github.com/pytest-dev/pytest/issues/4557]: Markers example documentation page updated to support latest pytest version.

	#4558 [https://github.com/pytest-dev/pytest/issues/4558]: Update cache documentation example to correctly show cache hit and miss.

	#4580 [https://github.com/pytest-dev/pytest/issues/4580]: Improved detailed summary report documentation.

Trivial/Internal Changes

	#4447 [https://github.com/pytest-dev/pytest/issues/4447]: Changed the deprecation type of --result-log to PytestDeprecationWarning.

It was decided to remove this feature at the next major revision.

pytest 4.0.2 (2018-12-13)

Bug Fixes

	#4265 [https://github.com/pytest-dev/pytest/issues/4265]: Validate arguments from the PYTEST_ADDOPTS environment variable and the addopts ini option separately.

	#4435 [https://github.com/pytest-dev/pytest/issues/4435]: Fix raises(..., 'code(string)') frame filename.

	#4500 [https://github.com/pytest-dev/pytest/issues/4500]: When a fixture yields and a log call is made after the test runs, and, if the test is interrupted, capture attributes are None.

	#4538 [https://github.com/pytest-dev/pytest/issues/4538]: Raise TypeError for with raises(..., match=<non-None falsey value>).

Improved Documentation

	#1495 [https://github.com/pytest-dev/pytest/issues/1495]: Document common doctest fixture directory tree structure pitfalls

pytest 4.0.1 (2018-11-23)

Bug Fixes

	#3952 [https://github.com/pytest-dev/pytest/issues/3952]: Display warnings before “short test summary info” again, but still later warnings in the end.

	#4386 [https://github.com/pytest-dev/pytest/issues/4386]: Handle uninitialized exceptioninfo in repr/str.

	#4393 [https://github.com/pytest-dev/pytest/issues/4393]: Do not create .gitignore/README.md files in existing cache directories.

	#4400 [https://github.com/pytest-dev/pytest/issues/4400]: Rearrange warning handling for the yield test errors so the opt-out in 4.0.x correctly works.

	#4405 [https://github.com/pytest-dev/pytest/issues/4405]: Fix collection of testpaths with --pyargs.

	#4412 [https://github.com/pytest-dev/pytest/issues/4412]: Fix assertion rewriting involving Starred + side-effects.

	#4425 [https://github.com/pytest-dev/pytest/issues/4425]: Ensure we resolve the absolute path when the given --basetemp is a relative path.

Trivial/Internal Changes

	#4315 [https://github.com/pytest-dev/pytest/issues/4315]: Use pkg_resources.parse_version instead of LooseVersion in minversion check.

	#4440 [https://github.com/pytest-dev/pytest/issues/4440]: Adjust the stack level of some internal pytest warnings.

pytest 4.0.0 (2018-11-13)

Removals

	#3737 [https://github.com/pytest-dev/pytest/issues/3737]: RemovedInPytest4Warnings are now errors by default.

Following our plan to remove deprecated features with as little disruption as
possible, all warnings of type RemovedInPytest4Warnings now generate errors
instead of warning messages.

The affected features will be effectively removed in pytest 4.1, so please consult the
Deprecations and Removals [https://docs.pytest.org/en/latest/deprecations.html]
section in the docs for directions on how to update existing code.

In the pytest 4.0.X series, it is possible to change the errors back into warnings as a stop
gap measure by adding this to your pytest.ini file:

[pytest]
filterwarnings =
 ignore::pytest.RemovedInPytest4Warning

But this will stop working when pytest 4.1 is released.

If you have concerns about the removal of a specific feature, please add a
comment to #4348 [https://github.com/pytest-dev/pytest/issues/4348].

	#4358 [https://github.com/pytest-dev/pytest/issues/4358]: Remove the ::() notation to denote a test class instance in node ids.

Previously, node ids that contain test instances would use ::() to denote the instance like this:

test_foo.py::Test::()::test_bar

The extra ::() was puzzling to most users and has been removed, so that the test id becomes now:

test_foo.py::Test::test_bar

This change could not accompany a deprecation period as is usual when user-facing functionality changes because
it was not really possible to detect when the functionality was being used explicitly.

The extra ::() might have been removed in some places internally already,
which then led to confusion in places where it was expected, e.g. with
--deselect (#4127 [https://github.com/pytest-dev/pytest/issues/4127]).

Test class instances are also not listed with --collect-only anymore.

Features

	#4270 [https://github.com/pytest-dev/pytest/issues/4270]: The cache_dir option uses $TOX_ENV_DIR as prefix (if set in the environment).

This uses a different cache per tox environment by default.

Bug Fixes

	#3554 [https://github.com/pytest-dev/pytest/issues/3554]: Fix CallInfo.__repr__ for when the call is not finished yet.

pytest 3.10.1 (2018-11-11)

Bug Fixes

	#4287 [https://github.com/pytest-dev/pytest/issues/4287]: Fix nested usage of debugging plugin (pdb), e.g. with pytester’s testdir.runpytest.

	#4304 [https://github.com/pytest-dev/pytest/issues/4304]: Block the stepwise plugin if cacheprovider is also blocked, as one depends on the other.

	#4306 [https://github.com/pytest-dev/pytest/issues/4306]: Parse minversion as an actual version and not as dot-separated strings.

	#4310 [https://github.com/pytest-dev/pytest/issues/4310]: Fix duplicate collection due to multiple args matching the same packages.

	#4321 [https://github.com/pytest-dev/pytest/issues/4321]: Fix item.nodeid with resolved symlinks.

	#4325 [https://github.com/pytest-dev/pytest/issues/4325]: Fix collection of direct symlinked files, where the target does not match python_files.

	#4329 [https://github.com/pytest-dev/pytest/issues/4329]: Fix TypeError in report_collect with _collect_report_last_write.

Trivial/Internal Changes

	#4305 [https://github.com/pytest-dev/pytest/issues/4305]: Replace byte/unicode helpers in test_capture with python level syntax.

pytest 3.10.0 (2018-11-03)

Features

	#2619 [https://github.com/pytest-dev/pytest/issues/2619]: Resume capturing output after continue with __import__("pdb").set_trace().

This also adds a new pytest_leave_pdb hook, and passes in pdb to the
existing pytest_enter_pdb hook.

	#4147 [https://github.com/pytest-dev/pytest/issues/4147]: Add --sw, --stepwise as an alternative to --lf -x for stopping at the first failure, but starting the next test invocation from that test. See the documentation [https://docs.pytest.org/en/latest/cache.html#stepwise] for more info.

	#4188 [https://github.com/pytest-dev/pytest/issues/4188]: Make --color emit colorful dots when not running in verbose mode. Earlier, it would only colorize the test-by-test output if --verbose was also passed.

	#4225 [https://github.com/pytest-dev/pytest/issues/4225]: Improve performance with collection reporting in non-quiet mode with terminals.

The “collecting …” message is only printed/updated every 0.5s.

Bug Fixes

	#2701 [https://github.com/pytest-dev/pytest/issues/2701]: Fix false RemovedInPytest4Warning: usage of Session... is deprecated, please use pytest warnings.

	#4046 [https://github.com/pytest-dev/pytest/issues/4046]: Fix problems with running tests in package __init__.py files.

	#4260 [https://github.com/pytest-dev/pytest/issues/4260]: Swallow warnings during anonymous compilation of source.

	#4262 [https://github.com/pytest-dev/pytest/issues/4262]: Fix access denied error when deleting stale directories created by tmpdir / tmp_path.

	#611 [https://github.com/pytest-dev/pytest/issues/611]: Naming a fixture request will now raise a warning: the request fixture is internal and
should not be overwritten as it will lead to internal errors.

	#4266 [https://github.com/pytest-dev/pytest/issues/4266]: Handle (ignore) exceptions raised during collection, e.g. with Django’s LazySettings proxy class.

Improved Documentation

	#4255 [https://github.com/pytest-dev/pytest/issues/4255]: Added missing documentation about the fact that module names passed to filter warnings are not regex-escaped.

Trivial/Internal Changes

	#4272 [https://github.com/pytest-dev/pytest/issues/4272]: Display cachedir also in non-verbose mode if non-default.

	#4277 [https://github.com/pytest-dev/pytest/issues/4277]: pdb: improve message about output capturing with set_trace.

Do not display “IO-capturing turned off/on” when -s is used to avoid
confusion.

	#4279 [https://github.com/pytest-dev/pytest/issues/4279]: Improve message and stack level of warnings issued by monkeypatch.setenv when the value of the environment variable is not a str.

pytest 3.9.3 (2018-10-27)

Bug Fixes

	#4174 [https://github.com/pytest-dev/pytest/issues/4174]: Fix “ValueError: Plugin already registered” with conftest plugins via symlink.

	#4181 [https://github.com/pytest-dev/pytest/issues/4181]: Handle race condition between creation and deletion of temporary folders.

	#4221 [https://github.com/pytest-dev/pytest/issues/4221]: Fix bug where the warning summary at the end of the test session was not showing the test where the warning was originated.

	#4243 [https://github.com/pytest-dev/pytest/issues/4243]: Fix regression when stacklevel for warnings was passed as positional argument on python2.

Improved Documentation

	#3851 [https://github.com/pytest-dev/pytest/issues/3851]: Add reference to empty_parameter_set_mark ini option in documentation of @pytest.mark.parametrize

Trivial/Internal Changes

	#4028 [https://github.com/pytest-dev/pytest/issues/4028]: Revert patching of sys.breakpointhook since it appears to do nothing.

	#4233 [https://github.com/pytest-dev/pytest/issues/4233]: Apply an import sorter (reorder-python-imports) to the codebase.

	#4248 [https://github.com/pytest-dev/pytest/issues/4248]: Remove use of unnecessary compat shim, six.binary_type

pytest 3.9.2 (2018-10-22)

Bug Fixes

	#2909 [https://github.com/pytest-dev/pytest/issues/2909]: Improve error message when a recursive dependency between fixtures is detected.

	#3340 [https://github.com/pytest-dev/pytest/issues/3340]: Fix logging messages not shown in hooks pytest_sessionstart() and pytest_sessionfinish().

	#3533 [https://github.com/pytest-dev/pytest/issues/3533]: Fix unescaped XML raw objects in JUnit report for skipped tests

	#3691 [https://github.com/pytest-dev/pytest/issues/3691]: Python 2: safely format warning message about passing unicode strings to warnings.warn, which may cause
surprising MemoryError exception when monkey patching warnings.warn itself.

	#4026 [https://github.com/pytest-dev/pytest/issues/4026]: Improve error message when it is not possible to determine a function’s signature.

	#4177 [https://github.com/pytest-dev/pytest/issues/4177]: Pin setuptools>=40.0 to support py_modules in setup.cfg

	#4179 [https://github.com/pytest-dev/pytest/issues/4179]: Restore the tmpdir behaviour of symlinking the current test run.

	#4192 [https://github.com/pytest-dev/pytest/issues/4192]: Fix filename reported by warnings.warn when using recwarn under python2.

pytest 3.9.1 (2018-10-16)

Features

	#4159 [https://github.com/pytest-dev/pytest/issues/4159]: For test-suites containing test classes, the information about the subclassed
module is now output only if a higher verbosity level is specified (at least
“-vv”).

pytest 3.9.0 (2018-10-15 - not published due to a release automation bug)

Deprecations

	#3616 [https://github.com/pytest-dev/pytest/issues/3616]: The following accesses have been documented as deprecated for years, but are now actually emitting deprecation warnings.

	Access of Module, Function, Class, Instance, File and Item through Node instances. Now
users will this warning:

usage of Function.Module is deprecated, please use pytest.Module instead

Users should just import pytest and access those objects using the pytest module.

	request.cached_setup, this was the precursor of the setup/teardown mechanism available to fixtures. You can
consult funcarg comparison section in the docs [https://docs.pytest.org/en/latest/funcarg_compare.html].

	Using objects named "Class" as a way to customize the type of nodes that are collected in Collector
subclasses has been deprecated. Users instead should use pytest_collect_make_item to customize node types during
collection.

This issue should affect only advanced plugins who create new collection types, so if you see this warning
message please contact the authors so they can change the code.

	The warning that produces the message below has changed to RemovedInPytest4Warning:

getfuncargvalue is deprecated, use getfixturevalue

	#3988 [https://github.com/pytest-dev/pytest/issues/3988]: Add a Deprecation warning for pytest.ensuretemp as it was deprecated since a while.

Features

	#2293 [https://github.com/pytest-dev/pytest/issues/2293]: Improve usage errors messages by hiding internal details which can be distracting and noisy.

This has the side effect that some error conditions that previously raised generic errors (such as
ValueError for unregistered marks) are now raising Failed exceptions.

	#3332 [https://github.com/pytest-dev/pytest/issues/3332]: Improve the error displayed when a conftest.py file could not be imported.

In order to implement this, a new chain parameter was added to ExceptionInfo.getrepr
to show or hide chained tracebacks in Python 3 (defaults to True).

	#3849 [https://github.com/pytest-dev/pytest/issues/3849]: Add empty_parameter_set_mark=fail_at_collect ini option for raising an exception when parametrize collects an empty set.

	#3964 [https://github.com/pytest-dev/pytest/issues/3964]: Log messages generated in the collection phase are shown when
live-logging is enabled and/or when they are logged to a file.

	#3985 [https://github.com/pytest-dev/pytest/issues/3985]: Introduce tmp_path as a fixture providing a Path object.

	#4013 [https://github.com/pytest-dev/pytest/issues/4013]: Deprecation warnings are now shown even if you customize the warnings filters yourself. In the previous version
any customization would override pytest’s filters and deprecation warnings would fall back to being hidden by default.

	#4073 [https://github.com/pytest-dev/pytest/issues/4073]: Allow specification of timeout for Testdir.runpytest_subprocess() and Testdir.run().

	#4098 [https://github.com/pytest-dev/pytest/issues/4098]: Add returncode argument to pytest.exit() to exit pytest with a specific return code.

	#4102 [https://github.com/pytest-dev/pytest/issues/4102]: Reimplement pytest.deprecated_call using pytest.warns so it supports the match='...' keyword argument.

This has the side effect that pytest.deprecated_call now raises pytest.fail.Exception instead
of AssertionError.

	#4149 [https://github.com/pytest-dev/pytest/issues/4149]: Require setuptools>=30.3 and move most of the metadata to setup.cfg.

Bug Fixes

	#2535 [https://github.com/pytest-dev/pytest/issues/2535]: Improve error message when test functions of unittest.TestCase subclasses use a parametrized fixture.

	#3057 [https://github.com/pytest-dev/pytest/issues/3057]: request.fixturenames now correctly returns the name of fixtures created by request.getfixturevalue().

	#3946 [https://github.com/pytest-dev/pytest/issues/3946]: Warning filters passed as command line options using -W now take precedence over filters defined in ini
configuration files.

	#4066 [https://github.com/pytest-dev/pytest/issues/4066]: Fix source reindenting by using textwrap.dedent directly.

	#4102 [https://github.com/pytest-dev/pytest/issues/4102]: pytest.warn will capture previously-warned warnings in Python 2. Previously they were never raised.

	#4108 [https://github.com/pytest-dev/pytest/issues/4108]: Resolve symbolic links for args.

This fixes running pytest tests/test_foo.py::test_bar, where tests
is a symlink to project/app/tests:
previously project/app/conftest.py would be ignored for fixtures then.

	#4132 [https://github.com/pytest-dev/pytest/issues/4132]: Fix duplicate printing of internal errors when using --pdb.

	#4135 [https://github.com/pytest-dev/pytest/issues/4135]: pathlib based tmpdir cleanup now correctly handles symlinks in the folder.

	#4152 [https://github.com/pytest-dev/pytest/issues/4152]: Display the filename when encountering SyntaxWarning.

Improved Documentation

	#3713 [https://github.com/pytest-dev/pytest/issues/3713]: Update usefixtures documentation to clarify that it can’t be used with fixture functions.

	#4058 [https://github.com/pytest-dev/pytest/issues/4058]: Update fixture documentation to specify that a fixture can be invoked twice in the scope it’s defined for.

	#4064 [https://github.com/pytest-dev/pytest/issues/4064]: According to unittest.rst, setUpModule and tearDownModule were not implemented, but it turns out they are. So updated the documentation for unittest.

	#4151 [https://github.com/pytest-dev/pytest/issues/4151]: Add tempir testing example to CONTRIBUTING.rst guide

Trivial/Internal Changes

	#2293 [https://github.com/pytest-dev/pytest/issues/2293]: The internal MarkerError exception has been removed.

	#3988 [https://github.com/pytest-dev/pytest/issues/3988]: Port the implementation of tmpdir to pathlib.

	#4063 [https://github.com/pytest-dev/pytest/issues/4063]: Exclude 0.00 second entries from --duration output unless -vv is passed on the command-line.

	#4093 [https://github.com/pytest-dev/pytest/issues/4093]: Fixed formatting of string literals in internal tests.

pytest 3.8.2 (2018-10-02)

Deprecations and Removals

	#4036 [https://github.com/pytest-dev/pytest/issues/4036]: The item parameter of pytest_warning_captured hook is now documented as deprecated. We realized only after
the 3.8 release that this parameter is incompatible with pytest-xdist.

Our policy is to not deprecate features during bugfix releases, but in this case we believe it makes sense as we are
only documenting it as deprecated, without issuing warnings which might potentially break test suites. This will get
the word out that hook implementers should not use this parameter at all.

In a future release item will always be None and will emit a proper warning when a hook implementation
makes use of it.

Bug Fixes

	#3539 [https://github.com/pytest-dev/pytest/issues/3539]: Fix reload on assertion rewritten modules.

	#4034 [https://github.com/pytest-dev/pytest/issues/4034]: The .user_properties attribute of TestReport objects is a list
of (name, value) tuples, but could sometimes be instantiated as a tuple
of tuples. It is now always a list.

	#4039 [https://github.com/pytest-dev/pytest/issues/4039]: No longer issue warnings about using pytest_plugins in non-top-level directories when using --pyargs: the
current --pyargs mechanism is not reliable and might give false negatives.

	#4040 [https://github.com/pytest-dev/pytest/issues/4040]: Exclude empty reports for passed tests when -rP option is used.

	#4051 [https://github.com/pytest-dev/pytest/issues/4051]: Improve error message when an invalid Python expression is passed to the -m option.

	#4056 [https://github.com/pytest-dev/pytest/issues/4056]: MonkeyPatch.setenv and MonkeyPatch.delenv issue a warning if the environment variable name is not str on Python 2.

In Python 2, adding unicode keys to os.environ causes problems with subprocess (and possible other modules),
making this a subtle bug specially susceptible when used with from __future__ import unicode_literals.

Improved Documentation

	#3928 [https://github.com/pytest-dev/pytest/issues/3928]: Add possible values for fixture scope to docs.

pytest 3.8.1 (2018-09-22)

Bug Fixes

	#3286 [https://github.com/pytest-dev/pytest/issues/3286]: .pytest_cache directory is now automatically ignored by Git. Users who would like to contribute a solution for other SCMs please consult/comment on this issue.

	#3749 [https://github.com/pytest-dev/pytest/issues/3749]: Fix the following error during collection of tests inside packages:

TypeError: object of type 'Package' has no len()

	#3941 [https://github.com/pytest-dev/pytest/issues/3941]: Fix bug where indirect parametrization would consider the scope of all fixtures used by the test function to determine the parametrization scope, and not only the scope of the fixtures being parametrized.

	#3973 [https://github.com/pytest-dev/pytest/issues/3973]: Fix crash of the assertion rewriter if a test changed the current working directory without restoring it afterwards.

	#3998 [https://github.com/pytest-dev/pytest/issues/3998]: Fix issue that prevented some caplog properties (for example record_tuples) from being available when entering the debugger with --pdb.

	#3999 [https://github.com/pytest-dev/pytest/issues/3999]: Fix UnicodeDecodeError in python2.x when a class returns a non-ascii binary __repr__ in an assertion which also contains non-ascii text.

Improved Documentation

	#3996 [https://github.com/pytest-dev/pytest/issues/3996]: New Deprecations and Removals [https://docs.pytest.org/en/latest/deprecations.html] page shows all currently
deprecated features, the rationale to do so, and alternatives to update your code. It also list features removed
from pytest in past major releases to help those with ancient pytest versions to upgrade.

Trivial/Internal Changes

	#3955 [https://github.com/pytest-dev/pytest/issues/3955]: Improve pre-commit detection for changelog filenames

	#3975 [https://github.com/pytest-dev/pytest/issues/3975]: Remove legacy code around im_func as that was python2 only

pytest 3.8.0 (2018-09-05)

Deprecations and Removals

	#2452 [https://github.com/pytest-dev/pytest/issues/2452]: Config.warn and Node.warn have been
deprecated, see https://docs.pytest.org/en/latest/deprecations.html#config-warn-and-node-warn for rationale and
examples.

	#3936 [https://github.com/pytest-dev/pytest/issues/3936]: @pytest.mark.filterwarnings second parameter is no longer regex-escaped,
making it possible to actually use regular expressions to check the warning message.

Note: regex-escaping the match string was an implementation oversight that might break test suites which depend
on the old behavior.

Features

	#2452 [https://github.com/pytest-dev/pytest/issues/2452]: Internal pytest warnings are now issued using the standard warnings module, making it possible to use
the standard warnings filters to manage those warnings. This introduces PytestWarning,
PytestDeprecationWarning and RemovedInPytest4Warning warning types as part of the public API.

Consult the documentation [https://docs.pytest.org/en/latest/warnings.html#internal-pytest-warnings] for more info.

	#2908 [https://github.com/pytest-dev/pytest/issues/2908]: DeprecationWarning and PendingDeprecationWarning are now shown by default if no other warning filter is
configured. This makes pytest more compliant with
PEP-0506 [https://www.python.org/dev/peps/pep-0565/#recommended-filter-settings-for-test-runners]. See
the docs [https://docs.pytest.org/en/latest/warnings.html#deprecationwarning-and-pendingdeprecationwarning] for
more info.

	#3251 [https://github.com/pytest-dev/pytest/issues/3251]: Warnings are now captured and displayed during test collection.

	#3784 [https://github.com/pytest-dev/pytest/issues/3784]: PYTEST_DISABLE_PLUGIN_AUTOLOAD environment variable disables plugin auto-loading when set.

	#3829 [https://github.com/pytest-dev/pytest/issues/3829]: Added the count option to console_output_style to enable displaying the progress as a count instead of a percentage.

	#3837 [https://github.com/pytest-dev/pytest/issues/3837]: Added support for ‘xfailed’ and ‘xpassed’ outcomes to the pytester.RunResult.assert_outcomes signature.

Bug Fixes

	#3911 [https://github.com/pytest-dev/pytest/issues/3911]: Terminal writer now takes into account unicode character width when writing out progress.

	#3913 [https://github.com/pytest-dev/pytest/issues/3913]: Pytest now returns with correct exit code (EXIT_USAGEERROR, 4) when called with unknown arguments.

	#3918 [https://github.com/pytest-dev/pytest/issues/3918]: Improve performance of assertion rewriting.

Improved Documentation

	#3566 [https://github.com/pytest-dev/pytest/issues/3566]: Added a blurb in usage.rst for the usage of -r flag which is used to show an extra test summary info.

	#3907 [https://github.com/pytest-dev/pytest/issues/3907]: Corrected type of the exceptions collection passed to xfail: raises argument accepts a tuple instead of list.

Trivial/Internal Changes

	#3853 [https://github.com/pytest-dev/pytest/issues/3853]: Removed "run all (no recorded failures)" message printed with --failed-first and --last-failed when there are no failed tests.

pytest 3.7.4 (2018-08-29)

Bug Fixes

	#3506 [https://github.com/pytest-dev/pytest/issues/3506]: Fix possible infinite recursion when writing .pyc files.

	#3853 [https://github.com/pytest-dev/pytest/issues/3853]: Cache plugin now obeys the -q flag when --last-failed and --failed-first flags are used.

	#3883 [https://github.com/pytest-dev/pytest/issues/3883]: Fix bad console output when using console_output_style=classic.

	#3888 [https://github.com/pytest-dev/pytest/issues/3888]: Fix macOS specific code using capturemanager plugin in doctests.

Improved Documentation

	#3902 [https://github.com/pytest-dev/pytest/issues/3902]: Fix pytest.org links

pytest 3.7.3 (2018-08-26)

Bug Fixes

	#3033 [https://github.com/pytest-dev/pytest/issues/3033]: Fixtures during teardown can again use capsys and capfd to inspect output captured during tests.

	#3773 [https://github.com/pytest-dev/pytest/issues/3773]: Fix collection of tests from __init__.py files if they match the python_files configuration option.

	#3796 [https://github.com/pytest-dev/pytest/issues/3796]: Fix issue where teardown of fixtures of consecutive sub-packages were executed once, at the end of the outer
package.

	#3816 [https://github.com/pytest-dev/pytest/issues/3816]: Fix bug where --show-capture=no option would still show logs printed during fixture teardown.

	#3819 [https://github.com/pytest-dev/pytest/issues/3819]: Fix stdout/stderr not getting captured when real-time cli logging is active.

	#3843 [https://github.com/pytest-dev/pytest/issues/3843]: Fix collection error when specifying test functions directly in the command line using test.py::test syntax together with --doctest-modules.

	#3848 [https://github.com/pytest-dev/pytest/issues/3848]: Fix bugs where unicode arguments could not be passed to testdir.runpytest on Python 2.

	#3854 [https://github.com/pytest-dev/pytest/issues/3854]: Fix double collection of tests within packages when the filename starts with a capital letter.

Improved Documentation

	#3824 [https://github.com/pytest-dev/pytest/issues/3824]: Added example for multiple glob pattern matches in python_files.

	#3833 [https://github.com/pytest-dev/pytest/issues/3833]: Added missing docs for pytester.Testdir.

	#3870 [https://github.com/pytest-dev/pytest/issues/3870]: Correct documentation for setuptools integration.

Trivial/Internal Changes

	#3826 [https://github.com/pytest-dev/pytest/issues/3826]: Replace broken type annotations with type comments.

	#3845 [https://github.com/pytest-dev/pytest/issues/3845]: Remove a reference to issue #568 [https://github.com/pytest-dev/pytest/issues/568] from the documentation, which has since been
fixed.

pytest 3.7.2 (2018-08-16)

Bug Fixes

	#3671 [https://github.com/pytest-dev/pytest/issues/3671]: Fix filterwarnings not being registered as a builtin mark.

	#3768 [https://github.com/pytest-dev/pytest/issues/3768], #3789 [https://github.com/pytest-dev/pytest/issues/3789]: Fix test collection from packages mixed with normal directories.

	#3771 [https://github.com/pytest-dev/pytest/issues/3771]: Fix infinite recursion during collection if a pytest_ignore_collect hook returns False instead of None.

	#3774 [https://github.com/pytest-dev/pytest/issues/3774]: Fix bug where decorated fixtures would lose functionality (for example @mock.patch).

	#3775 [https://github.com/pytest-dev/pytest/issues/3775]: Fix bug where importing modules or other objects with prefix pytest_ prefix would raise a PluginValidationError.

	#3788 [https://github.com/pytest-dev/pytest/issues/3788]: Fix AttributeError during teardown of TestCase subclasses which raise an exception during __init__.

	#3804 [https://github.com/pytest-dev/pytest/issues/3804]: Fix traceback reporting for exceptions with __cause__ cycles.

Improved Documentation

	#3746 [https://github.com/pytest-dev/pytest/issues/3746]: Add documentation for metafunc.config that had been mistakenly hidden.

pytest 3.7.1 (2018-08-02)

Bug Fixes

	#3473 [https://github.com/pytest-dev/pytest/issues/3473]: Raise immediately if approx() is given an expected value of a type it doesn’t understand (e.g. strings, nested dicts, etc.).

	#3712 [https://github.com/pytest-dev/pytest/issues/3712]: Correctly represent the dimensions of a numpy array when calling repr() on approx().

	#3742 [https://github.com/pytest-dev/pytest/issues/3742]: Fix incompatibility with third party plugins during collection, which produced the error object has no attribute '_collectfile'.

	#3745 [https://github.com/pytest-dev/pytest/issues/3745]: Display the absolute path if cache_dir is not relative to the rootdir instead of failing.

	#3747 [https://github.com/pytest-dev/pytest/issues/3747]: Fix compatibility problem with plugins and the warning code issued by fixture functions when they are called directly.

	#3748 [https://github.com/pytest-dev/pytest/issues/3748]: Fix infinite recursion in pytest.approx with arrays in numpy<1.13.

	#3757 [https://github.com/pytest-dev/pytest/issues/3757]: Pin pathlib2 to >=2.2.0 as we require __fspath__ support.

	#3763 [https://github.com/pytest-dev/pytest/issues/3763]: Fix TypeError when the assertion message is bytes in python 3.

pytest 3.7.0 (2018-07-30)

Deprecations and Removals

	#2639 [https://github.com/pytest-dev/pytest/issues/2639]: pytest_namespace has been deprecated [https://docs.pytest.org/en/latest/deprecations.html#pytest-namespace].

	#3661 [https://github.com/pytest-dev/pytest/issues/3661]: Calling a fixture function directly, as opposed to request them in a test function, now issues a RemovedInPytest4Warning. See the documentation for rationale and examples [https://docs.pytest.org/en/latest/deprecations.html#calling-fixtures-directly].

Features

	#2283 [https://github.com/pytest-dev/pytest/issues/2283]: New package fixture scope: fixtures are finalized when the last test of a package finishes. This feature is considered experimental, so use it sparingly.

	#3576 [https://github.com/pytest-dev/pytest/issues/3576]: Node.add_marker now supports an append=True/False parameter to determine whether the mark comes last (default) or first.

	#3579 [https://github.com/pytest-dev/pytest/issues/3579]: Fixture caplog now has a messages property, providing convenient access to the format-interpolated log messages without the extra data provided by the formatter/handler.

	#3610 [https://github.com/pytest-dev/pytest/issues/3610]: New --trace option to enter the debugger at the start of a test.

	#3623 [https://github.com/pytest-dev/pytest/issues/3623]: Introduce pytester.copy_example as helper to do acceptance tests against examples from the project.

Bug Fixes

	#2220 [https://github.com/pytest-dev/pytest/issues/2220]: Fix a bug where fixtures overridden by direct parameters (for example parametrization) were being instantiated even if they were not being used by a test.

	#3695 [https://github.com/pytest-dev/pytest/issues/3695]: Fix ApproxNumpy initialisation argument mixup, abs and rel tolerances were flipped causing strange comparison results.
Add tests to check abs and rel tolerances for np.array and test for expecting nan with np.array()

	#980 [https://github.com/pytest-dev/pytest/issues/980]: Fix truncated locals output in verbose mode.

Improved Documentation

	#3295 [https://github.com/pytest-dev/pytest/issues/3295]: Correct the usage documentation of --last-failed-no-failures by adding the missing --last-failed argument in the presented examples, because they are misleading and lead to think that the missing argument is not needed.

Trivial/Internal Changes

	#3519 [https://github.com/pytest-dev/pytest/issues/3519]: Now a README.md file is created in .pytest_cache to make it clear why the directory exists.

pytest 3.6.4 (2018-07-28)

Bug Fixes

	Invoke pytest using -mpytest so sys.path does not get polluted by packages installed in site-packages. (#742 [https://github.com/pytest-dev/pytest/issues/742])

Improved Documentation

	Use smtp_connection instead of smtp in fixtures documentation to avoid possible confusion. (#3592 [https://github.com/pytest-dev/pytest/issues/3592])

Trivial/Internal Changes

	Remove obsolete __future__ imports. (#2319 [https://github.com/pytest-dev/pytest/issues/2319])

	Add CITATION to provide information on how to formally cite pytest. (#3402 [https://github.com/pytest-dev/pytest/issues/3402])

	Replace broken type annotations with type comments. (#3635 [https://github.com/pytest-dev/pytest/issues/3635])

	Pin pluggy to <0.8. (#3727 [https://github.com/pytest-dev/pytest/issues/3727])

pytest 3.6.3 (2018-07-04)

Bug Fixes

	Fix ImportWarning triggered by explicit relative imports in
assertion-rewritten package modules. (#3061 [https://github.com/pytest-dev/pytest/issues/3061])

	Fix error in pytest.approx when dealing with 0-dimension numpy
arrays. (#3593 [https://github.com/pytest-dev/pytest/issues/3593])

	No longer raise ValueError when using the get_marker API. (#3605 [https://github.com/pytest-dev/pytest/issues/3605])

	Fix problem where log messages with non-ascii characters would not
appear in the output log file.
(#3630 [https://github.com/pytest-dev/pytest/issues/3630])

	No longer raise AttributeError when legacy marks can’t be stored in
functions. (#3631 [https://github.com/pytest-dev/pytest/issues/3631])

Improved Documentation

	The description above the example for @pytest.mark.skipif now better
matches the code. (#3611 [https://github.com/pytest-dev/pytest/issues/3611])

Trivial/Internal Changes

	Internal refactoring: removed unused CallSpec2tox ._globalid_args
attribute and metafunc parameter from CallSpec2.copy(). (#3598 [https://github.com/pytest-dev/pytest/issues/3598])

	Silence usage of reduce warning in Python 2 (#3609 [https://github.com/pytest-dev/pytest/issues/3609])

	Fix usage of attr.ib deprecated convert parameter. (#3653 [https://github.com/pytest-dev/pytest/issues/3653])

pytest 3.6.2 (2018-06-20)

Bug Fixes

	Fix regression in Node.add_marker by extracting the mark object of a
MarkDecorator. (#3555 [https://github.com/pytest-dev/pytest/issues/3555])

	Warnings without location were reported as None. This is corrected to
now report <undetermined location>. (#3563 [https://github.com/pytest-dev/pytest/issues/3563])

	Continue to call finalizers in the stack when a finalizer in a former scope
raises an exception. (#3569 [https://github.com/pytest-dev/pytest/issues/3569])

	Fix encoding error with print statements in doctests (#3583 [https://github.com/pytest-dev/pytest/issues/3583])

Improved Documentation

	Add documentation for the --strict flag. (#3549 [https://github.com/pytest-dev/pytest/issues/3549])

Trivial/Internal Changes

	Update old quotation style to parens in fixture.rst documentation. (#3525 [https://github.com/pytest-dev/pytest/issues/3525])

	Improve display of hint about --fulltrace with KeyboardInterrupt.
(#3545 [https://github.com/pytest-dev/pytest/issues/3545])

	pytest’s testsuite is no longer runnable through python setup.py test –
instead invoke pytest or tox directly. (#3552 [https://github.com/pytest-dev/pytest/issues/3552])

	Fix typo in documentation (#3567 [https://github.com/pytest-dev/pytest/issues/3567])

pytest 3.6.1 (2018-06-05)

Bug Fixes

	Fixed a bug where stdout and stderr were logged twice by junitxml when a test
was marked xfail. (#3491 [https://github.com/pytest-dev/pytest/issues/3491])

	Fix usefixtures mark applyed to unittest tests by correctly instantiating
FixtureInfo. (#3498 [https://github.com/pytest-dev/pytest/issues/3498])

	Fix assertion rewriter compatibility with libraries that monkey patch
file objects. (#3503 [https://github.com/pytest-dev/pytest/issues/3503])

Improved Documentation

	Added a section on how to use fixtures as factories to the fixture
documentation. (#3461 [https://github.com/pytest-dev/pytest/issues/3461])

Trivial/Internal Changes

	Enable caching for pip/pre-commit in order to reduce build time on
travis/appveyor. (#3502 [https://github.com/pytest-dev/pytest/issues/3502])

	Switch pytest to the src/ layout as we already suggested it for good practice
- now we implement it as well. (#3513 [https://github.com/pytest-dev/pytest/issues/3513])

	Fix if in tests to support 3.7.0b5, where a docstring handling in AST got
reverted. (#3530 [https://github.com/pytest-dev/pytest/issues/3530])

	Remove some python2.5 compatibility code. (#3529 [https://github.com/pytest-dev/pytest/issues/3529])

pytest 3.6.0 (2018-05-23)

Features

	Revamp the internals of the pytest.mark implementation with correct per
node handling which fixes a number of long standing bugs caused by the old
design. This introduces new Node.iter_markers(name) and
Node.get_closest_marker(name) APIs. Users are strongly encouraged to
read the reasons for the revamp in the docs [https://docs.pytest.org/en/latest/mark.html#marker-revamp-and-iteration],
or jump over to details about updating existing code to use the new APIs [https://docs.pytest.org/en/latest/mark.html#updating-code]. (#3317 [https://github.com/pytest-dev/pytest/issues/3317])

	Now when @pytest.fixture is applied more than once to the same function a
ValueError is raised. This buggy behavior would cause surprising problems
and if was working for a test suite it was mostly by accident. (#2334 [https://github.com/pytest-dev/pytest/issues/2334])

	Support for Python 3.7’s builtin breakpoint() method, see Using the
builtin breakpoint function [https://docs.pytest.org/en/latest/usage.html#breakpoint-builtin] for
details. (#3180 [https://github.com/pytest-dev/pytest/issues/3180])

	monkeypatch now supports a context() function which acts as a context
manager which undoes all patching done within the with block. (#3290 [https://github.com/pytest-dev/pytest/issues/3290])

	The --pdb option now causes KeyboardInterrupt to enter the debugger,
instead of stopping the test session. On python 2.7, hitting CTRL+C again
exits the debugger. On python 3.2 and higher, use CTRL+D. (#3299 [https://github.com/pytest-dev/pytest/issues/3299])

	pytest no longer changes the log level of the root logger when the
log-level parameter has greater numeric value than that of the level of
the root logger, which makes it play better with custom logging configuration
in user code. (#3307 [https://github.com/pytest-dev/pytest/issues/3307])

Bug Fixes

	A rare race-condition which might result in corrupted .pyc files on
Windows has been hopefully solved. (#3008 [https://github.com/pytest-dev/pytest/issues/3008])

	Also use iter_marker for discovering the marks applying for marker
expressions from the cli to avoid the bad data from the legacy mark storage.
(#3441 [https://github.com/pytest-dev/pytest/issues/3441])

	When showing diffs of failed assertions where the contents contain only
whitespace, escape them using repr() first to make it easy to spot the
differences. (#3443 [https://github.com/pytest-dev/pytest/issues/3443])

Improved Documentation

	Change documentation copyright year to a range which auto-updates itself each
time it is published. (#3303 [https://github.com/pytest-dev/pytest/issues/3303])

Trivial/Internal Changes

	pytest now depends on the python-atomicwrites [https://github.com/untitaker/python-atomicwrites] library. (#3008 [https://github.com/pytest-dev/pytest/issues/3008])

	Update all pypi.python.org URLs to pypi.org. (#3431 [https://github.com/pytest-dev/pytest/issues/3431])

	Detect pytest_ prefixed hooks using the internal plugin manager since
pluggy is deprecating the implprefix argument to PluginManager.
(#3487 [https://github.com/pytest-dev/pytest/issues/3487])

	Import Mapping and Sequence from _pytest.compat instead of
directly from collections in python_api.py::approx. Add Mapping
to _pytest.compat, import it from collections on python 2, but from
collections.abc on Python 3 to avoid a DeprecationWarning on Python
3.7 or newer. (#3497 [https://github.com/pytest-dev/pytest/issues/3497])

pytest 3.5.1 (2018-04-23)

Bug Fixes

	Reset sys.last_type, sys.last_value and sys.last_traceback before
each test executes. Those attributes are added by pytest during the test run
to aid debugging, but were never reset so they would create a leaking
reference to the last failing test’s frame which in turn could never be
reclaimed by the garbage collector. (#2798 [https://github.com/pytest-dev/pytest/issues/2798])

	pytest.raises now raises TypeError when receiving an unknown keyword
argument. (#3348 [https://github.com/pytest-dev/pytest/issues/3348])

	pytest.raises now works with exception classes that look like iterables.
(#3372 [https://github.com/pytest-dev/pytest/issues/3372])

Improved Documentation

	Fix typo in caplog fixture documentation, which incorrectly identified
certain attributes as methods. (#3406 [https://github.com/pytest-dev/pytest/issues/3406])

Trivial/Internal Changes

	Added a more indicative error message when parametrizing a function whose
argument takes a default value. (#3221 [https://github.com/pytest-dev/pytest/issues/3221])

	Remove internal _pytest.terminal.flatten function in favor of
more_itertools.collapse. (#3330 [https://github.com/pytest-dev/pytest/issues/3330])

	Import some modules from collections.abc instead of collections as
the former modules trigger DeprecationWarning in Python 3.7. (#3339 [https://github.com/pytest-dev/pytest/issues/3339])

	record_property is no longer experimental, removing the warnings was
forgotten. (#3360 [https://github.com/pytest-dev/pytest/issues/3360])

	Mention in documentation and CLI help that fixtures with leading _ are
printed by pytest --fixtures only if the -v option is added. (#3398 [https://github.com/pytest-dev/pytest/issues/3398])

pytest 3.5.0 (2018-03-21)

Deprecations and Removals

	record_xml_property fixture is now deprecated in favor of the more
generic record_property. (#2770 [https://github.com/pytest-dev/pytest/issues/2770])

	Defining pytest_plugins is now deprecated in non-top-level conftest.py
files, because they “leak” to the entire directory tree. See the docs [https://docs.pytest.org/en/latest/deprecations.html#pytest-plugins-in-non-top-level-conftest-files] for the rationale behind this decision (#3084 [https://github.com/pytest-dev/pytest/issues/3084])

Features

	New --show-capture command-line option that allows to specify how to
display captured output when tests fail: no, stdout, stderr,
log or all (the default). (#1478 [https://github.com/pytest-dev/pytest/issues/1478])

	New --rootdir command-line option to override the rules for discovering
the root directory. See customize [https://docs.pytest.org/en/latest/customize.html] in the documentation for
details. (#1642 [https://github.com/pytest-dev/pytest/issues/1642])

	Fixtures are now instantiated based on their scopes, with higher-scoped
fixtures (such as session) being instantiated first than lower-scoped
fixtures (such as function). The relative order of fixtures of the same
scope is kept unchanged, based in their declaration order and their
dependencies. (#2405 [https://github.com/pytest-dev/pytest/issues/2405])

	record_xml_property renamed to record_property and is now compatible
with xdist, markers and any reporter. record_xml_property name is now
deprecated. (#2770 [https://github.com/pytest-dev/pytest/issues/2770])

	New --nf, --new-first options: run new tests first followed by the
rest of the tests, in both cases tests are also sorted by the file modified
time, with more recent files coming first. (#3034 [https://github.com/pytest-dev/pytest/issues/3034])

	New --last-failed-no-failures command-line option that allows to specify
the behavior of the cache plugin’s `--last-failed feature when no tests
failed in the last run (or no cache was found): none or all (the
default). (#3139 [https://github.com/pytest-dev/pytest/issues/3139])

	New --doctest-continue-on-failure command-line option to enable doctests
to show multiple failures for each snippet, instead of stopping at the first
failure. (#3149 [https://github.com/pytest-dev/pytest/issues/3149])

	Captured log messages are added to the <system-out> tag in the generated
junit xml file if the junit_logging ini option is set to system-out.
If the value of this ini option is system-err, the logs are written to
<system-err>. The default value for junit_logging is no, meaning
captured logs are not written to the output file. (#3156 [https://github.com/pytest-dev/pytest/issues/3156])

	Allow the logging plugin to handle pytest_runtest_logstart and
pytest_runtest_logfinish hooks when live logs are enabled. (#3189 [https://github.com/pytest-dev/pytest/issues/3189])

	Passing --log-cli-level in the command-line now automatically activates
live logging. (#3190 [https://github.com/pytest-dev/pytest/issues/3190])

	Add command line option --deselect to allow deselection of individual
tests at collection time. (#3198 [https://github.com/pytest-dev/pytest/issues/3198])

	Captured logs are printed before entering pdb. (#3204 [https://github.com/pytest-dev/pytest/issues/3204])

	Deselected item count is now shown before tests are run, e.g. collected X
items / Y deselected. (#3213 [https://github.com/pytest-dev/pytest/issues/3213])

	The builtin module platform is now available for use in expressions in
pytest.mark. (#3236 [https://github.com/pytest-dev/pytest/issues/3236])

	The short test summary info section now is displayed after tracebacks and
warnings in the terminal. (#3255 [https://github.com/pytest-dev/pytest/issues/3255])

	New --verbosity flag to set verbosity level explicitly. (#3296 [https://github.com/pytest-dev/pytest/issues/3296])

	pytest.approx now accepts comparing a numpy array with a scalar. (#3312 [https://github.com/pytest-dev/pytest/issues/3312])

Bug Fixes

	Suppress IOError when closing the temporary file used for capturing
streams in Python 2.7. (#2370 [https://github.com/pytest-dev/pytest/issues/2370])

	Fixed clear() method on caplog fixture which cleared records, but
not the text property. (#3297 [https://github.com/pytest-dev/pytest/issues/3297])

	During test collection, when stdin is not allowed to be read, the
DontReadFromStdin object still allow itself to be iterable and resolved
to an iterator without crashing. (#3314 [https://github.com/pytest-dev/pytest/issues/3314])

Improved Documentation

	Added a reference [https://docs.pytest.org/en/latest/reference.html] page
to the docs. (#1713 [https://github.com/pytest-dev/pytest/issues/1713])

Trivial/Internal Changes

	Change minimum requirement of attrs to 17.4.0. (#3228 [https://github.com/pytest-dev/pytest/issues/3228])

	Renamed example directories so all tests pass when ran from the base
directory. (#3245 [https://github.com/pytest-dev/pytest/issues/3245])

	Internal mark.py module has been turned into a package. (#3250 [https://github.com/pytest-dev/pytest/issues/3250])

	pytest now depends on the more-itertools [https://github.com/erikrose/more-itertools] package. (#3265 [https://github.com/pytest-dev/pytest/issues/3265])

	Added warning when [pytest] section is used in a .cfg file passed
with -c (#3268 [https://github.com/pytest-dev/pytest/issues/3268])

	nodeids can now be passed explicitly to FSCollector and Node
constructors. (#3291 [https://github.com/pytest-dev/pytest/issues/3291])

	Internal refactoring of FormattedExcinfo to use attrs facilities and
remove old support code for legacy Python versions. (#3292 [https://github.com/pytest-dev/pytest/issues/3292])

	Refactoring to unify how verbosity is handled internally. (#3296 [https://github.com/pytest-dev/pytest/issues/3296])

	Internal refactoring to better integrate with argparse. (#3304 [https://github.com/pytest-dev/pytest/issues/3304])

	Fix a python example when calling a fixture in doc/en/usage.rst (#3308 [https://github.com/pytest-dev/pytest/issues/3308])

pytest 3.4.2 (2018-03-04)

Bug Fixes

	Removed progress information when capture option is no. (#3203 [https://github.com/pytest-dev/pytest/issues/3203])

	Refactor check of bindir from exists to isdir. (#3241 [https://github.com/pytest-dev/pytest/issues/3241])

	Fix TypeError issue when using approx with a Decimal value.
(#3247 [https://github.com/pytest-dev/pytest/issues/3247])

	Fix reference cycle generated when using the request fixture. (#3249 [https://github.com/pytest-dev/pytest/issues/3249])

	[tool:pytest] sections in *.cfg files passed by the -c option are
now properly recognized. (#3260 [https://github.com/pytest-dev/pytest/issues/3260])

Improved Documentation

	Add logging plugin to plugins list. (#3209 [https://github.com/pytest-dev/pytest/issues/3209])

Trivial/Internal Changes

	Fix minor typo in fixture.rst (#3259 [https://github.com/pytest-dev/pytest/issues/3259])

pytest 3.4.1 (2018-02-20)

Bug Fixes

	Move import of doctest.UnexpectedException to top-level to avoid possible
errors when using --pdb. (#1810 [https://github.com/pytest-dev/pytest/issues/1810])

	Added printing of captured stdout/stderr before entering pdb, and improved a
test which was giving false negatives about output capturing. (#3052 [https://github.com/pytest-dev/pytest/issues/3052])

	Fix ordering of tests using parametrized fixtures which can lead to fixtures
being created more than necessary. (#3161 [https://github.com/pytest-dev/pytest/issues/3161])

	Fix bug where logging happening at hooks outside of “test run” hooks would
cause an internal error. (#3184 [https://github.com/pytest-dev/pytest/issues/3184])

	Detect arguments injected by unittest.mock.patch decorator correctly when
pypi mock.patch is installed and imported. (#3206 [https://github.com/pytest-dev/pytest/issues/3206])

	Errors shown when a pytest.raises() with match= fails are now cleaner
on what happened: When no exception was raised, the “matching ‘…’” part got
removed as it falsely implies that an exception was raised but it didn’t
match. When a wrong exception was raised, it’s now thrown (like
pytest.raised() without match= would) instead of complaining about
the unmatched text. (#3222 [https://github.com/pytest-dev/pytest/issues/3222])

	Fixed output capture handling in doctests on macOS. (#985 [https://github.com/pytest-dev/pytest/issues/985])

Improved Documentation

	Add Sphinx parameter docs for match and message args to
pytest.raises. (#3202 [https://github.com/pytest-dev/pytest/issues/3202])

Trivial/Internal Changes

	pytest has changed the publication procedure and is now being published to
PyPI directly from Travis. (#3060 [https://github.com/pytest-dev/pytest/issues/3060])

	Rename ParameterSet._for_parameterize() to _for_parametrize() in
order to comply with the naming convention. (#3166 [https://github.com/pytest-dev/pytest/issues/3166])

	Skip failing pdb/doctest test on mac. (#985 [https://github.com/pytest-dev/pytest/issues/985])

pytest 3.4.0 (2018-01-30)

Deprecations and Removals

	All pytest classes now subclass object for better Python 2/3 compatibility.
This should not affect user code except in very rare edge cases. (#2147 [https://github.com/pytest-dev/pytest/issues/2147])

Features

	Introduce empty_parameter_set_mark ini option to select which mark to
apply when @pytest.mark.parametrize is given an empty set of parameters.
Valid options are skip (default) and xfail. Note that it is planned
to change the default to xfail in future releases as this is considered
less error prone. (#2527 [https://github.com/pytest-dev/pytest/issues/2527])

	Incompatible change: after community feedback the logging [https://docs.pytest.org/en/latest/logging.html] functionality has
undergone some changes. Please consult the logging documentation [https://docs.pytest.org/en/latest/logging.html#incompatible-changes-in-pytest-3-4]
for details. (#3013 [https://github.com/pytest-dev/pytest/issues/3013])

	Console output falls back to “classic” mode when capturing is disabled (-s),
otherwise the output gets garbled to the point of being useless. (#3038 [https://github.com/pytest-dev/pytest/issues/3038])

	New pytest_runtest_logfinish [https://docs.pytest.org/en/latest/writing_plugins.html#_pytest.hookspec.pytest_runtest_logfinish]
hook which is called when a test item has finished executing, analogous to
pytest_runtest_logstart [https://docs.pytest.org/en/latest/writing_plugins.html#_pytest.hookspec.pytest_runtest_start].
(#3101 [https://github.com/pytest-dev/pytest/issues/3101])

	Improve performance when collecting tests using many fixtures. (#3107 [https://github.com/pytest-dev/pytest/issues/3107])

	New caplog.get_records(when) method which provides access to the captured
records for the "setup", "call" and "teardown"
testing stages. (#3117 [https://github.com/pytest-dev/pytest/issues/3117])

	New fixture record_xml_attribute that allows modifying and inserting
attributes on the <testcase> xml node in JUnit reports. (#3130 [https://github.com/pytest-dev/pytest/issues/3130])

	The default cache directory has been renamed from .cache to
.pytest_cache after community feedback that the name .cache did not
make it clear that it was used by pytest. (#3138 [https://github.com/pytest-dev/pytest/issues/3138])

	Colorize the levelname column in the live-log output. (#3142 [https://github.com/pytest-dev/pytest/issues/3142])

Bug Fixes

	Fix hanging pexpect test on MacOS by using flush() instead of wait().
(#2022 [https://github.com/pytest-dev/pytest/issues/2022])

	Fix restoring Python state after in-process pytest runs with the
pytester plugin; this may break tests using multiple inprocess
pytest runs if later ones depend on earlier ones leaking global interpreter
changes. (#3016 [https://github.com/pytest-dev/pytest/issues/3016])

	Fix skipping plugin reporting hook when test aborted before plugin setup
hook. (#3074 [https://github.com/pytest-dev/pytest/issues/3074])

	Fix progress percentage reported when tests fail during teardown. (#3088 [https://github.com/pytest-dev/pytest/issues/3088])

	Incompatible change: -o/--override option no longer eats all the
remaining options, which can lead to surprising behavior: for example,
pytest -o foo=1 /path/to/test.py would fail because /path/to/test.py
would be considered as part of the -o command-line argument. One
consequence of this is that now multiple configuration overrides need
multiple -o flags: pytest -o foo=1 -o bar=2. (#3103 [https://github.com/pytest-dev/pytest/issues/3103])

Improved Documentation

	Document hooks (defined with historic=True) which cannot be used with
hookwrapper=True. (#2423 [https://github.com/pytest-dev/pytest/issues/2423])

	Clarify that warning capturing doesn’t change the warning filter by default.
(#2457 [https://github.com/pytest-dev/pytest/issues/2457])

	Clarify a possible confusion when using pytest_fixture_setup with fixture
functions that return None. (#2698 [https://github.com/pytest-dev/pytest/issues/2698])

	Fix the wording of a sentence on doctest flags used in pytest. (#3076 [https://github.com/pytest-dev/pytest/issues/3076])

	Prefer https://*.readthedocs.io over http://*.rtfd.org for links in
the documentation. (#3092 [https://github.com/pytest-dev/pytest/issues/3092])

	Improve readability (wording, grammar) of Getting Started guide (#3131 [https://github.com/pytest-dev/pytest/issues/3131])

	Added note that calling pytest.main multiple times from the same process is
not recommended because of import caching. (#3143 [https://github.com/pytest-dev/pytest/issues/3143])

Trivial/Internal Changes

	Show a simple and easy error when keyword expressions trigger a syntax error
(for example, "-k foo and import" will show an error that you can not use
the import keyword in expressions). (#2953 [https://github.com/pytest-dev/pytest/issues/2953])

	Change parametrized automatic test id generation to use the __name__
attribute of functions instead of the fallback argument name plus counter.
(#2976 [https://github.com/pytest-dev/pytest/issues/2976])

	Replace py.std with stdlib imports. (#3067 [https://github.com/pytest-dev/pytest/issues/3067])

	Corrected ‘you’ to ‘your’ in logging docs. (#3129 [https://github.com/pytest-dev/pytest/issues/3129])

pytest 3.3.2 (2017-12-25)

Bug Fixes

	pytester: ignore files used to obtain current user metadata in the fd leak
detector. (#2784 [https://github.com/pytest-dev/pytest/issues/2784])

	Fix memory leak where objects returned by fixtures were never destructed
by the garbage collector. (#2981 [https://github.com/pytest-dev/pytest/issues/2981])

	Fix conversion of pyargs to filename to not convert symlinks on Python 2. (#2985 [https://github.com/pytest-dev/pytest/issues/2985])

	PYTEST_DONT_REWRITE is now checked for plugins too rather than only for
test modules. (#2995 [https://github.com/pytest-dev/pytest/issues/2995])

Improved Documentation

	Add clarifying note about behavior of multiple parametrized arguments (#3001 [https://github.com/pytest-dev/pytest/issues/3001])

Trivial/Internal Changes

	Code cleanup. (#3015 [https://github.com/pytest-dev/pytest/issues/3015],
#3021 [https://github.com/pytest-dev/pytest/issues/3021])

	Clean up code by replacing imports and references of _ast to ast.
(#3018 [https://github.com/pytest-dev/pytest/issues/3018])

pytest 3.3.1 (2017-12-05)

Bug Fixes

	Fix issue about -p no:<plugin> having no effect. (#2920 [https://github.com/pytest-dev/pytest/issues/2920])

	Fix regression with warnings that contained non-strings in their arguments in
Python 2. (#2956 [https://github.com/pytest-dev/pytest/issues/2956])

	Always escape null bytes when setting PYTEST_CURRENT_TEST. (#2957 [https://github.com/pytest-dev/pytest/issues/2957])

	Fix ZeroDivisionError when using the testmon plugin when no tests
were actually collected. (#2971 [https://github.com/pytest-dev/pytest/issues/2971])

	Bring back TerminalReporter.writer as an alias to
TerminalReporter._tw. This alias was removed by accident in the 3.3.0
release. (#2984 [https://github.com/pytest-dev/pytest/issues/2984])

	The pytest-capturelog plugin is now also blacklisted, avoiding errors when
running pytest with it still installed. (#3004 [https://github.com/pytest-dev/pytest/issues/3004])

Improved Documentation

	Fix broken link to plugin pytest-localserver. (#2963 [https://github.com/pytest-dev/pytest/issues/2963])

Trivial/Internal Changes

	Update github “bugs” link in CONTRIBUTING.rst (#2949 [https://github.com/pytest-dev/pytest/issues/2949])

pytest 3.3.0 (2017-11-23)

Deprecations and Removals

	pytest no longer supports Python 2.6 and 3.3. Those Python versions
are EOL for some time now and incur maintenance and compatibility costs on
the pytest core team, and following up with the rest of the community we
decided that they will no longer be supported starting on this version. Users
which still require those versions should pin pytest to <3.3. (#2812 [https://github.com/pytest-dev/pytest/issues/2812])

	Remove internal _preloadplugins() function. This removal is part of the
pytest_namespace() hook deprecation. (#2636 [https://github.com/pytest-dev/pytest/issues/2636])

	Internally change CallSpec2 to have a list of marks instead of a broken
mapping of keywords. This removes the keywords attribute of the internal
CallSpec2 class. (#2672 [https://github.com/pytest-dev/pytest/issues/2672])

	Remove ParameterSet.deprecated_arg_dict - its not a public api and the lack
of the underscore was a naming error. (#2675 [https://github.com/pytest-dev/pytest/issues/2675])

	Remove the internal multi-typed attribute Node._evalskip and replace it
with the boolean Node._skipped_by_mark. (#2767 [https://github.com/pytest-dev/pytest/issues/2767])

	The params list passed to pytest.fixture is now for
all effects considered immutable and frozen at the moment of the pytest.fixture
call. Previously the list could be changed before the first invocation of the fixture
allowing for a form of dynamic parametrization (for example, updated from command-line options),
but this was an unwanted implementation detail which complicated the internals and prevented
some internal cleanup. See issue #2959 [https://github.com/pytest-dev/pytest/issues/2959]
for details and a recommended workaround.

Features

	pytest_fixture_post_finalizer hook can now receive a request
argument. (#2124 [https://github.com/pytest-dev/pytest/issues/2124])

	Replace the old introspection code in compat.py that determines the available
arguments of fixtures with inspect.signature on Python 3 and
funcsigs.signature on Python 2. This should respect __signature__
declarations on functions. (#2267 [https://github.com/pytest-dev/pytest/issues/2267])

	Report tests with global pytestmark variable only once. (#2549 [https://github.com/pytest-dev/pytest/issues/2549])

	Now pytest displays the total progress percentage while running tests. The
previous output style can be set by configuring the console_output_style
setting to classic. (#2657 [https://github.com/pytest-dev/pytest/issues/2657])

	Match warns signature to raises by adding match keyword. (#2708 [https://github.com/pytest-dev/pytest/issues/2708])

	pytest now captures and displays output from the standard logging module.
The user can control the logging level to be captured by specifying options
in pytest.ini, the command line and also during individual tests using
markers. Also, a caplog fixture is available that enables users to test
the captured log during specific tests (similar to capsys for example).
For more information, please see the logging docs [https://docs.pytest.org/en/latest/logging.html]. This feature was
introduced by merging the popular pytest-catchlog [https://pypi.org/project/pytest-catchlog/] plugin, thanks to Thomas Hisch [https://github.com/thisch]. Be advised that during the merging the
backward compatibility interface with the defunct pytest-capturelog has
been dropped. (#2794 [https://github.com/pytest-dev/pytest/issues/2794])

	Add allow_module_level kwarg to pytest.skip(), enabling to skip the
whole module. (#2808 [https://github.com/pytest-dev/pytest/issues/2808])

	Allow setting file_or_dir, -c, and -o in PYTEST_ADDOPTS. (#2824 [https://github.com/pytest-dev/pytest/issues/2824])

	Return stdout/stderr capture results as a namedtuple, so out and
err can be accessed by attribute. (#2879 [https://github.com/pytest-dev/pytest/issues/2879])

	Add capfdbinary, a version of capfd which returns bytes from
readouterr(). (#2923 [https://github.com/pytest-dev/pytest/issues/2923])

	Add capsysbinary a version of capsys which returns bytes from
readouterr(). (#2934 [https://github.com/pytest-dev/pytest/issues/2934])

	Implement feature to skip setup.py files when run with
--doctest-modules. (#502 [https://github.com/pytest-dev/pytest/issues/502])

Bug Fixes

	Resume output capturing after capsys/capfd.disabled() context manager.
(#1993 [https://github.com/pytest-dev/pytest/issues/1993])

	pytest_fixture_setup and pytest_fixture_post_finalizer hooks are now
called for all conftest.py files. (#2124 [https://github.com/pytest-dev/pytest/issues/2124])

	If an exception happens while loading a plugin, pytest no longer hides the
original traceback. In Python 2 it will show the original traceback with a new
message that explains in which plugin. In Python 3 it will show 2 canonized
exceptions, the original exception while loading the plugin in addition to an
exception that pytest throws about loading a plugin. (#2491 [https://github.com/pytest-dev/pytest/issues/2491])

	capsys and capfd can now be used by other fixtures. (#2709 [https://github.com/pytest-dev/pytest/issues/2709])

	Internal pytester plugin properly encodes bytes arguments to
utf-8. (#2738 [https://github.com/pytest-dev/pytest/issues/2738])

	testdir now uses use the same method used by tmpdir to create its
temporary directory. This changes the final structure of the testdir
directory slightly, but should not affect usage in normal scenarios and
avoids a number of potential problems. (#2751 [https://github.com/pytest-dev/pytest/issues/2751])

	pytest no longer complains about warnings with unicode messages being
non-ascii compatible even for ascii-compatible messages. As a result of this,
warnings with unicode messages are converted first to an ascii representation
for safety. (#2809 [https://github.com/pytest-dev/pytest/issues/2809])

	Change return value of pytest command when --maxfail is reached from
2 (interrupted) to 1 (failed). (#2845 [https://github.com/pytest-dev/pytest/issues/2845])

	Fix issue in assertion rewriting which could lead it to rewrite modules which
should not be rewritten. (#2939 [https://github.com/pytest-dev/pytest/issues/2939])

	Handle marks without description in pytest.ini. (#2942 [https://github.com/pytest-dev/pytest/issues/2942])

Trivial/Internal Changes

	pytest now depends on attrs [https://pypi.org/project/attrs/] for internal
structures to ease code maintainability. (#2641 [https://github.com/pytest-dev/pytest/issues/2641])

	Refactored internal Python 2/3 compatibility code to use six. (#2642 [https://github.com/pytest-dev/pytest/issues/2642])

	Stop vendoring pluggy - we’re missing out on its latest changes for not
much benefit (#2719 [https://github.com/pytest-dev/pytest/issues/2719])

	Internal refactor: simplify ascii string escaping by using the
backslashreplace error handler in newer Python 3 versions. (#2734 [https://github.com/pytest-dev/pytest/issues/2734])

	Remove unnecessary mark evaluator in unittest plugin (#2767 [https://github.com/pytest-dev/pytest/issues/2767])

	Calls to Metafunc.addcall now emit a deprecation warning. This function
is scheduled to be removed in pytest-4.0. (#2876 [https://github.com/pytest-dev/pytest/issues/2876])

	Internal move of the parameterset extraction to a more maintainable place.
(#2877 [https://github.com/pytest-dev/pytest/issues/2877])

	Internal refactoring to simplify scope node lookup. (#2910 [https://github.com/pytest-dev/pytest/issues/2910])

	Configure pytest to prevent pip from installing pytest in unsupported
Python versions. (#2922 [https://github.com/pytest-dev/pytest/issues/2922])

pytest 3.2.5 (2017-11-15)

Bug Fixes

	Remove py<1.5 restriction from pytest as this can cause version
conflicts in some installations. (#2926 [https://github.com/pytest-dev/pytest/issues/2926])

pytest 3.2.4 (2017-11-13)

Bug Fixes

	Fix the bug where running with --pyargs will result in items with
empty parent.nodeid if run from a different root directory. (#2775 [https://github.com/pytest-dev/pytest/issues/2775])

	Fix issue with @pytest.parametrize if argnames was specified as keyword arguments.
(#2819 [https://github.com/pytest-dev/pytest/issues/2819])

	Strip whitespace from marker names when reading them from INI config. (#2856 [https://github.com/pytest-dev/pytest/issues/2856])

	Show full context of doctest source in the pytest output, if the line number of
failed example in the docstring is < 9. (#2882 [https://github.com/pytest-dev/pytest/issues/2882])

	Match fixture paths against actual path segments in order to avoid matching folders which share a prefix.
(#2836 [https://github.com/pytest-dev/pytest/issues/2836])

Improved Documentation

	Introduce a dedicated section about conftest.py. (#1505 [https://github.com/pytest-dev/pytest/issues/1505])

	Explicitly mention xpass in the documentation of xfail. (#1997 [https://github.com/pytest-dev/pytest/issues/1997])

	Append example for pytest.param in the example/parametrize document. (#2658 [https://github.com/pytest-dev/pytest/issues/2658])

	Clarify language of proposal for fixtures parameters (#2893 [https://github.com/pytest-dev/pytest/issues/2893])

	List python 3.6 in the documented supported versions in the getting started
document. (#2903 [https://github.com/pytest-dev/pytest/issues/2903])

	Clarify the documentation of available fixture scopes. (#538 [https://github.com/pytest-dev/pytest/issues/538])

	Add documentation about the python -m pytest invocation adding the
current directory to sys.path. (#911 [https://github.com/pytest-dev/pytest/issues/911])

pytest 3.2.3 (2017-10-03)

Bug Fixes

	Fix crash in tab completion when no prefix is given. (#2748 [https://github.com/pytest-dev/pytest/issues/2748])

	The equality checking function (__eq__) of MarkDecorator returns
False if one object is not an instance of MarkDecorator. (#2758 [https://github.com/pytest-dev/pytest/issues/2758])

	When running pytest --fixtures-per-test: don’t crash if an item has no
_fixtureinfo attribute (e.g. doctests) (#2788 [https://github.com/pytest-dev/pytest/issues/2788])

Improved Documentation

	In help text of -k option, add example of using not to not select
certain tests whose names match the provided expression. (#1442 [https://github.com/pytest-dev/pytest/issues/1442])

	Add note in parametrize.rst about calling metafunc.parametrize
multiple times. (#1548 [https://github.com/pytest-dev/pytest/issues/1548])

Trivial/Internal Changes

	Set xfail_strict=True in pytest’s own test suite to catch expected
failures as soon as they start to pass. (#2722 [https://github.com/pytest-dev/pytest/issues/2722])

	Fix typo in example of passing a callable to markers (in example/markers.rst)
(#2765 [https://github.com/pytest-dev/pytest/issues/2765])

pytest 3.2.2 (2017-09-06)

Bug Fixes

	Calling the deprecated request.getfuncargvalue() now shows the source of
the call. (#2681 [https://github.com/pytest-dev/pytest/issues/2681])

	Allow tests declared as @staticmethod to use fixtures. (#2699 [https://github.com/pytest-dev/pytest/issues/2699])

	Fixed edge-case during collection: attributes which raised pytest.fail
when accessed would abort the entire collection. (#2707 [https://github.com/pytest-dev/pytest/issues/2707])

	Fix ReprFuncArgs with mixed unicode and UTF-8 args. (#2731 [https://github.com/pytest-dev/pytest/issues/2731])

Improved Documentation

	In examples on working with custom markers, add examples demonstrating the
usage of pytest.mark.MARKER_NAME.with_args in comparison with
pytest.mark.MARKER_NAME.__call__ (#2604 [https://github.com/pytest-dev/pytest/issues/2604])

	In one of the simple examples, use pytest_collection_modifyitems() to skip
tests based on a command-line option, allowing its sharing while preventing a
user error when acessing pytest.config before the argument parsing.
(#2653 [https://github.com/pytest-dev/pytest/issues/2653])

Trivial/Internal Changes

	Fixed minor error in ‘Good Practices/Manual Integration’ code snippet.
(#2691 [https://github.com/pytest-dev/pytest/issues/2691])

	Fixed typo in goodpractices.rst. (#2721 [https://github.com/pytest-dev/pytest/issues/2721])

	Improve user guidance regarding --resultlog deprecation. (#2739 [https://github.com/pytest-dev/pytest/issues/2739])

pytest 3.2.1 (2017-08-08)

Bug Fixes

	Fixed small terminal glitch when collecting a single test item. (#2579 [https://github.com/pytest-dev/pytest/issues/2579])

	Correctly consider / as the file separator to automatically mark plugin
files for rewrite on Windows. (#2591 [https://github.com/pytest-dev/pytest/issues/2591])

	Properly escape test names when setting PYTEST_CURRENT_TEST environment
variable. (#2644 [https://github.com/pytest-dev/pytest/issues/2644])

	Fix error on Windows and Python 3.6+ when sys.stdout has been replaced
with a stream-like object which does not implement the full io module
buffer protocol. In particular this affects pytest-xdist users on the
aforementioned platform. (#2666 [https://github.com/pytest-dev/pytest/issues/2666])

Improved Documentation

	Explicitly document which pytest features work with unittest. (#2626 [https://github.com/pytest-dev/pytest/issues/2626])

pytest 3.2.0 (2017-07-30)

Deprecations and Removals

	pytest.approx no longer supports >, >=, < and <=
operators to avoid surprising/inconsistent behavior. See the approx docs [https://docs.pytest.org/en/latest/builtin.html#pytest.approx] for more
information. (#2003 [https://github.com/pytest-dev/pytest/issues/2003])

	All old-style specific behavior in current classes in the pytest’s API is
considered deprecated at this point and will be removed in a future release.
This affects Python 2 users only and in rare situations. (#2147 [https://github.com/pytest-dev/pytest/issues/2147])

	A deprecation warning is now raised when using marks for parameters
in pytest.mark.parametrize. Use pytest.param to apply marks to
parameters instead. (#2427 [https://github.com/pytest-dev/pytest/issues/2427])

Features

	Add support for numpy arrays (and dicts) to approx. (#1994 [https://github.com/pytest-dev/pytest/issues/1994])

	Now test function objects have a pytestmark attribute containing a list
of marks applied directly to the test function, as opposed to marks inherited
from parent classes or modules. (#2516 [https://github.com/pytest-dev/pytest/issues/2516])

	Collection ignores local virtualenvs by default; --collect-in-virtualenv
overrides this behavior. (#2518 [https://github.com/pytest-dev/pytest/issues/2518])

	Allow class methods decorated as @staticmethod to be candidates for
collection as a test function. (Only for Python 2.7 and above. Python 2.6
will still ignore static methods.) (#2528 [https://github.com/pytest-dev/pytest/issues/2528])

	Introduce mark.with_args in order to allow passing functions/classes as
sole argument to marks. (#2540 [https://github.com/pytest-dev/pytest/issues/2540])

	New cache_dir ini option: sets the directory where the contents of the
cache plugin are stored. Directory may be relative or absolute path: if relative path, then
directory is created relative to rootdir, otherwise it is used as is.
Additionally path may contain environment variables which are expanded during
runtime. (#2543 [https://github.com/pytest-dev/pytest/issues/2543])

	Introduce the PYTEST_CURRENT_TEST environment variable that is set with
the nodeid and stage (setup, call and teardown) of the test
being currently executed. See the documentation [https://docs.pytest.org/en/latest/example/simple.html#pytest-current-test-environment-variable] for more info. (#2583 [https://github.com/pytest-dev/pytest/issues/2583])

	Introduced @pytest.mark.filterwarnings mark which allows overwriting the
warnings filter on a per test, class or module level. See the docs [https://docs.pytest.org/en/latest/warnings.html#pytest-mark-filterwarnings] for more information. (#2598 [https://github.com/pytest-dev/pytest/issues/2598])

	--last-failed now remembers forever when a test has failed and only
forgets it if it passes again. This makes it easy to fix a test suite by
selectively running files and fixing tests incrementally. (#2621 [https://github.com/pytest-dev/pytest/issues/2621])

	New pytest_report_collectionfinish hook which allows plugins to add
messages to the terminal reporting after collection has been finished
successfully. (#2622 [https://github.com/pytest-dev/pytest/issues/2622])

	Added support for PEP-415’s [https://www.python.org/dev/peps/pep-0415/]
Exception.__suppress_context__. Now if a raise exception from None is
caught by pytest, pytest will no longer chain the context in the test report.
The behavior now matches Python’s traceback behavior. (#2631 [https://github.com/pytest-dev/pytest/issues/2631])

	Exceptions raised by pytest.fail, pytest.skip and pytest.xfail
now subclass BaseException, making them harder to be caught unintentionally
by normal code. (#580 [https://github.com/pytest-dev/pytest/issues/580])

Bug Fixes

	Set stdin to a closed PIPE in pytester.py.Testdir.popen() for
avoid unwanted interactive pdb (#2023 [https://github.com/pytest-dev/pytest/issues/2023])

	Add missing encoding attribute to sys.std* streams when using
capsys capture mode. (#2375 [https://github.com/pytest-dev/pytest/issues/2375])

	Fix terminal color changing to black on Windows if colorama is imported
in a conftest.py file. (#2510 [https://github.com/pytest-dev/pytest/issues/2510])

	Fix line number when reporting summary of skipped tests. (#2548 [https://github.com/pytest-dev/pytest/issues/2548])

	capture: ensure that EncodedFile.name is a string. (#2555 [https://github.com/pytest-dev/pytest/issues/2555])

	The options --fixtures and --fixtures-per-test will now keep
indentation within docstrings. (#2574 [https://github.com/pytest-dev/pytest/issues/2574])

	doctests line numbers are now reported correctly, fixing pytest-sugar#122 [https://github.com/Frozenball/pytest-sugar/issues/122]. (#2610 [https://github.com/pytest-dev/pytest/issues/2610])

	Fix non-determinism in order of fixture collection. Adds new dependency
(ordereddict) for Python 2.6. (#920 [https://github.com/pytest-dev/pytest/issues/920])

Improved Documentation

	Clarify pytest_configure hook call order. (#2539 [https://github.com/pytest-dev/pytest/issues/2539])

	Extend documentation for testing plugin code with the pytester plugin.
(#971 [https://github.com/pytest-dev/pytest/issues/971])

Trivial/Internal Changes

	Update help message for --strict to make it clear it only deals with
unregistered markers, not warnings. (#2444 [https://github.com/pytest-dev/pytest/issues/2444])

	Internal code move: move code for pytest.approx/pytest.raises to own files in
order to cut down the size of python.py (#2489 [https://github.com/pytest-dev/pytest/issues/2489])

	Renamed the utility function _pytest.compat._escape_strings to
_ascii_escaped to better communicate the function’s purpose. (#2533 [https://github.com/pytest-dev/pytest/issues/2533])

	Improve error message for CollectError with skip/skipif. (#2546 [https://github.com/pytest-dev/pytest/issues/2546])

	Emit warning about yield tests being deprecated only once per generator.
(#2562 [https://github.com/pytest-dev/pytest/issues/2562])

	Ensure final collected line doesn’t include artifacts of previous write.
(#2571 [https://github.com/pytest-dev/pytest/issues/2571])

	Fixed all flake8 errors and warnings. (#2581 [https://github.com/pytest-dev/pytest/issues/2581])

	Added fix-lint tox environment to run automatic pep8 fixes on the code.
(#2582 [https://github.com/pytest-dev/pytest/issues/2582])

	Turn warnings into errors in pytest’s own test suite in order to catch
regressions due to deprecations more promptly. (#2588 [https://github.com/pytest-dev/pytest/issues/2588])

	Show multiple issue links in CHANGELOG entries. (#2620 [https://github.com/pytest-dev/pytest/issues/2620])

pytest 3.1.3 (2017-07-03)

Bug Fixes

	Fix decode error in Python 2 for doctests in docstrings. (#2434 [https://github.com/pytest-dev/pytest/issues/2434])

	Exceptions raised during teardown by finalizers are now suppressed until all
finalizers are called, with the initial exception reraised. (#2440 [https://github.com/pytest-dev/pytest/issues/2440])

	Fix incorrect “collected items” report when specifying tests on the command-
line. (#2464 [https://github.com/pytest-dev/pytest/issues/2464])

	deprecated_call in context-manager form now captures deprecation warnings
even if the same warning has already been raised. Also, deprecated_call
will always produce the same error message (previously it would produce
different messages in context-manager vs. function-call mode). (#2469 [https://github.com/pytest-dev/pytest/issues/2469])

	Fix issue where paths collected by pytest could have triple leading /
characters. (#2475 [https://github.com/pytest-dev/pytest/issues/2475])

	Fix internal error when trying to detect the start of a recursive traceback.
(#2486 [https://github.com/pytest-dev/pytest/issues/2486])

Improved Documentation

	Explicitly state for which hooks the calls stop after the first non-None
result. (#2493 [https://github.com/pytest-dev/pytest/issues/2493])

Trivial/Internal Changes

	Create invoke tasks for updating the vendored packages. (#2474 [https://github.com/pytest-dev/pytest/issues/2474])

	Update copyright dates in LICENSE, README.rst and in the documentation.
(#2499 [https://github.com/pytest-dev/pytest/issues/2499])

pytest 3.1.2 (2017-06-08)

Bug Fixes

	Required options added via pytest_addoption will no longer prevent using
–help without passing them. (#1999)

	Respect python_files in assertion rewriting. (#2121)

	Fix recursion error detection when frames in the traceback contain objects
that can’t be compared (like numpy arrays). (#2459)

	UnicodeWarning is issued from the internal pytest warnings plugin only
when the message contains non-ascii unicode (Python 2 only). (#2463)

	Added a workaround for Python 3.6 WindowsConsoleIO breaking due to Pytests’s
FDCapture. Other code using console handles might still be affected by the
very same issue and might require further workarounds/fixes, i.e. colorama.
(#2467)

Improved Documentation

	Fix internal API links to pluggy objects. (#2331)

	Make it clear that pytest.xfail stops test execution at the calling point
and improve overall flow of the skipping docs. (#810)

pytest 3.1.1 (2017-05-30)

Bug Fixes

	pytest warning capture no longer overrides existing warning filters. The
previous behaviour would override all filters and caused regressions in test
suites which configure warning filters to match their needs. Note that as a
side-effect of this is that DeprecationWarning and
PendingDeprecationWarning are no longer shown by default. (#2430)

	Fix issue with non-ascii contents in doctest text files. (#2434)

	Fix encoding errors for unicode warnings in Python 2. (#2436)

	pytest.deprecated_call now captures PendingDeprecationWarning in
context manager form. (#2441)

Improved Documentation

	Addition of towncrier for changelog management. (#2390)

3.1.0 (2017-05-22)

New Features

	The pytest-warnings plugin has been integrated into the core and now pytest automatically
captures and displays warnings at the end of the test session.

Warning

This feature may disrupt test suites which apply and treat warnings themselves, and can be
disabled in your pytest.ini:

[pytest]
addopts = -p no:warnings

See the warnings documentation page [https://docs.pytest.org/en/latest/warnings.html] for more
information.

Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Added junit_suite_name ini option to specify root <testsuite> name for JUnit XML reports (#533 [https://github.com/pytest-dev/pytest/issues/533]).

	Added an ini option doctest_encoding to specify which encoding to use for doctest files.
Thanks @wheerd [https://github.com/wheerd] for the PR (#2101 [https://github.com/pytest-dev/pytest/pull/2101]).

	pytest.warns now checks for subclass relationship rather than
class equality. Thanks @lesteve [https://github.com/lesteve] for the PR (#2166 [https://github.com/pytest-dev/pytest/pull/2166])

	pytest.raises now asserts that the error message matches a text or regex
with the match keyword argument. Thanks @Kriechi [https://github.com/Kriechi] for the PR.

	pytest.param can be used to declare test parameter sets with marks and test ids.
Thanks @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the PR.

Changes

	remove all internal uses of pytest_namespace hooks,
this is to prepare the removal of preloadconfig in pytest 4.0
Thanks to @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the PR.

	pytest now warns when a callable ids raises in a parametrized test. Thanks @fogo [https://github.com/fogo] for the PR.

	It is now possible to skip test classes from being collected by setting a
__test__ attribute to False in the class body (#2007 [https://github.com/pytest-dev/pytest/issues/2007]). Thanks
to @syre [https://github.com/syre] for the report and @lwm [https://github.com/lwm] for the PR.

	Change junitxml.py to produce reports that comply with Junitxml schema.
If the same test fails with failure in call and then errors in teardown
we split testcase element into two, one containing the error and the other
the failure. (#2228 [https://github.com/pytest-dev/pytest/issues/2228]) Thanks to @kkoukiou [https://github.com/KKoukiou] for the PR.

	Testcase reports with a url attribute will now properly write this to junitxml.
Thanks @fushi [https://github.com/fushi] for the PR (#1874 [https://github.com/pytest-dev/pytest/pull/1874]).

	Remove common items from dict comparison output when verbosity=1. Also update
the truncation message to make it clearer that pytest truncates all
assertion messages if verbosity < 2 (#1512 [https://github.com/pytest-dev/pytest/issues/1512]).
Thanks @mattduck [https://github.com/mattduck] for the PR

	--pdbcls no longer implies --pdb. This makes it possible to use
addopts=--pdbcls=module.SomeClass on pytest.ini. Thanks @davidszotten [https://github.com/davidszotten] for
the PR (#1952 [https://github.com/pytest-dev/pytest/pull/1952]).

	fix #2013 [https://github.com/pytest-dev/pytest/issues/2013]: turn RecordedWarning into namedtuple,
to give it a comprehensible repr while preventing unwarranted modification.

	fix #2208 [https://github.com/pytest-dev/pytest/issues/2208]: ensure an iteration limit for _pytest.compat.get_real_func.
Thanks @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the report and PR.

	Hooks are now verified after collection is complete, rather than right after loading installed plugins. This
makes it easy to write hooks for plugins which will be loaded during collection, for example using the
pytest_plugins special variable (#1821 [https://github.com/pytest-dev/pytest/issues/1821]).
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Modify pytest_make_parametrize_id() hook to accept argname as an
additional parameter.
Thanks @unsignedint [https://github.com/unsignedint] for the PR.

	Add venv to the default norecursedirs setting.
Thanks @The-Compiler [https://github.com/The-Compiler] for the PR.

	PluginManager.import_plugin now accepts unicode plugin names in Python 2.
Thanks @reutsharabani [https://github.com/reutsharabani] for the PR.

	fix #2308 [https://github.com/pytest-dev/pytest/issues/2308]: When using both --lf and --ff, only the last failed tests are run.
Thanks @ojii [https://github.com/ojii] for the PR.

	Replace minor/patch level version numbers in the documentation with placeholders.
This significantly reduces change-noise as different contributors regnerate
the documentation on different platforms.
Thanks @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the PR.

	fix #2391 [https://github.com/pytest-dev/pytest/issues/2391]: consider pytest_plugins on all plugin modules
Thanks @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the PR.

Bug Fixes

	Fix AttributeError on sys.stdout.buffer / sys.stderr.buffer
while using capsys fixture in python 3. (#1407 [https://github.com/pytest-dev/pytest/issues/1407]).
Thanks to @asottile [https://github.com/asottile].

	Change capture.py’s DontReadFromInput class to throw io.UnsupportedOperation errors rather
than ValueErrors in the fileno method (#2276 [https://github.com/pytest-dev/pytest/issues/2276]).
Thanks @metasyn [https://github.com/metasyn] and @vlad-dragos [https://github.com/vlad-dragos] for the PR.

	Fix exception formatting while importing modules when the exception message
contains non-ascii characters (#2336 [https://github.com/pytest-dev/pytest/issues/2336]).
Thanks @fabioz [https://github.com/fabioz] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Added documentation related to issue (#1937 [https://github.com/pytest-dev/pytest/issues/1937])
Thanks @skylarjhdownes [https://github.com/skylarjhdownes] for the PR.

	Allow collecting files with any file extension as Python modules (#2369 [https://github.com/pytest-dev/pytest/issues/2369]).
Thanks @Kodiologist [https://github.com/Kodiologist] for the PR.

	Show the correct error message when collect “parametrize” func with wrong args (#2383 [https://github.com/pytest-dev/pytest/issues/2383]).
Thanks @The-Compiler [https://github.com/The-Compiler] for the report and @robin0371 [https://github.com/robin0371] for the PR.

3.0.7 (2017-03-14)

	Fix issue in assertion rewriting breaking due to modules silently discarding
other modules when importing fails
Notably, importing the anydbm module is fixed. (#2248 [https://github.com/pytest-dev/pytest/issues/2248]).
Thanks @pfhayes [https://github.com/pfhayes] for the PR.

	junitxml: Fix problematic case where system-out tag occurred twice per testcase
element in the XML report. Thanks @kkoukiou [https://github.com/KKoukiou] for the PR.

	Fix regression, pytest now skips unittest correctly if run with --pdb
(#2137 [https://github.com/pytest-dev/pytest/issues/2137]). Thanks to @gst [https://github.com/gst] for the report and @mbyt [https://github.com/mbyt] for the PR.

	Ignore exceptions raised from descriptors (e.g. properties) during Python test collection (#2234 [https://github.com/pytest-dev/pytest/issues/2234]).
Thanks to @bluetech [https://github.com/bluetech].

	--override-ini now correctly overrides some fundamental options like python_files (#2238 [https://github.com/pytest-dev/pytest/issues/2238]).
Thanks @sirex [https://github.com/sirex] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Replace raise StopIteration usages in the code by simple returns to finish generators, in accordance to PEP-479 [https://www.python.org/dev/peps/pep-0479/] (#2160 [https://github.com/pytest-dev/pytest/issues/2160]).
Thanks @tgoodlet [https://github.com/tgoodlet] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix internal errors when an unprintable AssertionError is raised inside a test.
Thanks @omerhadari [https://github.com/omerhadari] for the PR.

	Skipping plugin now also works with test items generated by custom collectors (#2231 [https://github.com/pytest-dev/pytest/issues/2231]).
Thanks to @vidartf [https://github.com/vidartf].

	Fix trailing whitespace in console output if no .ini file presented (#2281 [https://github.com/pytest-dev/pytest/issues/2281]). Thanks @fbjorn [https://github.com/fbjorn] for the PR.

	Conditionless xfail markers no longer rely on the underlying test item
being an instance of PyobjMixin, and can therefore apply to tests not
collected by the built-in python test collector. Thanks @barneygale [https://github.com/barneygale] for the
PR.

3.0.6 (2017-01-22)

	pytest no longer generates PendingDeprecationWarning from its own operations, which was introduced by mistake in version 3.0.5 (#2118 [https://github.com/pytest-dev/pytest/issues/2118]).
Thanks to @nicoddemus [https://github.com/nicoddemus] for the report and @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the PR.

	pytest no longer recognizes coroutine functions as yield tests (#2129 [https://github.com/pytest-dev/pytest/issues/2129]).
Thanks to @malinoff [https://github.com/malinoff] for the PR.

	Plugins loaded by the PYTEST_PLUGINS environment variable are now automatically
considered for assertion rewriting (#2185 [https://github.com/pytest-dev/pytest/issues/2185]).
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Improve error message when pytest.warns fails (#2150 [https://github.com/pytest-dev/pytest/issues/2150]). The type(s) of the
expected warnings and the list of caught warnings is added to the
error message. Thanks @lesteve [https://github.com/lesteve] for the PR.

	Fix pytester internal plugin to work correctly with latest versions of
zope.interface (#1989 [https://github.com/pytest-dev/pytest/issues/1989]). Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Assert statements of the pytester plugin again benefit from assertion rewriting (#1920 [https://github.com/pytest-dev/pytest/issues/1920]).
Thanks @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Specifying tests with colons like test_foo.py::test_bar for tests in
subdirectories with ini configuration files now uses the correct ini file
(#2148 [https://github.com/pytest-dev/pytest/issues/2148]). Thanks @pelme [https://github.com/pelme].

	Fail testdir.runpytest().assert_outcomes() explicitly if the pytest
terminal output it relies on is missing. Thanks to @eli-b [https://github.com/eli-b] for the PR.

3.0.5 (2016-12-05)

	Add warning when not passing option=value correctly to -o/--override-ini (#2105 [https://github.com/pytest-dev/pytest/issues/2105]).
Also improved the help documentation. Thanks to @mbukatov [https://github.com/mbukatov] for the report and
@lwm [https://github.com/lwm] for the PR.

	Now --confcutdir and --junit-xml are properly validated if they are directories
and filenames, respectively (#2089 [https://github.com/pytest-dev/pytest/issues/2089] and #2078 [https://github.com/pytest-dev/pytest/issues/2078]). Thanks to @lwm [https://github.com/lwm] for the PR.

	Add hint to error message hinting possible missing __init__.py (#478 [https://github.com/pytest-dev/pytest/issues/478]). Thanks @DuncanBetts [https://github.com/DuncanBetts].

	More accurately describe when fixture finalization occurs in documentation (#687 [https://github.com/pytest-dev/pytest/issues/687]). Thanks @DuncanBetts [https://github.com/DuncanBetts].

	Provide :ref: targets for recwarn.rst so we can use intersphinx referencing.
Thanks to @dupuy [https://bitbucket.org/dupuy/] for the report and @lwm [https://github.com/lwm] for the PR.

	In Python 2, use a simple +- ASCII string in the string representation of pytest.approx (for example "4 +- 4.0e-06")
because it is brittle to handle that in different contexts and representations internally in pytest
which can result in bugs such as #2111 [https://github.com/pytest-dev/pytest/issues/2111]. In Python 3, the representation still uses ± (for example 4 ± 4.0e-06).
Thanks @kerrick-lyft [https://github.com/kerrick-lyft] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Using item.Function, item.Module, etc., is now issuing deprecation warnings, prefer
pytest.Function, pytest.Module, etc., instead (#2034 [https://github.com/pytest-dev/pytest/issues/2034]).
Thanks @nmundar [https://github.com/nmundar] for the PR.

	Fix error message using approx with complex numbers (#2082 [https://github.com/pytest-dev/pytest/issues/2082]).
Thanks @adler-j [https://github.com/adler-j] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fixed false-positives warnings from assertion rewrite hook for modules imported more than
once by the pytest_plugins mechanism.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Remove an internal cache which could cause hooks from conftest.py files in
sub-directories to be called in other directories incorrectly (#2016 [https://github.com/pytest-dev/pytest/issues/2016]).
Thanks @d-b-w [https://bitbucket.org/d-b-w/] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Remove internal code meant to support earlier Python 3 versions that produced the side effect
of leaving None in sys.modules when expressions were evaluated by pytest (for example passing a condition
as a string to pytest.mark.skipif)(#2103 [https://github.com/pytest-dev/pytest/issues/2103]).
Thanks @jaraco [https://github.com/jaraco] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Cope gracefully with a .pyc file with no matching .py file (#2038 [https://github.com/pytest-dev/pytest/issues/2038]). Thanks
@nedbat [https://github.com/nedbat].

3.0.4 (2016-11-09)

	Import errors when collecting test modules now display the full traceback (#1976 [https://github.com/pytest-dev/pytest/issues/1976]).
Thanks @cwitty [https://github.com/cwitty] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix confusing command-line help message for custom options with two or more metavar properties (#2004 [https://github.com/pytest-dev/pytest/issues/2004]).
Thanks @okulynyak [https://github.com/okulynyak] and @davehunt [https://github.com/davehunt] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	When loading plugins, import errors which contain non-ascii messages are now properly handled in Python 2 (#1998 [https://github.com/pytest-dev/pytest/issues/1998]).
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fixed cyclic reference when pytest.raises is used in context-manager form (#1965 [https://github.com/pytest-dev/pytest/issues/1965]). Also as a
result of this fix, sys.exc_info() is left empty in both context-manager and function call usages.
Previously, sys.exc_info would contain the exception caught by the context manager,
even when the expected exception occurred.
Thanks @MSeifert04 [https://github.com/MSeifert04] for the report and the PR.

	Fixed false-positives warnings from assertion rewrite hook for modules that were rewritten but
were later marked explicitly by pytest.register_assert_rewrite
or implicitly as a plugin (#2005 [https://github.com/pytest-dev/pytest/issues/2005]).
Thanks @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Report teardown output on test failure (#442 [https://github.com/pytest-dev/pytest/issues/442]).
Thanks @matclab [https://github.com/matclab] for the PR.

	Fix teardown error message in generated xUnit XML.
Thanks @gdyuldin [https://github.com/gdyuldin] for the PR.

	Properly handle exceptions in multiprocessing tasks (#1984 [https://github.com/pytest-dev/pytest/issues/1984]).
Thanks @adborden [https://github.com/adborden] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Clean up unittest TestCase objects after tests are complete (#1649 [https://github.com/pytest-dev/pytest/issues/1649]).
Thanks @d_b_w [https://github.com/d_b_w] for the report and PR.

3.0.3 (2016-09-28)

	The ids argument to parametrize again accepts unicode strings
in Python 2 (#1905 [https://github.com/pytest-dev/pytest/issues/1905]).
Thanks @philpep [https://github.com/philpep] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Assertions are now being rewritten for plugins in development mode
(pip install -e) (#1934 [https://github.com/pytest-dev/pytest/issues/1934]).
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix pkg_resources import error in Jython projects (#1853 [https://github.com/pytest-dev/pytest/issues/1853]).
Thanks @raquel-ucl [https://github.com/raquel-ucl] for the PR.

	Got rid of AttributeError: 'Module' object has no attribute '_obj' exception
in Python 3 (#1944 [https://github.com/pytest-dev/pytest/issues/1944]).
Thanks @axil [https://github.com/axil] for the PR.

	Explain a bad scope value passed to @fixture declarations or
a MetaFunc.parametrize() call. Thanks @tgoodlet [https://github.com/tgoodlet] for the PR.

	This version includes pluggy-0.4.0, which correctly handles
VersionConflict errors in plugins (#704 [https://github.com/pytest-dev/pytest/issues/704]).
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

3.0.2 (2016-09-01)

	Improve error message when passing non-string ids to pytest.mark.parametrize (#1857 [https://github.com/pytest-dev/pytest/issues/1857]).
Thanks @okken [https://github.com/okken] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Add buffer attribute to stdin stub class pytest.capture.DontReadFromInput
Thanks @joguSD [https://github.com/joguSD] for the PR.

	Fix UnicodeEncodeError when string comparison with unicode has failed. (#1864 [https://github.com/pytest-dev/pytest/issues/1864])
Thanks @AiOO [https://github.com/AiOO] for the PR.

	pytest_plugins is now handled correctly if defined as a string (as opposed as
a sequence of strings) when modules are considered for assertion rewriting.
Due to this bug, much more modules were being rewritten than necessary
if a test suite uses pytest_plugins to load internal plugins (#1888 [https://github.com/pytest-dev/pytest/issues/1888]).
Thanks @jaraco [https://github.com/jaraco] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR (#1891 [https://github.com/pytest-dev/pytest/pull/1891]).

	Do not call tearDown and cleanups when running tests from
unittest.TestCase subclasses with --pdb
enabled. This allows proper post mortem debugging for all applications
which have significant logic in their tearDown machinery (#1890 [https://github.com/pytest-dev/pytest/issues/1890]). Thanks
@mbyt [https://github.com/mbyt] for the PR.

	Fix use of deprecated getfuncargvalue method in the internal doctest plugin.
Thanks @ViviCoder [https://github.com/ViviCoder] for the report (#1898 [https://github.com/pytest-dev/pytest/issues/1898]).

3.0.1 (2016-08-23)

	Fix regression when importorskip is used at module level (#1822 [https://github.com/pytest-dev/pytest/issues/1822]).
Thanks @jaraco [https://github.com/jaraco] and @The-Compiler [https://github.com/The-Compiler] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix parametrization scope when session fixtures are used in conjunction
with normal parameters in the same call (#1832 [https://github.com/pytest-dev/pytest/issues/1832]).
Thanks @The-Compiler [https://github.com/The-Compiler] for the report, @Kingdread [https://github.com/Kingdread] and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix internal error when parametrizing tests or fixtures using an empty ids argument (#1849 [https://github.com/pytest-dev/pytest/issues/1849]).
Thanks @OPpuolitaival [https://github.com/OPpuolitaival] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix loader error when running pytest embedded in a zipfile.
Thanks @mbachry [https://github.com/mbachry] for the PR.

3.0.0 (2016-08-18)

Incompatible changes

A number of incompatible changes were made in this release, with the intent of removing features deprecated for a long
time or change existing behaviors in order to make them less surprising/more useful.

	Reinterpretation mode has now been removed. Only plain and rewrite
mode are available, consequently the --assert=reinterp option is
no longer available. This also means files imported from plugins or
conftest.py will not benefit from improved assertions by
default, you should use pytest.register_assert_rewrite() to
explicitly turn on assertion rewriting for those files. Thanks
@flub [https://github.com/flub] for the PR.

	The following deprecated commandline options were removed:

	--genscript: no longer supported;

	--no-assert: use --assert=plain instead;

	--nomagic: use --assert=plain instead;

	--report: use -r instead;

Thanks to @RedBeardCode [https://github.com/RedBeardCode] for the PR (#1664 [https://github.com/pytest-dev/pytest/pull/1664]).

	ImportErrors in plugins now are a fatal error instead of issuing a
pytest warning (#1479 [https://github.com/pytest-dev/pytest/issues/1479]). Thanks to @The-Compiler [https://github.com/The-Compiler] for the PR.

	Removed support code for Python 3 versions < 3.3 (#1627 [https://github.com/pytest-dev/pytest/pull/1627]).

	Removed all py.test-X* entry points. The versioned, suffixed entry points
were never documented and a leftover from a pre-virtualenv era. These entry
points also created broken entry points in wheels, so removing them also
removes a source of confusion for users (#1632 [https://github.com/pytest-dev/pytest/issues/1632]).
Thanks @obestwalter [https://github.com/obestwalter] for the PR.

	pytest.skip() now raises an error when used to decorate a test function,
as opposed to its original intent (to imperatively skip a test inside a test function). Previously
this usage would cause the entire module to be skipped (#607 [https://github.com/pytest-dev/pytest/issues/607]).
Thanks @omarkohl [https://github.com/omarkohl] for the complete PR (#1519 [https://github.com/pytest-dev/pytest/pull/1519]).

	Exit tests if a collection error occurs. A poll indicated most users will hit CTRL-C
anyway as soon as they see collection errors, so pytest might as well make that the default behavior (#1421 [https://github.com/pytest-dev/pytest/issues/1421]).
A --continue-on-collection-errors option has been added to restore the previous behaviour.
Thanks @olegpidsadnyi [https://github.com/olegpidsadnyi] and @omarkohl [https://github.com/omarkohl] for the complete PR (#1628 [https://github.com/pytest-dev/pytest/pull/1628]).

	Renamed the pytest pdb module (plugin) into debugging to avoid clashes with the builtin pdb module.

	Raise a helpful failure message when requesting a parametrized fixture at runtime,
e.g. with request.getfixturevalue. Previously these parameters were simply
never defined, so a fixture decorated like @pytest.fixture(params=[0, 1, 2])
only ran once (#460 [https://github.com/pytest-dev/pytest/pull/460]).
Thanks to @nikratio [https://github.com/nikratio] for the bug report, @RedBeardCode [https://github.com/RedBeardCode] and @tomviner [https://github.com/tomviner] for the PR.

	_pytest.monkeypatch.monkeypatch class has been renamed to _pytest.monkeypatch.MonkeyPatch
so it doesn’t conflict with the monkeypatch fixture.

	--exitfirst / -x can now be overridden by a following --maxfail=N
and is just a synonym for --maxfail=1.

New Features

	Support nose-style __test__ attribute on methods of classes,
including unittest-style Classes. If set to False, the test will not be
collected.

	New doctest_namespace fixture for injecting names into the
namespace in which doctests run.
Thanks @milliams [https://github.com/milliams] for the complete PR (#1428 [https://github.com/pytest-dev/pytest/pull/1428]).

	New --doctest-report option available to change the output format of diffs
when running (failing) doctests (implements #1749 [https://github.com/pytest-dev/pytest/issues/1749]).
Thanks @hartym [https://github.com/hartym] for the PR.

	New name argument to pytest.fixture decorator which allows a custom name
for a fixture (to solve the funcarg-shadowing-fixture problem).
Thanks @novas0x2a [https://github.com/novas0x2a] for the complete PR (#1444 [https://github.com/pytest-dev/pytest/pull/1444]).

	New approx() function for easily comparing floating-point numbers in
tests.
Thanks @kalekundert [https://github.com/kalekundert] for the complete PR (#1441 [https://github.com/pytest-dev/pytest/pull/1441]).

	Ability to add global properties in the final xunit output file by accessing
the internal junitxml plugin (experimental).
Thanks @tareqalayan [https://github.com/tareqalayan] for the complete PR #1454 [https://github.com/pytest-dev/pytest/pull/1454]).

	New ExceptionInfo.match() method to match a regular expression on the
string representation of an exception (#372 [https://github.com/pytest-dev/pytest/issues/372]).
Thanks @omarkohl [https://github.com/omarkohl] for the complete PR (#1502 [https://github.com/pytest-dev/pytest/pull/1502]).

	__tracebackhide__ can now also be set to a callable which then can decide
whether to filter the traceback based on the ExceptionInfo object passed
to it. Thanks @The-Compiler [https://github.com/The-Compiler] for the complete PR (#1526 [https://github.com/pytest-dev/pytest/pull/1526]).

	New pytest_make_parametrize_id(config, val) hook which can be used by plugins to provide
friendly strings for custom types.
Thanks @palaviv [https://github.com/palaviv] for the PR.

	capsys and capfd now have a disabled() context-manager method, which
can be used to temporarily disable capture within a test.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	New cli flag --fixtures-per-test: shows which fixtures are being used
for each selected test item. Features doc strings of fixtures by default.
Can also show where fixtures are defined if combined with -v.
Thanks @hackebrot [https://github.com/hackebrot] for the PR.

	Introduce pytest command as recommended entry point. Note that py.test
still works and is not scheduled for removal. Closes proposal
#1629 [https://github.com/pytest-dev/pytest/issues/1629]. Thanks @obestwalter [https://github.com/obestwalter] and @davehunt [https://github.com/davehunt] for the complete PR
(#1633 [https://github.com/pytest-dev/pytest/pull/1633]).

	New cli flags:

	--setup-plan: performs normal collection and reports
the potential setup and teardown and does not execute any fixtures and tests;

	--setup-only: performs normal collection, executes setup and teardown of
fixtures and reports them;

	--setup-show: performs normal test execution and additionally shows
setup and teardown of fixtures;

	--keep-duplicates: py.test now ignores duplicated paths given in the command
line. To retain the previous behavior where the same test could be run multiple
times by specifying it in the command-line multiple times, pass the --keep-duplicates
argument (#1609 [https://github.com/pytest-dev/pytest/issues/1609]);

Thanks @d6e [https://github.com/d6e], @kvas-it [https://github.com/kvas-it], @sallner [https://github.com/sallner], @ioggstream [https://github.com/ioggstream] and @omarkohl [https://github.com/omarkohl] for the PRs.

	New CLI flag --override-ini/-o: overrides values from the ini file.
For example: "-o xfail_strict=True"’.
Thanks @blueyed [https://github.com/blueyed] and @fengxx [https://github.com/fengxx] for the PR.

	New hooks:

	pytest_fixture_setup(fixturedef, request): executes fixture setup;

	pytest_fixture_post_finalizer(fixturedef): called after the fixture’s
finalizer and has access to the fixture’s result cache.

Thanks @d6e [https://github.com/d6e], @sallner [https://github.com/sallner].

	Issue warnings for asserts whose test is a tuple literal. Such asserts will
never fail because tuples are always truthy and are usually a mistake
(see #1562 [https://github.com/pytest-dev/pytest/issues/1562]). Thanks @kvas-it [https://github.com/kvas-it], for the PR.

	Allow passing a custom debugger class (e.g. --pdbcls=IPython.core.debugger:Pdb).
Thanks to @anntzer [https://github.com/anntzer] for the PR.

Changes

	Plugins now benefit from assertion rewriting. Thanks
@sober7 [https://github.com/sober7], @nicoddemus [https://github.com/nicoddemus] and @flub [https://github.com/flub] for the PR.

	Change report.outcome for xpassed tests to "passed" in non-strict
mode and "failed" in strict mode. Thanks to @hackebrot [https://github.com/hackebrot] for the PR
(#1795 [https://github.com/pytest-dev/pytest/pull/1795]) and @gprasad84 [https://github.com/gprasad84] for report (#1546 [https://github.com/pytest-dev/pytest/issues/1546]).

	Tests marked with xfail(strict=False) (the default) now appear in
JUnitXML reports as passing tests instead of skipped.
Thanks to @hackebrot [https://github.com/hackebrot] for the PR (#1795 [https://github.com/pytest-dev/pytest/pull/1795]).

	Highlight path of the file location in the error report to make it easier to copy/paste.
Thanks @suzaku [https://github.com/suzaku] for the PR (#1778 [https://github.com/pytest-dev/pytest/pull/1778]).

	Fixtures marked with @pytest.fixture can now use yield statements exactly like
those marked with the @pytest.yield_fixture decorator. This change renders
@pytest.yield_fixture deprecated and makes @pytest.fixture with yield statements
the preferred way to write teardown code (#1461 [https://github.com/pytest-dev/pytest/pull/1461]).
Thanks @csaftoiu [https://github.com/csaftoiu] for bringing this to attention and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Explicitly passed parametrize ids do not get escaped to ascii (#1351 [https://github.com/pytest-dev/pytest/issues/1351]).
Thanks @ceridwen [https://github.com/ceridwen] for the PR.

	Fixtures are now sorted in the error message displayed when an unknown
fixture is declared in a test function.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	pytest_terminal_summary hook now receives the exitstatus
of the test session as argument. Thanks @blueyed [https://github.com/blueyed] for the PR (#1809 [https://github.com/pytest-dev/pytest/pull/1809]).

	Parametrize ids can accept None as specific test id, in which case the
automatically generated id for that argument will be used.
Thanks @palaviv [https://github.com/palaviv] for the complete PR (#1468 [https://github.com/pytest-dev/pytest/pull/1468]).

	The parameter to xunit-style setup/teardown methods (setup_method,
setup_module, etc.) is now optional and may be omitted.
Thanks @okken [https://github.com/okken] for bringing this to attention and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Improved automatic id generation selection in case of duplicate ids in
parametrize.
Thanks @palaviv [https://github.com/palaviv] for the complete PR (#1474 [https://github.com/pytest-dev/pytest/pull/1474]).

	Now pytest warnings summary is shown up by default. Added a new flag
--disable-pytest-warnings to explicitly disable the warnings summary (#1668 [https://github.com/pytest-dev/pytest/issues/1668]).

	Make ImportError during collection more explicit by reminding
the user to check the name of the test module/package(s) (#1426 [https://github.com/pytest-dev/pytest/issues/1426]).
Thanks @omarkohl [https://github.com/omarkohl] for the complete PR (#1520 [https://github.com/pytest-dev/pytest/pull/1520]).

	Add build/ and dist/ to the default --norecursedirs list. Thanks
@mikofski [https://github.com/mikofski] for the report and @tomviner [https://github.com/tomviner] for the PR (#1544 [https://github.com/pytest-dev/pytest/issues/1544]).

	pytest.raises in the context manager form accepts a custom
message to raise when no exception occurred.
Thanks @palaviv [https://github.com/palaviv] for the complete PR (#1616 [https://github.com/pytest-dev/pytest/pull/1616]).

	conftest.py files now benefit from assertion rewriting; previously it
was only available for test modules. Thanks @flub [https://github.com/flub], @sober7 [https://github.com/sober7] and
@nicoddemus [https://github.com/nicoddemus] for the PR (#1619 [https://github.com/pytest-dev/pytest/issues/1619]).

	Text documents without any doctests no longer appear as “skipped”.
Thanks @graingert [https://github.com/graingert] for reporting and providing a full PR (#1580 [https://github.com/pytest-dev/pytest/pull/1580]).

	Ensure that a module within a namespace package can be found when it
is specified on the command line together with the --pyargs
option. Thanks to @taschini [https://github.com/taschini] for the PR (#1597 [https://github.com/pytest-dev/pytest/pull/1597]).

	Always include full assertion explanation during assertion rewriting. The previous behaviour was hiding
sub-expressions that happened to be False, assuming this was redundant information.
Thanks @bagerard [https://github.com/bagerard] for reporting (#1503 [https://github.com/pytest-dev/pytest/issues/1503]). Thanks to @davehunt [https://github.com/davehunt] and
@tomviner [https://github.com/tomviner] for the PR.

	OptionGroup.addoption() now checks if option names were already
added before, to make it easier to track down issues like #1618 [https://github.com/pytest-dev/pytest/issues/1618].
Before, you only got exceptions later from argparse library,
giving no clue about the actual reason for double-added options.

	yield-based tests are considered deprecated and will be removed in pytest-4.0.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	[pytest] sections in setup.cfg files should now be named [tool:pytest]
to avoid conflicts with other distutils commands (see #567 [https://github.com/pytest-dev/pytest/pull/567]). [pytest] sections in
pytest.ini or tox.ini files are supported and unchanged.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Using pytest_funcarg__ prefix to declare fixtures is considered deprecated and will be
removed in pytest-4.0 (#1684 [https://github.com/pytest-dev/pytest/pull/1684]).
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Passing a command-line string to pytest.main() is considered deprecated and scheduled
for removal in pytest-4.0. It is recommended to pass a list of arguments instead (#1723 [https://github.com/pytest-dev/pytest/pull/1723]).

	Rename getfuncargvalue to getfixturevalue. getfuncargvalue is
still present but is now considered deprecated. Thanks to @RedBeardCode [https://github.com/RedBeardCode] and @tomviner [https://github.com/tomviner]
for the PR (#1626 [https://github.com/pytest-dev/pytest/pull/1626]).

	optparse type usage now triggers DeprecationWarnings (#1740 [https://github.com/pytest-dev/pytest/issues/1740]).

	optparse backward compatibility supports float/complex types (#457 [https://github.com/pytest-dev/pytest/issues/457]).

	Refined logic for determining the rootdir, considering only valid
paths which fixes a number of issues: #1594 [https://github.com/pytest-dev/pytest/issues/1594], #1435 [https://github.com/pytest-dev/pytest/issues/1435] and #1471 [https://github.com/pytest-dev/pytest/issues/1471].
Updated the documentation according to current behavior. Thanks to
@blueyed [https://github.com/blueyed], @davehunt [https://github.com/davehunt] and @matthiasha [https://github.com/matthiasha] for the PR.

	Always include full assertion explanation. The previous behaviour was hiding
sub-expressions that happened to be False, assuming this was redundant information.
Thanks @bagerard [https://github.com/bagerard] for reporting (#1503 [https://github.com/pytest-dev/pytest/issues/1503]). Thanks to @davehunt [https://github.com/davehunt] and
@tomviner [https://github.com/tomviner] for PR.

	Better message in case of not using parametrized variable (see #1539 [https://github.com/pytest-dev/pytest/issues/1539]).
Thanks to @tramwaj29 [https://github.com/tramwaj29] for the PR.

	Updated docstrings with a more uniform style.

	Add stderr write for pytest.exit(msg) during startup. Previously the message was never shown.
Thanks @BeyondEvil [https://github.com/BeyondEvil] for reporting #1210 [https://github.com/pytest-dev/pytest/issues/1210]. Thanks to @JonathonSonesen [https://github.com/JonathonSonesen] and
@tomviner [https://github.com/tomviner] for the PR.

	No longer display the incorrect test deselection reason (#1372 [https://github.com/pytest-dev/pytest/issues/1372]).
Thanks @ronnypfannschmidt [https://github.com/RonnyPfannschmidt] for the PR.

	The --resultlog command line option has been deprecated: it is little used
and there are more modern and better alternatives (see #830 [https://github.com/pytest-dev/pytest/issues/830]).
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Improve error message with fixture lookup errors: add an ‘E’ to the first
line and ‘>’ to the rest. Fixes #717 [https://github.com/pytest-dev/pytest/issues/717]. Thanks @blueyed [https://github.com/blueyed] for reporting and
a PR, @eolo999 [https://github.com/eolo999] for the initial PR and @tomviner [https://github.com/tomviner] for his guidance during
EuroPython2016 sprint.

Bug Fixes

	Parametrize now correctly handles duplicated test ids.

	Fix internal error issue when the method argument is missing for
teardown_method() (#1605 [https://github.com/pytest-dev/pytest/issues/1605]).

	Fix exception visualization in case the current working directory (CWD) gets
deleted during testing (#1235 [https://github.com/pytest-dev/pytest/issues/1235]). Thanks @bukzor [https://github.com/bukzor] for reporting. PR by
@marscher [https://github.com/marscher].

	Improve test output for logical expression with brackets (#925 [https://github.com/pytest-dev/pytest/issues/925]).
Thanks @DRMacIver [https://github.com/DRMacIver] for reporting and @RedBeardCode [https://github.com/RedBeardCode] for the PR.

	Create correct diff for strings ending with newlines (#1553 [https://github.com/pytest-dev/pytest/issues/1553]).
Thanks @Vogtinator [https://github.com/Vogtinator] for reporting and @RedBeardCode [https://github.com/RedBeardCode] and
@tomviner [https://github.com/tomviner] for the PR.

	ConftestImportFailure now shows the traceback making it easier to
identify bugs in conftest.py files (#1516 [https://github.com/pytest-dev/pytest/pull/1516]). Thanks @txomon [https://github.com/txomon] for
the PR.

	Text documents without any doctests no longer appear as “skipped”.
Thanks @graingert [https://github.com/graingert] for reporting and providing a full PR (#1580 [https://github.com/pytest-dev/pytest/pull/1580]).

	Fixed collection of classes with custom __new__ method.
Fixes #1579 [https://github.com/pytest-dev/pytest/issues/1579]. Thanks to @Stranger6667 [https://github.com/Stranger6667] for the PR.

	Fixed scope overriding inside metafunc.parametrize (#634 [https://github.com/pytest-dev/pytest/issues/634]).
Thanks to @Stranger6667 [https://github.com/Stranger6667] for the PR.

	Fixed the total tests tally in junit xml output (#1798 [https://github.com/pytest-dev/pytest/pull/1798]).
Thanks to @cryporchild [https://github.com/cryporchild] for the PR.

	Fixed off-by-one error with lines from request.node.warn.
Thanks to @blueyed [https://github.com/blueyed] for the PR.

2.9.2 (2016-05-31)

Bug Fixes

	fix #510 [https://github.com/pytest-dev/pytest/issues/510]: skip tests where one parameterize dimension was empty
thanks Alex Stapleton for the Report and @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the PR

	Fix Xfail does not work with condition keyword argument.
Thanks @astraw38 [https://github.com/astraw38] for reporting the issue (#1496 [https://github.com/pytest-dev/pytest/issues/1496]) and @tomviner [https://github.com/tomviner]
for PR the (#1524 [https://github.com/pytest-dev/pytest/pull/1524]).

	Fix win32 path issue when putting custom config file with absolute path
in pytest.main("-c your_absolute_path").

	Fix maximum recursion depth detection when raised error class is not aware
of unicode/encoded bytes.
Thanks @prusse-martin [https://github.com/prusse-martin] for the PR (#1506 [https://github.com/pytest-dev/pytest/pull/1506]).

	Fix pytest.mark.skip mark when used in strict mode.
Thanks @pquentin [https://github.com/pquentin] for the PR and @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for
showing how to fix the bug.

	Minor improvements and fixes to the documentation.
Thanks @omarkohl [https://github.com/omarkohl] for the PR.

	Fix --fixtures to show all fixture definitions as opposed to just
one per fixture name.
Thanks to @hackebrot [https://github.com/hackebrot] for the PR.

2.9.1 (2016-03-17)

Bug Fixes

	Improve error message when a plugin fails to load.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix (#1178 [https://github.com/pytest-dev/pytest/issues/1178]):
pytest.fail with non-ascii characters raises an internal pytest error.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix (#469 [https://github.com/pytest-dev/pytest/issues/469]): junit parses report.nodeid incorrectly, when params IDs
contain ::. Thanks @tomviner [https://github.com/tomviner] for the PR (#1431 [https://github.com/pytest-dev/pytest/pull/1431]).

	Fix (#578 [https://github.com/pytest-dev/pytest/issues/578]): SyntaxErrors
containing non-ascii lines at the point of failure generated an internal
py.test error.
Thanks @asottile [https://github.com/asottile] for the report and @nicoddemus [https://github.com/nicoddemus] for the PR.

	Fix (#1437 [https://github.com/pytest-dev/pytest/issues/1437]): When passing in a bytestring regex pattern to parameterize
attempt to decode it as utf-8 ignoring errors.

	Fix (#649 [https://github.com/pytest-dev/pytest/issues/649]): parametrized test nodes cannot be specified to run on the command line.

	Fix (#138 [https://github.com/pytest-dev/pytest/issues/138]): better reporting for python 3.3+ chained exceptions

2.9.0 (2016-02-29)

New Features

	New pytest.mark.skip mark, which unconditionally skips marked tests.
Thanks @MichaelAquilina [https://github.com/MichaelAquilina] for the complete PR (#1040 [https://github.com/pytest-dev/pytest/pull/1040]).

	--doctest-glob may now be passed multiple times in the command-line.
Thanks @jab [https://github.com/jab] and @nicoddemus [https://github.com/nicoddemus] for the PR.

	New -rp and -rP reporting options give the summary and full output
of passing tests, respectively. Thanks to @codewarrior0 [https://github.com/codewarrior0] for the PR.

	pytest.mark.xfail now has a strict option, which makes XPASS
tests to fail the test suite (defaulting to False). There’s also a
xfail_strict ini option that can be used to configure it project-wise.
Thanks @rabbbit [https://github.com/rabbbit] for the request and @nicoddemus [https://github.com/nicoddemus] for the PR (#1355 [https://github.com/pytest-dev/pytest/pull/1355]).

	Parser.addini now supports options of type bool.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	New ALLOW_BYTES doctest option. This strips b prefixes from byte strings
in doctest output (similar to ALLOW_UNICODE).
Thanks @jaraco [https://github.com/jaraco] for the request and @nicoddemus [https://github.com/nicoddemus] for the PR (#1287 [https://github.com/pytest-dev/pytest/pull/1287]).

	Give a hint on KeyboardInterrupt to use the --fulltrace option to show the errors.
Fixes #1366 [https://github.com/pytest-dev/pytest/issues/1366].
Thanks to @hpk42 [https://github.com/hpk42] for the report and @RonnyPfannschmidt [https://github.com/RonnyPfannschmidt] for the PR.

	Catch IndexError exceptions when getting exception source location.
Fixes a pytest internal error for dynamically generated code (fixtures and tests)
where source lines are fake by intention.

Changes

	Important: py.code [https://pylib.readthedocs.io/en/latest/code.html] has been
merged into the pytest repository as pytest._code. This decision
was made because py.code had very few uses outside pytest and the
fact that it was in a different repository made it difficult to fix bugs on
its code in a timely manner. The team hopes with this to be able to better
refactor out and improve that code.
This change shouldn’t affect users, but it is useful to let users aware
if they encounter any strange behavior.

Keep in mind that the code for pytest._code is private and
experimental, so you definitely should not import it explicitly!

Please note that the original py.code is still available in
pylib [https://pylib.readthedocs.io].

	pytest_enter_pdb now optionally receives the pytest config object.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR.

	Removed code and documentation for Python 2.5 or lower versions,
including removal of the obsolete _pytest.assertion.oldinterpret module.
Thanks @nicoddemus [https://github.com/nicoddemus] for the PR (#1226 [https://github.com/pytest-dev/pytest/pull/1226]).

	Comparisons now always show up in full when CI or BUILD_NUMBER is
found in the environment, even when -vv isn’t used.
Thanks @The-Compiler [https://github.com/The-Compiler] for the PR.

	--lf and --ff now support long names: --last-failed and
--failed-first respectively.
Thanks @MichaelAquilina [https://github.com/MichaelAquilina] for the PR.

	Added expected exceptions to pytest.raises fail message.

	Collection only displays progress (“collecting X items”) when in a terminal.
This avoids cluttering the output when using --color=yes to obtain
colors in CI integrations systems (#1397 [https://github.com/pytest-dev/pytest/issues/1397]).

Bug Fixes

	The -s and -c options should now work under xdist;
Config.fromdictargs now represents its input much more faithfully.
Thanks to @bukzor [https://github.com/bukzor] for the complete PR (#680 [https://github.com/pytest-dev/pytest/issues/680]).

	Fix (#1290 [https://github.com/pytest-dev/pytest/pull/1290]): support Python 3.5’s @ operator in assertion rewriting.
Thanks @Shinkenjoe [https://github.com/Shinkenjoe] for report with test case and @tomviner [https://github.com/tomviner] for the PR.

	Fix formatting utf-8 explanation messages (#1379 [https://github.com/pytest-dev/pytest/issues/1379]).
Thanks @biern [https://github.com/biern] for the PR.

	Fix traceback style docs [https://pytest.org/latest/usage.html#modifying-python-traceback-printing] to describe all of the available options
(auto/long/short/line/native/no), with auto being the default since v2.6.
Thanks @hackebrot [https://github.com/hackebrot] for the PR.

	Fix (#1422 [https://github.com/pytest-dev/pytest/issues/1422]): junit record_xml_property doesn’t allow multiple records
with same name.

2.8.7 (2016-01-24)

	fix #1338: use predictable object resolution for monkeypatch

2.8.6 (2016-01-21)

	fix #1259: allow for double nodeids in junitxml,
this was a regression failing plugins combinations
like pytest-pep8 + pytest-flakes

	Workaround for exception that occurs in pyreadline when using
--pdb with standard I/O capture enabled.
Thanks Erik M. Bray for the PR.

	fix #900: Better error message in case the target of a monkeypatch call
raises an ImportError.

	fix #1292: monkeypatch calls (setattr, setenv, etc.) are now O(1).
Thanks David R. MacIver for the report and Bruno Oliveira for the PR.

	fix #1223: captured stdout and stderr are now properly displayed before
entering pdb when --pdb is used instead of being thrown away.
Thanks Cal Leeming for the PR.

	fix #1305: pytest warnings emitted during pytest_terminal_summary are now
properly displayed.
Thanks Ionel Maries Cristian for the report and Bruno Oliveira for the PR.

	fix #628: fixed internal UnicodeDecodeError when doctests contain unicode.
Thanks Jason R. Coombs for the report and Bruno Oliveira for the PR.

	fix #1334: Add captured stdout to jUnit XML report on setup error.
Thanks Georgy Dyuldin for the PR.

2.8.5 (2015-12-11)

	fix #1243: fixed issue where class attributes injected during collection could break pytest.
PR by Alexei Kozlenok, thanks Ronny Pfannschmidt and Bruno Oliveira for the review and help.

	fix #1074: precompute junitxml chunks instead of storing the whole tree in objects
Thanks Bruno Oliveira for the report and Ronny Pfannschmidt for the PR

	fix #1238: fix pytest.deprecated_call() receiving multiple arguments
(Regression introduced in 2.8.4). Thanks Alex Gaynor for the report and
Bruno Oliveira for the PR.

2.8.4 (2015-12-06)

	fix #1190: deprecated_call() now works when the deprecated
function has been already called by another test in the same
module. Thanks Mikhail Chernykh for the report and Bruno Oliveira for the
PR.

	fix #1198: --pastebin option now works on Python 3. Thanks
Mehdy Khoshnoody for the PR.

	fix #1219: --pastebin now works correctly when captured output contains
non-ascii characters. Thanks Bruno Oliveira for the PR.

	fix #1204: another error when collecting with a nasty __getattr__().
Thanks Florian Bruhin for the PR.

	fix the summary printed when no tests did run.
Thanks Florian Bruhin for the PR.

	fix #1185 - ensure MANIFEST.in exactly matches what should go to a sdist

	a number of documentation modernizations wrt good practices.
Thanks Bruno Oliveira for the PR.

2.8.3 (2015-11-18)

	fix #1169: add __name__ attribute to testcases in TestCaseFunction to
support the @unittest.skip decorator on functions and methods.
Thanks Lee Kamentsky for the PR.

	fix #1035: collecting tests if test module level obj has __getattr__().
Thanks Suor for the report and Bruno Oliveira / Tom Viner for the PR.

	fix #331: don’t collect tests if their failure cannot be reported correctly
e.g. they are a callable instance of a class.

	fix #1133: fixed internal error when filtering tracebacks where one entry
belongs to a file which is no longer available.
Thanks Bruno Oliveira for the PR.

	enhancement made to highlight in red the name of the failing tests so
they stand out in the output.
Thanks Gabriel Reis for the PR.

	add more talks to the documentation

	extend documentation on the –ignore cli option

	use pytest-runner for setuptools integration

	minor fixes for interaction with OS X El Capitan
system integrity protection (thanks Florian)

2.8.2 (2015-10-07)

	fix #1085: proper handling of encoding errors when passing encoded byte
strings to pytest.parametrize in Python 2.
Thanks Themanwithoutaplan for the report and Bruno Oliveira for the PR.

	fix #1087: handling SystemError when passing empty byte strings to
pytest.parametrize in Python 3.
Thanks Paul Kehrer for the report and Bruno Oliveira for the PR.

	fix #995: fixed internal error when filtering tracebacks where one entry
was generated by an exec() statement.
Thanks Daniel Hahler, Ashley C Straw, Philippe Gauthier and Pavel Savchenko
for contributing and Bruno Oliveira for the PR.

	fix #1100 and #1057: errors when using autouse fixtures and doctest modules.
Thanks Sergey B Kirpichev and Vital Kudzelka for contributing and Bruno
Oliveira for the PR.

2.8.1 (2015-09-29)

	fix #1034: Add missing nodeid on pytest_logwarning call in
addhook. Thanks Simon Gomizelj for the PR.

	‘deprecated_call’ is now only satisfied with a DeprecationWarning or
PendingDeprecationWarning. Before 2.8.0, it accepted any warning, and 2.8.0
made it accept only DeprecationWarning (but not PendingDeprecationWarning).
Thanks Alex Gaynor for the issue and Eric Hunsberger for the PR.

	fix issue #1073: avoid calling __getattr__ on potential plugin objects.
This fixes an incompatibility with pytest-django. Thanks Andreas Pelme,
Bruno Oliveira and Ronny Pfannschmidt for contributing and Holger Krekel
for the fix.

	Fix issue #704: handle versionconflict during plugin loading more
gracefully. Thanks Bruno Oliveira for the PR.

	Fix issue #1064: “”–junitxml” regression when used with the
“pytest-xdist” plugin, with test reports being assigned to the wrong tests.
Thanks Daniel Grunwald for the report and Bruno Oliveira for the PR.

	(experimental) adapt more SEMVER style versioning and change meaning of
master branch in git repo: “master” branch now keeps the bugfixes, changes
aimed for micro releases. “features” branch will only be released
with minor or major pytest releases.

	Fix issue #766 by removing documentation references to distutils.
Thanks Russel Winder.

	Fix issue #1030: now byte-strings are escaped to produce item node ids
to make them always serializable.
Thanks Andy Freeland for the report and Bruno Oliveira for the PR.

	Python 2: if unicode parametrized values are convertible to ascii, their
ascii representation is used for the node id.

	Fix issue #411: Add __eq__ method to assertion comparison example.
Thanks Ben Webb.

	Fix issue #653: deprecated_call can be used as context manager.

	fix issue 877: properly handle assertion explanations with non-ascii repr
Thanks Mathieu Agopian for the report and Ronny Pfannschmidt for the PR.

	fix issue 1029: transform errors when writing cache values into pytest-warnings

2.8.0 (2015-09-18)

	new --lf and -ff options to run only the last failing tests or
“failing tests first” from the last run. This functionality is provided
through porting the formerly external pytest-cache plugin into pytest core.
BACKWARD INCOMPAT: if you used pytest-cache’s functionality to persist
data between test runs be aware that we don’t serialize sets anymore.
Thanks Ronny Pfannschmidt for most of the merging work.

	“-r” option now accepts “a” to include all possible reports, similar
to passing “fEsxXw” explicitly (isse960).
Thanks Abhijeet Kasurde for the PR.

	avoid python3.5 deprecation warnings by introducing version
specific inspection helpers, thanks Michael Droettboom.

	fix issue562: @nose.tools.istest now fully respected.

	fix issue934: when string comparison fails and a diff is too large to display
without passing -vv, still show a few lines of the diff.
Thanks Florian Bruhin for the report and Bruno Oliveira for the PR.

	fix issue736: Fix a bug where fixture params would be discarded when combined
with parametrization markers.
Thanks to Markus Unterwaditzer for the PR.

	fix issue710: introduce ALLOW_UNICODE doctest option: when enabled, the
u prefix is stripped from unicode strings in expected doctest output. This
allows doctests which use unicode to run in Python 2 and 3 unchanged.
Thanks Jason R. Coombs for the report and Bruno Oliveira for the PR.

	parametrize now also generates meaningful test IDs for enum, regex and class
objects (as opposed to class instances).
Thanks to Florian Bruhin for the PR.

	Add ‘warns’ to assert that warnings are thrown (like ‘raises’).
Thanks to Eric Hunsberger for the PR.

	Fix issue683: Do not apply an already applied mark. Thanks ojake for the PR.

	Deal with capturing failures better so fewer exceptions get lost to
/dev/null. Thanks David Szotten for the PR.

	fix issue730: deprecate and warn about the –genscript option.
Thanks Ronny Pfannschmidt for the report and Christian Pommranz for the PR.

	fix issue751: multiple parametrize with ids bug if it parametrizes class with
two or more test methods. Thanks Sergey Chipiga for reporting and Jan
Bednarik for PR.

	fix issue82: avoid loading conftest files from setup.cfg/pytest.ini/tox.ini
files and upwards by default (–confcutdir can still be set to override this).
Thanks Bruno Oliveira for the PR.

	fix issue768: docstrings found in python modules were not setting up session
fixtures. Thanks Jason R. Coombs for reporting and Bruno Oliveira for the PR.

	added tmpdir_factory, a session-scoped fixture that can be used to create
directories under the base temporary directory. Previously this object was
installed as a _tmpdirhandler attribute of the config object, but now it
is part of the official API and using config._tmpdirhandler is
deprecated.
Thanks Bruno Oliveira for the PR.

	fix issue808: pytest’s internal assertion rewrite hook now implements the
optional PEP302 get_data API so tests can access data files next to them.
Thanks xmo-odoo for request and example and Bruno Oliveira for
the PR.

	rootdir and inifile are now displayed during usage errors to help
users diagnose problems such as unexpected ini files which add
unknown options being picked up by pytest. Thanks to Pavel Savchenko for
bringing the problem to attention in #821 and Bruno Oliveira for the PR.

	Summary bar now is colored yellow for warning
situations such as: all tests either were skipped or xpass/xfailed,
or no tests were run at all (this is a partial fix for issue500).

	fix issue812: pytest now exits with status code 5 in situations where no
tests were run at all, such as the directory given in the command line does
not contain any tests or as result of a command line option filters
all out all tests (-k for example).
Thanks Eric Siegerman (issue812) and Bruno Oliveira for the PR.

	Summary bar now is colored yellow for warning
situations such as: all tests either were skipped or xpass/xfailed,
or no tests were run at all (related to issue500).
Thanks Eric Siegerman.

	New testpaths ini option: list of directories to search for tests
when executing pytest from the root directory. This can be used
to speed up test collection when a project has well specified directories
for tests, being usually more practical than configuring norecursedirs for
all directories that do not contain tests.
Thanks to Adrian for idea (#694) and Bruno Oliveira for the PR.

	fix issue713: JUnit XML reports for doctest failures.
Thanks Punyashloka Biswal.

	fix issue970: internal pytest warnings now appear as “pytest-warnings” in
the terminal instead of “warnings”, so it is clear for users that those
warnings are from pytest and not from the builtin “warnings” module.
Thanks Bruno Oliveira.

	Include setup and teardown in junitxml test durations.
Thanks Janne Vanhala.

	fix issue735: assertion failures on debug versions of Python 3.4+

	new option --import-mode to allow to change test module importing
behaviour to append to sys.path instead of prepending. This better allows
to run test modules against installed versions of a package even if the
package under test has the same import root. In this example:

testing/__init__.py
testing/test_pkg_under_test.py
pkg_under_test/

the tests will run against the installed version
of pkg_under_test when --import-mode=append is used whereas
by default they would always pick up the local version. Thanks Holger Krekel.

	pytester: add method TmpTestdir.delete_loaded_modules(), and call it
from inline_run() to allow temporary modules to be reloaded.
Thanks Eduardo Schettino.

	internally refactor pluginmanager API and code so that there
is a clear distinction between a pytest-agnostic rather simple
pluginmanager and the PytestPluginManager which adds a lot of
behaviour, among it handling of the local conftest files.
In terms of documented methods this is a backward compatible
change but it might still break 3rd party plugins which relied on
details like especially the pluginmanager.add_shutdown() API.
Thanks Holger Krekel.

	pluginmanagement: introduce pytest.hookimpl and
pytest.hookspec decorators for setting impl/spec
specific parameters. This substitutes the previous
now deprecated use of pytest.mark which is meant to
contain markers for test functions only.

	write/refine docs for “writing plugins” which now have their
own page and are separate from the “using/installing plugins`` page.

	fix issue732: properly unregister plugins from any hook calling
sites allowing to have temporary plugins during test execution.

	deprecate and warn about __multicall__ argument in hook
implementations. Use the hookwrapper mechanism instead already
introduced with pytest-2.7.

	speed up pytest’s own test suite considerably by using inprocess
tests by default (testrun can be modified with –runpytest=subprocess
to create subprocesses in many places instead). The main
APIs to run pytest in a test is “runpytest()” or “runpytest_subprocess”
and “runpytest_inprocess” if you need a particular way of running
the test. In all cases you get back a RunResult but the inprocess
one will also have a “reprec” attribute with the recorded events/reports.

	fix monkeypatch.setattr(“x.y”, raising=False) to actually not raise
if “y” is not a pre-existing attribute. Thanks Florian Bruhin.

	fix issue741: make running output from testdir.run copy/pasteable
Thanks Bruno Oliveira.

	add a new --noconftest argument which ignores all conftest.py files.

	add file and line attributes to JUnit-XML output.

	fix issue890: changed extension of all documentation files from txt to
rst. Thanks to Abhijeet for the PR.

	fix issue714: add ability to apply indirect=True parameter on particular argnames.
Thanks Elizaveta239.

	fix issue890: changed extension of all documentation files from txt to
rst. Thanks to Abhijeet for the PR.

	fix issue957: “# doctest: SKIP” option will now register doctests as SKIPPED
rather than PASSED.
Thanks Thomas Grainger for the report and Bruno Oliveira for the PR.

	issue951: add new record_xml_property fixture, that supports logging
additional information on xml output. Thanks David Diaz for the PR.

	issue949: paths after normal options (for example -s, -v, etc) are now
properly used to discover rootdir and ini files.
Thanks Peter Lauri for the report and Bruno Oliveira for the PR.

2.7.3 (2015-09-15)

	Allow ‘dev’, ‘rc’, or other non-integer version strings in importorskip.
Thanks to Eric Hunsberger for the PR.

	fix issue856: consider –color parameter in all outputs (for example
–fixtures). Thanks Barney Gale for the report and Bruno Oliveira for the PR.

	fix issue855: passing str objects as plugins argument to pytest.main
is now interpreted as a module name to be imported and registered as a
plugin, instead of silently having no effect.
Thanks xmo-odoo for the report and Bruno Oliveira for the PR.

	fix issue744: fix for ast.Call changes in Python 3.5+. Thanks
Guido van Rossum, Matthias Bussonnier, Stefan Zimmermann and
Thomas Kluyver.

	fix issue842: applying markers in classes no longer propagate this markers
to superclasses which also have markers.
Thanks xmo-odoo for the report and Bruno Oliveira for the PR.

	preserve warning functions after call to pytest.deprecated_call. Thanks
Pieter Mulder for PR.

	fix issue854: autouse yield_fixtures defined as class members of
unittest.TestCase subclasses now work as expected.
Thannks xmo-odoo for the report and Bruno Oliveira for the PR.

	fix issue833: –fixtures now shows all fixtures of collected test files, instead of just the
fixtures declared on the first one.
Thanks Florian Bruhin for reporting and Bruno Oliveira for the PR.

	fix issue863: skipped tests now report the correct reason when a skip/xfail
condition is met when using multiple markers.
Thanks Raphael Pierzina for reporting and Bruno Oliveira for the PR.

	optimized tmpdir fixture initialization, which should make test sessions
faster (specially when using pytest-xdist). The only visible effect
is that now pytest uses a subdirectory in the $TEMP directory for all
directories created by this fixture (defaults to $TEMP/pytest-$USER).
Thanks Bruno Oliveira for the PR.

2.7.2 (2015-06-23)

	fix issue767: pytest.raises value attribute does not contain the exception
instance on Python 2.6. Thanks Eric Siegerman for providing the test
case and Bruno Oliveira for PR.

	Automatically create directory for junitxml and results log.
Thanks Aron Curzon.

	fix issue713: JUnit XML reports for doctest failures.
Thanks Punyashloka Biswal.

	fix issue735: assertion failures on debug versions of Python 3.4+
Thanks Benjamin Peterson.

	fix issue114: skipif marker reports to internal skipping plugin;
Thanks Floris Bruynooghe for reporting and Bruno Oliveira for the PR.

	fix issue748: unittest.SkipTest reports to internal pytest unittest plugin.
Thanks Thomas De Schampheleire for reporting and Bruno Oliveira for the PR.

	fix issue718: failed to create representation of sets containing unsortable
elements in python 2. Thanks Edison Gustavo Muenz.

	fix issue756, fix issue752 (and similar issues): depend on py-1.4.29
which has a refined algorithm for traceback generation.

2.7.1 (2015-05-19)

	fix issue731: do not get confused by the braces which may be present
and unbalanced in an object’s repr while collapsing False
explanations. Thanks Carl Meyer for the report and test case.

	fix issue553: properly handling inspect.getsourcelines failures in
FixtureLookupError which would lead to an internal error,
obfuscating the original problem. Thanks talljosh for initial
diagnose/patch and Bruno Oliveira for final patch.

	fix issue660: properly report scope-mismatch-access errors
independently from ordering of fixture arguments. Also
avoid the pytest internal traceback which does not provide
information to the user. Thanks Holger Krekel.

	streamlined and documented release process. Also all versions
(in setup.py and documentation generation) are now read
from _pytest/__init__.py. Thanks Holger Krekel.

	fixed docs to remove the notion that yield-fixtures are experimental.
They are here to stay :) Thanks Bruno Oliveira.

	Support building wheels by using environment markers for the
requirements. Thanks Ionel Maries Cristian.

	fixed regression to 2.6.4 which surfaced e.g. in lost stdout capture printing
when tests raised SystemExit. Thanks Holger Krekel.

	reintroduced _pytest fixture of the pytester plugin which is used
at least by pytest-xdist.

2.7.0 (2015-03-26)

	fix issue435: make reload() work when assert rewriting is active.
Thanks Daniel Hahler.

	fix issue616: conftest.py files and their contained fixutres are now
properly considered for visibility, independently from the exact
current working directory and test arguments that are used.
Many thanks to Eric Siegerman and his PR235 which contains
systematic tests for conftest visibility and now passes.
This change also introduces the concept of a rootdir which
is printed as a new pytest header and documented in the pytest
customize web page.

	change reporting of “diverted” tests, i.e. tests that are collected
in one file but actually come from another (e.g. when tests in a test class
come from a base class in a different file). We now show the nodeid
and indicate via a postfix the other file.

	add ability to set command line options by environment variable PYTEST_ADDOPTS.

	added documentation on the new pytest-dev teams on bitbucket and
github. See https://pytest.org/latest/contributing.html .
Thanks to Anatoly for pushing and initial work on this.

	fix issue650: new option --docttest-ignore-import-errors which
will turn import errors in doctests into skips. Thanks Charles Cloud
for the complete PR.

	fix issue655: work around different ways that cause python2/3
to leak sys.exc_info into fixtures/tests causing failures in 3rd party code

	fix issue615: assertion rewriting did not correctly escape % signs
when formatting boolean operations, which tripped over mixing
booleans with modulo operators. Thanks to Tom Viner for the report,
triaging and fix.

	implement issue351: add ability to specify parametrize ids as a callable
to generate custom test ids. Thanks Brianna Laugher for the idea and
implementation.

	introduce and document new hookwrapper mechanism useful for plugins
which want to wrap the execution of certain hooks for their purposes.
This supersedes the undocumented __multicall__ protocol which
pytest itself and some external plugins use. Note that pytest-2.8
is scheduled to drop supporting the old __multicall__
and only support the hookwrapper protocol.

	majorly speed up invocation of plugin hooks

	use hookwrapper mechanism in builtin pytest plugins.

	add a doctest ini option for doctest flags, thanks Holger Peters.

	add note to docs that if you want to mark a parameter and the
parameter is a callable, you also need to pass in a reason to disambiguate
it from the “decorator” case. Thanks Tom Viner.

	“python_classes” and “python_functions” options now support glob-patterns
for test discovery, as discussed in issue600. Thanks Ldiary Translations.

	allow to override parametrized fixtures with non-parametrized ones and vice versa (bubenkoff).

	fix issue463: raise specific error for ‘parameterize’ misspelling (pfctdayelise).

	On failure, the sys.last_value, sys.last_type and
sys.last_traceback are set, so that a user can inspect the error
via postmortem debugging (almarklein).

2.6.4 (2014-10-24)

	Improve assertion failure reporting on iterables, by using ndiff and
pprint.

	removed outdated japanese docs from source tree.

	docs for “pytest_addhooks” hook. Thanks Bruno Oliveira.

	updated plugin index docs. Thanks Bruno Oliveira.

	fix issue557: with “-k” we only allow the old style “-” for negation
at the beginning of strings and even that is deprecated. Use “not” instead.
This should allow to pick parametrized tests where “-” appeared in the parameter.

	fix issue604: Escape % character in the assertion message.

	fix issue620: add explanation in the –genscript target about what
the binary blob means. Thanks Dinu Gherman.

	fix issue614: fixed pastebin support.

	fix issue620: add explanation in the –genscript target about what
the binary blob means. Thanks Dinu Gherman.

	fix issue614: fixed pastebin support.

2.6.3 (2014-09-24)

	fix issue575: xunit-xml was reporting collection errors as failures
instead of errors, thanks Oleg Sinyavskiy.

	fix issue582: fix setuptools example, thanks Laszlo Papp and Ronny
Pfannschmidt.

	Fix infinite recursion bug when pickling capture.EncodedFile, thanks
Uwe Schmitt.

	fix issue589: fix bad interaction with numpy and others when showing
exceptions. Check for precise “maximum recursion depth exceed” exception
instead of presuming any RuntimeError is that one (implemented in py
dep). Thanks Charles Cloud for analysing the issue.

	fix conftest related fixture visibility issue: when running with a
CWD outside of a test package pytest would get fixture discovery wrong.
Thanks to Wolfgang Schnerring for figuring out a reproducible example.

	Introduce pytest_enter_pdb hook (needed e.g. by pytest_timeout to cancel the
timeout when interactively entering pdb). Thanks Wolfgang Schnerring.

	check xfail/skip also with non-python function test items. Thanks
Floris Bruynooghe.

2.6.2 (2014-09-05)

	Added function pytest.freeze_includes(), which makes it easy to embed
pytest into executables using tools like cx_freeze.
See docs for examples and rationale. Thanks Bruno Oliveira.

	Improve assertion rewriting cache invalidation precision.

	fixed issue561: adapt autouse fixture example for python3.

	fixed issue453: assertion rewriting issue with __repr__ containing
“n{“, “n}” and “n~”.

	fix issue560: correctly display code if an “else:” or “finally:” is
followed by statements on the same line.

	Fix example in monkeypatch documentation, thanks t-8ch.

	fix issue572: correct tmpdir doc example for python3.

	Do not mark as universal wheel because Python 2.6 is different from
other builds due to the extra argparse dependency. Fixes issue566.
Thanks sontek.

	Implement issue549: user-provided assertion messages now no longer
replace the py.test introspection message but are shown in addition
to them.

2.6.1 (2014-08-07)

	No longer show line numbers in the –verbose output, the output is now
purely the nodeid. The line number is still shown in failure reports.
Thanks Floris Bruynooghe.

	fix issue437 where assertion rewriting could cause pytest-xdist slaves
to collect different tests. Thanks Bruno Oliveira.

	fix issue555: add “errors” attribute to capture-streams to satisfy
some distutils and possibly other code accessing sys.stdout.errors.

	fix issue547 capsys/capfd also work when output capturing (“-s”) is disabled.

	address issue170: allow pytest.mark.xfail(…) to specify expected exceptions via
an optional “raises=EXC” argument where EXC can be a single exception
or a tuple of exception classes. Thanks David Mohr for the complete
PR.

	fix integration of pytest with unittest.mock.patch decorator when
it uses the “new” argument. Thanks Nicolas Delaby for test and PR.

	fix issue with detecting conftest files if the arguments contain
“::” node id specifications (copy pasted from “-v” output)

	fix issue544 by only removing “@NUM” at the end of “::” separated parts
and if the part has a “.py” extension

	don’t use py.std import helper, rather import things directly.
Thanks Bruno Oliveira.

2.6

	Cache exceptions from fixtures according to their scope (issue 467).

	fix issue537: Avoid importing old assertion reinterpretation code by default.

	fix issue364: shorten and enhance tracebacks representation by default.
The new “–tb=auto” option (default) will only display long tracebacks
for the first and last entry. You can get the old behaviour of printing
all entries as long entries with “–tb=long”. Also short entries by
default are now printed very similarly to “–tb=native” ones.

	fix issue514: teach assertion reinterpretation about private class attributes

	change -v output to include full node IDs of tests. Users can copy
a node ID from a test run, including line number, and use it as a
positional argument in order to run only a single test.

	fix issue 475: fail early and comprehensible if calling
pytest.raises with wrong exception type.

	fix issue516: tell in getting-started about current dependencies.

	cleanup setup.py a bit and specify supported versions. Thanks Jurko
Gospodnetic for the PR.

	change XPASS colour to yellow rather then red when tests are run
with -v.

	fix issue473: work around mock putting an unbound method into a class
dict when double-patching.

	fix issue498: if a fixture finalizer fails, make sure that
the fixture is still invalidated.

	fix issue453: the result of the pytest_assertrepr_compare hook now gets
it’s newlines escaped so that format_exception does not blow up.

	internal new warning system: pytest will now produce warnings when
it detects oddities in your test collection or execution.
Warnings are ultimately sent to a new pytest_logwarning hook which is
currently only implemented by the terminal plugin which displays
warnings in the summary line and shows more details when -rw (report on
warnings) is specified.

	change skips into warnings for test classes with an __init__ and
callables in test modules which look like a test but are not functions.

	fix issue436: improved finding of initial conftest files from command
line arguments by using the result of parse_known_args rather than
the previous flaky heuristics. Thanks Marc Abramowitz for tests
and initial fixing approaches in this area.

	fix issue #479: properly handle nose/unittest(2) SkipTest exceptions
during collection/loading of test modules. Thanks to Marc Schlaich
for the complete PR.

	fix issue490: include pytest_load_initial_conftests in documentation
and improve docstring.

	fix issue472: clarify that pytest.config.getvalue() cannot work
if it’s triggered ahead of command line parsing.

	merge PR123: improved integration with mock.patch decorator on tests.

	fix issue412: messing with stdout/stderr FD-level streams is now
captured without crashes.

	fix issue483: trial/py33 works now properly. Thanks Daniel Grana for PR.

	improve example for pytest integration with “python setup.py test”
which now has a generic “-a” or “–pytest-args” option where you
can pass additional options as a quoted string. Thanks Trevor Bekolay.

	simplified internal capturing mechanism and made it more robust
against tests or setups changing FD1/FD2, also better integrated
now with pytest.pdb() in single tests.

	improvements to pytest’s own test-suite leakage detection, courtesy of PRs
from Marc Abramowitz

	fix issue492: avoid leak in test_writeorg. Thanks Marc Abramowitz.

	fix issue493: don’t run tests in doc directory with python setup.py test
(use tox -e doctesting for that)

	fix issue486: better reporting and handling of early conftest loading failures

	some cleanup and simplification of internal conftest handling.

	work a bit harder to break reference cycles when catching exceptions.
Thanks Jurko Gospodnetic.

	fix issue443: fix skip examples to use proper comparison. Thanks Alex
Groenholm.

	support nose-style __test__ attribute on modules, classes and
functions, including unittest-style Classes. If set to False, the
test will not be collected.

	fix issue512: show “<notset>” for arguments which might not be set
in monkeypatch plugin. Improves output in documentation.

2.5.2 (2014-01-29)

	fix issue409 – better interoperate with cx_freeze by not
trying to import from collections.abc which causes problems
for py27/cx_freeze. Thanks Wolfgang L. for reporting and tracking it down.

	fixed docs and code to use “pytest” instead of “py.test” almost everywhere.
Thanks Jurko Gospodnetic for the complete PR.

	fix issue425: mention at end of “py.test -h” that –markers
and –fixtures work according to specified test path (or current dir)

	fix issue413: exceptions with unicode attributes are now printed
correctly also on python2 and with pytest-xdist runs. (the fix
requires py-1.4.20)

	copy, cleanup and integrate py.io capture
from pylib 1.4.20.dev2 (rev 13d9af95547e)

	address issue416: clarify docs as to conftest.py loading semantics

	fix issue429: comparing byte strings with non-ascii chars in assert
expressions now work better. Thanks Floris Bruynooghe.

	make capfd/capsys.capture private, its unused and shouldn’t be exposed

2.5.1 (2013-12-17)

	merge new documentation styling PR from Tobias Bieniek.

	fix issue403: allow parametrize of multiple same-name functions within
a collection node. Thanks Andreas Kloeckner and Alex Gaynor for reporting
and analysis.

	Allow parameterized fixtures to specify the ID of the parameters by
adding an ids argument to pytest.fixture() and pytest.yield_fixture().
Thanks Floris Bruynooghe.

	fix issue404 by always using the binary xml escape in the junitxml
plugin. Thanks Ronny Pfannschmidt.

	fix issue407: fix addoption docstring to point to argparse instead of
optparse. Thanks Daniel D. Wright.

2.5.0 (2013-12-12)

	dropped python2.5 from automated release testing of pytest itself
which means it’s probably going to break soon (but still works
with this release we believe).

	simplified and fixed implementation for calling finalizers when
parametrized fixtures or function arguments are involved. finalization
is now performed lazily at setup time instead of in the “teardown phase”.
While this might sound odd at first, it helps to ensure that we are
correctly handling setup/teardown even in complex code. User-level code
should not be affected unless it’s implementing the pytest_runtest_teardown
hook and expecting certain fixture instances are torn down within (very
unlikely and would have been unreliable anyway).

	PR90: add –color=yes|no|auto option to force terminal coloring
mode (“auto” is default). Thanks Marc Abramowitz.

	fix issue319 - correctly show unicode in assertion errors. Many
thanks to Floris Bruynooghe for the complete PR. Also means
we depend on py>=1.4.19 now.

	fix issue396 - correctly sort and finalize class-scoped parametrized
tests independently from number of methods on the class.

	refix issue323 in a better way – parametrization should now never
cause Runtime Recursion errors because the underlying algorithm
for re-ordering tests per-scope/per-fixture is not recursive
anymore (it was tail-call recursive before which could lead
to problems for more than >966 non-function scoped parameters).

	fix issue290 - there is preliminary support now for parametrizing
with repeated same values (sometimes useful to test if calling
a second time works as with the first time).

	close issue240 - document precisely how pytest module importing
works, discuss the two common test directory layouts, and how it
interacts with PEP420-namespace packages.

	fix issue246 fix finalizer order to be LIFO on independent fixtures
depending on a parametrized higher-than-function scoped fixture.
(was quite some effort so please bear with the complexity of this sentence :)
Thanks Ralph Schmitt for the precise failure example.

	fix issue244 by implementing special index for parameters to only use
indices for paramentrized test ids

	fix issue287 by running all finalizers but saving the exception
from the first failing finalizer and re-raising it so teardown will
still have failed. We reraise the first failing exception because
it might be the cause for other finalizers to fail.

	fix ordering when mock.patch or other standard decorator-wrappings
are used with test methods. This fixues issue346 and should
help with random “xdist” collection failures. Thanks to
Ronny Pfannschmidt and Donald Stufft for helping to isolate it.

	fix issue357 - special case “-k” expressions to allow for
filtering with simple strings that are not valid python expressions.
Examples: “-k 1.3” matches all tests parametrized with 1.3.
“-k None” filters all tests that have “None” in their name
and conversely “-k ‘not None’”.
Previously these examples would raise syntax errors.

	fix issue384 by removing the trial support code
since the unittest compat enhancements allow
trial to handle it on its own

	don’t hide an ImportError when importing a plugin produces one.
fixes issue375.

	fix issue275 - allow usefixtures and autouse fixtures
for running doctest text files.

	fix issue380 by making –resultlog only rely on longrepr instead
of the “reprcrash” attribute which only exists sometimes.

	address issue122: allow @pytest.fixture(params=iterator) by exploding
into a list early on.

	fix pexpect-3.0 compatibility for pytest’s own tests.
(fixes issue386)

	allow nested parametrize-value markers, thanks James Lan for the PR.

	fix unicode handling with new monkeypatch.setattr(import_path, value)
API. Thanks Rob Dennis. Fixes issue371.

	fix unicode handling with junitxml, fixes issue368.

	In assertion rewriting mode on Python 2, fix the detection of coding
cookies. See issue #330.

	make “–runxfail” turn imperative pytest.xfail calls into no ops
(it already did neutralize pytest.mark.xfail markers)

	refine pytest / pkg_resources interactions: The AssertionRewritingHook
PEP302 compliant loader now registers itself with setuptools/pkg_resources
properly so that the pkg_resources.resource_stream method works properly.
Fixes issue366. Thanks for the investigations and full PR to Jason R. Coombs.

	pytestconfig fixture is now session-scoped as it is the same object during the
whole test run. Fixes issue370.

	avoid one surprising case of marker malfunction/confusion:

@pytest.mark.some(lambda arg: ...)
def test_function():

would not work correctly because pytest assumes @pytest.mark.some
gets a function to be decorated already. We now at least detect if this
arg is a lambda and thus the example will work. Thanks Alex Gaynor
for bringing it up.

	xfail a test on pypy that checks wrong encoding/ascii (pypy does
not error out). fixes issue385.

	internally make varnames() deal with classes’s __init__,
although it’s not needed by pytest itself atm. Also
fix caching. Fixes issue376.

	fix issue221 - handle importing of namespace-package with no
__init__.py properly.

	refactor internal FixtureRequest handling to avoid monkeypatching.
One of the positive user-facing effects is that the “request” object
can now be used in closures.

	fixed version comparison in pytest.importskip(modname, minverstring)

	fix issue377 by clarifying in the nose-compat docs that pytest
does not duplicate the unittest-API into the “plain” namespace.

	fix verbose reporting for @mock’d test functions

2.4.2 (2013-10-04)

	on Windows require colorama and a newer py lib so that py.io.TerminalWriter()
now uses colorama instead of its own ctypes hacks. (fixes issue365)
thanks Paul Moore for bringing it up.

	fix “-k” matching of tests where “repr” and “attr” and other names would
cause wrong matches because of an internal implementation quirk
(don’t ask) which is now properly implemented. fixes issue345.

	avoid tmpdir fixture to create too long filenames especially
when parametrization is used (issue354)

	fix pytest-pep8 and pytest-flakes / pytest interactions
(collection names in mark plugin was assuming an item always
has a function which is not true for those plugins etc.)
Thanks Andi Zeidler.

	introduce node.get_marker/node.add_marker API for plugins
like pytest-pep8 and pytest-flakes to avoid the messy
details of the node.keywords pseudo-dicts. Adapted
docs.

	remove attempt to “dup” stdout at startup as it’s icky.
the normal capturing should catch enough possibilities
of tests messing up standard FDs.

	add pluginmanager.do_configure(config) as a link to
config.do_configure() for plugin-compatibility

2.4.1 (2013-10-02)

	When using parser.addoption() unicode arguments to the
“type” keyword should also be converted to the respective types.
thanks Floris Bruynooghe, @dnozay. (fixes issue360 and issue362)

	fix dotted filename completion when using argcomplete
thanks Anthon van der Neuth. (fixes issue361)

	fix regression when a 1-tuple (“arg”,) is used for specifying
parametrization (the values of the parametrization were passed
nested in a tuple). Thanks Donald Stufft.

	merge doc typo fixes, thanks Andy Dirnberger

2.4

known incompatibilities:

	if calling –genscript from python2.7 or above, you only get a
standalone script which works on python2.7 or above. Use Python2.6
to also get a python2.5 compatible version.

	all xunit-style teardown methods (nose-style, pytest-style,
unittest-style) will not be called if the corresponding setup method failed,
see issue322 below.

	the pytest_plugin_unregister hook wasn’t ever properly called
and there is no known implementation of the hook - so it got removed.

	pytest.fixture-decorated functions cannot be generators (i.e. use
yield) anymore. This change might be reversed in 2.4.1 if it causes
unforeseen real-life issues. However, you can always write and return
an inner function/generator and change the fixture consumer to iterate
over the returned generator. This change was done in lieu of the new
pytest.yield_fixture decorator, see below.

new features:

	experimentally introduce a new pytest.yield_fixture decorator
which accepts exactly the same parameters as pytest.fixture but
mandates a yield statement instead of a return statement from
fixture functions. This allows direct integration with “with-style”
context managers in fixture functions and generally avoids registering
of finalization callbacks in favour of treating the “after-yield” as
teardown code. Thanks Andreas Pelme, Vladimir Keleshev, Floris
Bruynooghe, Ronny Pfannschmidt and many others for discussions.

	allow boolean expression directly with skipif/xfail
if a “reason” is also specified. Rework skipping documentation
to recommend “condition as booleans” because it prevents surprises
when importing markers between modules. Specifying conditions
as strings will remain fully supported.

	reporting: color the last line red or green depending if
failures/errors occurred or everything passed. thanks Christian
Theunert.

	make “import pdb ; pdb.set_trace()” work natively wrt capturing (no
“-s” needed anymore), making pytest.set_trace() a mere shortcut.

	fix issue181: –pdb now also works on collect errors (and
on internal errors) . This was implemented by a slight internal
refactoring and the introduction of a new hook
pytest_exception_interact hook (see next item).

	fix issue341: introduce new experimental hook for IDEs/terminals to
intercept debugging: pytest_exception_interact(node, call, report).

	new monkeypatch.setattr() variant to provide a shorter
invocation for patching out classes/functions from modules:

monkeypatch.setattr(“requests.get”, myfunc)

will replace the “get” function of the “requests” module with myfunc.

	fix issue322: tearDownClass is not run if setUpClass failed. Thanks
Mathieu Agopian for the initial fix. Also make all of pytest/nose
finalizer mimic the same generic behaviour: if a setupX exists and
fails, don’t run teardownX. This internally introduces a new method
“node.addfinalizer()” helper which can only be called during the setup
phase of a node.

	simplify pytest.mark.parametrize() signature: allow to pass a
CSV-separated string to specify argnames. For example:
pytest.mark.parametrize("input,expected", [(1,2), (2,3)])
works as well as the previous:
pytest.mark.parametrize(("input", "expected"), ...).

	add support for setUpModule/tearDownModule detection, thanks Brian Okken.

	integrate tab-completion on options through use of “argcomplete”.
Thanks Anthon van der Neut for the PR.

	change option names to be hyphen-separated long options but keep the
old spelling backward compatible. py.test -h will only show the
hyphenated version, for example “–collect-only” but “–collectonly”
will remain valid as well (for backward-compat reasons). Many thanks to
Anthon van der Neut for the implementation and to Hynek Schlawack for
pushing us.

	fix issue 308 - allow to mark/xfail/skip individual parameter sets
when parametrizing. Thanks Brianna Laugher.

	call new experimental pytest_load_initial_conftests hook to allow
3rd party plugins to do something before a conftest is loaded.

Bug fixes:

	fix issue358 - capturing options are now parsed more properly
by using a new parser.parse_known_args method.

	pytest now uses argparse instead of optparse (thanks Anthon) which
means that “argparse” is added as a dependency if installing into python2.6
environments or below.

	fix issue333: fix a case of bad unittest/pytest hook interaction.

	PR27: correctly handle nose.SkipTest during collection. Thanks
Antonio Cuni, Ronny Pfannschmidt.

	fix issue355: junitxml puts name=”pytest” attribute to testsuite tag.

	fix issue336: autouse fixture in plugins should work again.

	fix issue279: improve object comparisons on assertion failure
for standard datatypes and recognise collections.abc. Thanks to
Brianna Laugher and Mathieu Agopian.

	fix issue317: assertion rewriter support for the is_package method

	fix issue335: document py.code.ExceptionInfo() object returned
from pytest.raises(), thanks Mathieu Agopian.

	remove implicit distribute_setup support from setup.py.

	fix issue305: ignore any problems when writing pyc files.

	SO-17664702: call fixture finalizers even if the fixture function
partially failed (finalizers would not always be called before)

	fix issue320 - fix class scope for fixtures when mixed with
module-level functions. Thanks Anatloy Bubenkoff.

	you can specify “-q” or “-qq” to get different levels of “quieter”
reporting (thanks Katarzyna Jachim)

	fix issue300 - Fix order of conftest loading when starting py.test
in a subdirectory.

	fix issue323 - sorting of many module-scoped arg parametrizations

	make sessionfinish hooks execute with the same cwd-context as at
session start (helps fix plugin behaviour which write output files
with relative path such as pytest-cov)

	fix issue316 - properly reference collection hooks in docs

	fix issue 306 - cleanup of -k/-m options to only match markers/test
names/keywords respectively. Thanks Wouter van Ackooy.

	improved doctest counting for doctests in python modules –
files without any doctest items will not show up anymore
and doctest examples are counted as separate test items.
thanks Danilo Bellini.

	fix issue245 by depending on the released py-1.4.14
which fixes py.io.dupfile to work with files with no
mode. Thanks Jason R. Coombs.

	fix junitxml generation when test output contains control characters,
addressing issue267, thanks Jaap Broekhuizen

	fix issue338: honor –tb style for setup/teardown errors as well. Thanks Maho.

	fix issue307 - use yaml.safe_load in example, thanks Mark Eichin.

	better parametrize error messages, thanks Brianna Laugher

	pytest_terminal_summary(terminalreporter) hooks can now use
“.section(title)” and “.line(msg)” methods to print extra
information at the end of a test run.

2.3.5 (2013-04-30)

	fix issue169: respect –tb=style with setup/teardown errors as well.

	never consider a fixture function for test function collection

	allow re-running of test items / helps to fix pytest-reruntests plugin
and also help to keep less fixture/resource references alive

	put captured stdout/stderr into junitxml output even for passing tests
(thanks Adam Goucher)

	Issue 265 - integrate nose setup/teardown with setupstate
so it doesn’t try to teardown if it did not setup

	issue 271 - don’t write junitxml on slave nodes

	Issue 274 - don’t try to show full doctest example
when doctest does not know the example location

	issue 280 - disable assertion rewriting on buggy CPython 2.6.0

	inject “getfixture()” helper to retrieve fixtures from doctests,
thanks Andreas Zeidler

	issue 259 - when assertion rewriting, be consistent with the default
source encoding of ASCII on Python 2

	issue 251 - report a skip instead of ignoring classes with init

	issue250 unicode/str mixes in parametrization names and values now works

	issue257, assertion-triggered compilation of source ending in a
comment line doesn’t blow up in python2.5 (fixed through py>=1.4.13.dev6)

	fix –genscript option to generate standalone scripts that also
work with python3.3 (importer ordering)

	issue171 - in assertion rewriting, show the repr of some
global variables

	fix option help for “-k”

	move long description of distribution into README.rst

	improve docstring for metafunc.parametrize()

	fix bug where using capsys with pytest.set_trace() in a test
function would break when looking at capsys.readouterr()

	allow to specify prefixes starting with “_” when
customizing python_functions test discovery. (thanks Graham Horler)

	improve PYTEST_DEBUG tracing output by putting
extra data on a new lines with additional indent

	ensure OutcomeExceptions like skip/fail have initialized exception attributes

	issue 260 - don’t use nose special setup on plain unittest cases

	fix issue134 - print the collect errors that prevent running specified test items

	fix issue266 - accept unicode in MarkEvaluator expressions

2.3.4 (2012-11-20)

	yielded test functions will now have autouse-fixtures active but
cannot accept fixtures as funcargs - it’s anyway recommended to
rather use the post-2.0 parametrize features instead of yield, see:
http://pytest.org/latest/example/parametrize.html

	fix autouse-issue where autouse-fixtures would not be discovered
if defined in an a/conftest.py file and tests in a/tests/test_some.py

	fix issue226 - LIFO ordering for fixture teardowns

	fix issue224 - invocations with >256 char arguments now work

	fix issue91 - add/discuss package/directory level setups in example

	allow to dynamically define markers via
item.keywords[…]=assignment integrating with “-m” option

	make “-k” accept an expressions the same as with “-m” so that one
can write: -k “name1 or name2” etc. This is a slight incompatibility
if you used special syntax like “TestClass.test_method” which you now
need to write as -k “TestClass and test_method” to match a certain
method in a certain test class.

2.3.3 (2012-11-06)

	fix issue214 - parse modules that contain special objects like e. g.
flask’s request object which blows up on getattr access if no request
is active. thanks Thomas Waldmann.

	fix issue213 - allow to parametrize with values like numpy arrays that
do not support an __eq__ operator

	fix issue215 - split test_python.org into multiple files

	fix issue148 - @unittest.skip on classes is now recognized and avoids
calling setUpClass/tearDownClass, thanks Pavel Repin

	fix issue209 - reintroduce python2.4 support by depending on newer
pylib which re-introduced statement-finding for pre-AST interpreters

	nose support: only call setup if it’s a callable, thanks Andrew
Taumoefolau

	fix issue219 - add py2.4-3.3 classifiers to TROVE list

	in tracebacks ,* arg values are now shown next to normal arguments
(thanks Manuel Jacob)

	fix issue217 - support mock.patch with pytest’s fixtures - note that
you need either mock-1.0.1 or the python3.3 builtin unittest.mock.

	fix issue127 - improve documentation for pytest_addoption() and
add a config.getoption(name) helper function for consistency.

2.3.2 (2012-10-25)

	fix issue208 and fix issue29 use new py version to avoid long pauses
when printing tracebacks in long modules

	fix issue205 - conftests in subdirs customizing
pytest_pycollect_makemodule and pytest_pycollect_makeitem
now work properly

	fix teardown-ordering for parametrized setups

	fix issue127 - better documentation for pytest_addoption
and related objects.

	fix unittest behaviour: TestCase.runtest only called if there are
test methods defined

	improve trial support: don’t collect its empty
unittest.TestCase.runTest() method

	“python setup.py test” now works with pytest itself

	fix/improve internal/packaging related bits:

	exception message check of test_nose.py now passes on python33 as well

	issue206 - fix test_assertrewrite.py to work when a global
PYTHONDONTWRITEBYTECODE=1 is present

	add tox.ini to pytest distribution so that ignore-dirs and others config
bits are properly distributed for maintainers who run pytest-own tests

2.3.1 (2012-10-20)

	fix issue202 - fix regression: using “self” from fixture functions now
works as expected (it’s the same “self” instance that a test method
which uses the fixture sees)

	skip pexpect using tests (test_pdb.py mostly) on freebsd* systems
due to pexpect not supporting it properly (hanging)

	link to web pages from –markers output which provides help for
pytest.mark.* usage.

2.3.0 (2012-10-19)

	fix issue202 - better automatic names for parametrized test functions

	fix issue139 - introduce @pytest.fixture which allows direct scoping
and parametrization of funcarg factories.

	fix issue198 - conftest fixtures were not found on windows32 in some
circumstances with nested directory structures due to path manipulation issues

	fix issue193 skip test functions with were parametrized with empty
parameter sets

	fix python3.3 compat, mostly reporting bits that previously depended
on dict ordering

	introduce re-ordering of tests by resource and parametrization setup
which takes precedence to the usual file-ordering

	fix issue185 monkeypatching time.time does not cause pytest to fail

	fix issue172 duplicate call of pytest.fixture decoratored setup_module
functions

	fix junitxml=path construction so that if tests change the
current working directory and the path is a relative path
it is constructed correctly from the original current working dir.

	fix “python setup.py test” example to cause a proper “errno” return

	fix issue165 - fix broken doc links and mention stackoverflow for FAQ

	catch unicode-issues when writing failure representations
to terminal to prevent the whole session from crashing

	fix xfail/skip confusion: a skip-mark or an imperative pytest.skip
will now take precedence before xfail-markers because we
can’t determine xfail/xpass status in case of a skip. see also:
http://stackoverflow.com/questions/11105828/in-py-test-when-i-explicitly-skip-a-test-that-is-marked-as-xfail-how-can-i-get

	always report installed 3rd party plugins in the header of a test run

	fix issue160: a failing setup of an xfail-marked tests should
be reported as xfail (not xpass)

	fix issue128: show captured output when capsys/capfd are used

	fix issue179: properly show the dependency chain of factories

	pluginmanager.register(…) now raises ValueError if the
plugin has been already registered or the name is taken

	fix issue159: improve http://pytest.org/latest/faq.html
especially with respect to the “magic” history, also mention
pytest-django, trial and unittest integration.

	make request.keywords and node.keywords writable. All descendant
collection nodes will see keyword values. Keywords are dictionaries
containing markers and other info.

	fix issue 178: xml binary escapes are now wrapped in py.xml.raw

	fix issue 176: correctly catch the builtin AssertionError
even when we replaced AssertionError with a subclass on the
python level

	factory discovery no longer fails with magic global callables
that provide no sane __code__ object (mock.call for example)

	fix issue 182: testdir.inprocess_run now considers passed plugins

	
	fix issue 188: ensure sys.exc_info is clear on python2

	before calling into a test

	fix issue 191: add unittest TestCase runTest method support

	fix issue 156: monkeypatch correctly handles class level descriptors

	reporting refinements:

	pytest_report_header now receives a “startdir” so that
you can use startdir.bestrelpath(yourpath) to show
nice relative path

	allow plugins to implement both pytest_report_header and
pytest_sessionstart (sessionstart is invoked first).

	don’t show deselected reason line if there is none

	py.test -vv will show all of assert comparisons instead of truncating

2.2.4 (2012-05-22)

	fix error message for rewritten assertions involving the % operator

	fix issue 126: correctly match all invalid xml characters for junitxml
binary escape

	fix issue with unittest: now @unittest.expectedFailure markers should
be processed correctly (you can also use @pytest.mark markers)

	document integration with the extended distribute/setuptools test commands

	fix issue 140: properly get the real functions
of bound classmethods for setup/teardown_class

	fix issue #141: switch from the deceased paste.pocoo.org to bpaste.net

	fix issue #143: call unconfigure/sessionfinish always when
configure/sessionstart where called

	fix issue #144: better mangle test ids to junitxml classnames

	upgrade distribute_setup.py to 0.6.27

2.2.3 (2012-02-05)

	fix uploaded package to only include necessary files

2.2.2 (2012-02-05)

	fix issue101: wrong args to unittest.TestCase test function now
produce better output

	fix issue102: report more useful errors and hints for when a
test directory was renamed and some pyc/__pycache__ remain

	fix issue106: allow parametrize to be applied multiple times
e.g. from module, class and at function level.

	fix issue107: actually perform session scope finalization

	don’t check in parametrize if indirect parameters are funcarg names

	add chdir method to monkeypatch funcarg

	fix crash resulting from calling monkeypatch undo a second time

	fix issue115: make –collectonly robust against early failure
(missing files/directories)

	“-qq –collectonly” now shows only files and the number of tests in them

	“-q –collectonly” now shows test ids

	allow adding of attributes to test reports such that it also works
with distributed testing (no upgrade of pytest-xdist needed)

2.2.1 (2011-12-16)

	fix issue99 (in pytest and py) internallerrors with resultlog now
produce better output - fixed by normalizing pytest_internalerror
input arguments.

	fix issue97 / traceback issues (in pytest and py) improve traceback output
in conjunction with jinja2 and cython which hack tracebacks

	fix issue93 (in pytest and pytest-xdist) avoid “delayed teardowns”:
the final test in a test node will now run its teardown directly
instead of waiting for the end of the session. Thanks Dave Hunt for
the good reporting and feedback. The pytest_runtest_protocol as well
as the pytest_runtest_teardown hooks now have “nextitem” available
which will be None indicating the end of the test run.

	fix collection crash due to unknown-source collected items, thanks
to Ralf Schmitt (fixed by depending on a more recent pylib)

2.2.0 (2011-11-18)

	fix issue90: introduce eager tearing down of test items so that
teardown function are called earlier.

	add an all-powerful metafunc.parametrize function which allows to
parametrize test function arguments in multiple steps and therefore
from independent plugins and places.

	add a @pytest.mark.parametrize helper which allows to easily
call a test function with different argument values

	Add examples to the “parametrize” example page, including a quick port
of Test scenarios and the new parametrize function and decorator.

	introduce registration for “pytest.mark.*” helpers via ini-files
or through plugin hooks. Also introduce a “–strict” option which
will treat unregistered markers as errors
allowing to avoid typos and maintain a well described set of markers
for your test suite. See exaples at http://pytest.org/latest/mark.html
and its links.

	issue50: introduce “-m marker” option to select tests based on markers
(this is a stricter and more predictable version of ‘-k’ in that “-m”
only matches complete markers and has more obvious rules for and/or
semantics.

	new feature to help optimizing the speed of your tests:
–durations=N option for displaying N slowest test calls
and setup/teardown methods.

	fix issue87: –pastebin now works with python3

	fix issue89: –pdb with unexpected exceptions in doctest work more sensibly

	fix and cleanup pytest’s own test suite to not leak FDs

	fix issue83: link to generated funcarg list

	fix issue74: pyarg module names are now checked against imp.find_module false positives

	fix compatibility with twisted/trial-11.1.0 use cases

	simplify Node.listchain

	simplify junitxml output code by relying on py.xml

	add support for skip properties on unittest classes and functions

2.1.3 (2011-10-18)

	fix issue79: assertion rewriting failed on some comparisons in boolops

	correctly handle zero length arguments (a la pytest ‘’)

	fix issue67 / junitxml now contains correct test durations, thanks ronny

	fix issue75 / skipping test failure on jython

	fix issue77 / Allow assertrepr_compare hook to apply to a subset of tests

2.1.2 (2011-09-24)

	fix assertion rewriting on files with windows newlines on some Python versions

	refine test discovery by package/module name (–pyargs), thanks Florian Mayer

	fix issue69 / assertion rewriting fixed on some boolean operations

	fix issue68 / packages now work with assertion rewriting

	fix issue66: use different assertion rewriting caches when the -O option is passed

	don’t try assertion rewriting on Jython, use reinterp

2.1.1

	fix issue64 / pytest.set_trace now works within pytest_generate_tests hooks

	fix issue60 / fix error conditions involving the creation of __pycache__

	fix issue63 / assertion rewriting on inserts involving strings containing ‘%’

	fix assertion rewriting on calls with a ** arg

	don’t cache rewritten modules if bytecode generation is disabled

	fix assertion rewriting in read-only directories

	fix issue59: provide system-out/err tags for junitxml output

	fix issue61: assertion rewriting on boolean operations with 3 or more operands

	you can now build a man page with “cd doc ; make man”

2.1.0 (2011-07-09)

	fix issue53 call nosestyle setup functions with correct ordering

	fix issue58 and issue59: new assertion code fixes

	merge Benjamin’s assertionrewrite branch: now assertions
for test modules on python 2.6 and above are done by rewriting
the AST and saving the pyc file before the test module is imported.
see doc/assert.txt for more info.

	fix issue43: improve doctests with better traceback reporting on
unexpected exceptions

	fix issue47: timing output in junitxml for test cases is now correct

	fix issue48: typo in MarkInfo repr leading to exception

	fix issue49: avoid confusing error when initizaliation partially fails

	fix issue44: env/username expansion for junitxml file path

	show releaselevel information in test runs for pypy

	reworked doc pages for better navigation and PDF generation

	report KeyboardInterrupt even if interrupted during session startup

	fix issue 35 - provide PDF doc version and download link from index page

2.0.3 (2011-05-11)

	fix issue38: nicer tracebacks on calls to hooks, particularly early
configure/sessionstart ones

	fix missing skip reason/meta information in junitxml files, reported
via http://lists.idyll.org/pipermail/testing-in-python/2011-March/003928.html

	fix issue34: avoid collection failure with “test” prefixed classes
deriving from object.

	don’t require zlib (and other libs) for genscript plugin without
–genscript actually being used.

	speed up skips (by not doing a full traceback representation
internally)

	fix issue37: avoid invalid characters in junitxml’s output

2.0.2 (2011-03-09)

	tackle issue32 - speed up test runs of very quick test functions
by reducing the relative overhead

	fix issue30 - extended xfail/skipif handling and improved reporting.
If you have a syntax error in your skip/xfail
expressions you now get nice error reports.

Also you can now access module globals from xfail/skipif
expressions so that this for example works now:

import pytest
import mymodule
@pytest.mark.skipif("mymodule.__version__[0] == "1")
def test_function():
 pass

This will not run the test function if the module’s version string
does not start with a “1”. Note that specifying a string instead
of a boolean expressions allows py.test to report meaningful information
when summarizing a test run as to what conditions lead to skipping
(or xfail-ing) tests.

	fix issue28 - setup_method and pytest_generate_tests work together
The setup_method fixture method now gets called also for
test function invocations generated from the pytest_generate_tests
hook.

	fix issue27 - collectonly and keyword-selection (-k) now work together
Also, if you do “py.test –collectonly -q” you now get a flat list
of test ids that you can use to paste to the py.test commandline
in order to execute a particular test.

	fix issue25 avoid reported problems with –pdb and python3.2/encodings output

	fix issue23 - tmpdir argument now works on Python3.2 and WindowsXP
Starting with Python3.2 os.symlink may be supported. By requiring
a newer py lib version the py.path.local() implementation acknowledges
this.

	fixed typos in the docs (thanks Victor Garcia, Brianna Laugher) and particular
thanks to Laura Creighton who also reviewed parts of the documentation.

	fix slightly wrong output of verbose progress reporting for classes
(thanks Amaury)

	more precise (avoiding of) deprecation warnings for node.Class|Function accesses

	avoid std unittest assertion helper code in tracebacks (thanks Ronny)

2.0.1 (2011-02-07)

	refine and unify initial capturing so that it works nicely
even if the logging module is used on an early-loaded conftest.py
file or plugin.

	allow to omit “()” in test ids to allow for uniform test ids
as produced by Alfredo’s nice pytest.vim plugin.

	fix issue12 - show plugin versions with “–version” and
“–traceconfig” and also document how to add extra information
to reporting test header

	fix issue17 (import-* reporting issue on python3) by
requiring py>1.4.0 (1.4.1 is going to include it)

	fix issue10 (numpy arrays truth checking) by refining
assertion interpretation in py lib

	fix issue15: make nose compatibility tests compatible
with python3 (now that nose-1.0 supports python3)

	remove somewhat surprising “same-conftest” detection because
it ignores conftest.py when they appear in several subdirs.

	improve assertions (“not in”), thanks Floris Bruynooghe

	improve behaviour/warnings when running on top of “python -OO”
(assertions and docstrings are turned off, leading to potential
false positives)

	introduce a pytest_cmdline_processargs(args) hook
to allow dynamic computation of command line arguments.
This fixes a regression because py.test prior to 2.0
allowed to set command line options from conftest.py
files which so far pytest-2.0 only allowed from ini-files now.

	fix issue7: assert failures in doctest modules.
unexpected failures in doctests will not generally
show nicer, i.e. within the doctest failing context.

	fix issue9: setup/teardown functions for an xfail-marked
test will report as xfail if they fail but report as normally
passing (not xpassing) if they succeed. This only is true
for “direct” setup/teardown invocations because teardown_class/
teardown_module cannot closely relate to a single test.

	fix issue14: no logging errors at process exit

	refinements to “collecting” output on non-ttys

	refine internal plugin registration and –traceconfig output

	introduce a mechanism to prevent/unregister plugins from the
command line, see http://pytest.org/plugins.html#cmdunregister

	activate resultlog plugin by default

	fix regression wrt yielded tests which due to the
collection-before-running semantics were not
setup as with pytest 1.3.4. Note, however, that
the recommended and much cleaner way to do test
parametraization remains the “pytest_generate_tests”
mechanism, see the docs.

2.0.0 (2010-11-25)

	pytest-2.0 is now its own package and depends on pylib-2.0

	new ability: python -m pytest / python -m pytest.main ability

	new python invocation: pytest.main(args, plugins) to load
some custom plugins early.

	try harder to run unittest test suites in a more compatible manner
by deferring setup/teardown semantics to the unittest package.
also work harder to run twisted/trial and Django tests which
should now basically work by default.

	introduce a new way to set config options via ini-style files,
by default setup.cfg and tox.ini files are searched. The old
ways (certain environment variables, dynamic conftest.py reading
is removed).

	add a new “-q” option which decreases verbosity and prints a more
nose/unittest-style “dot” output.

	fix issue135 - marks now work with unittest test cases as well

	fix issue126 - introduce py.test.set_trace() to trace execution via
PDB during the running of tests even if capturing is ongoing.

	fix issue123 - new “python -m py.test” invocation for py.test
(requires Python 2.5 or above)

	fix issue124 - make reporting more resilient against tests opening
files on filedescriptor 1 (stdout).

	fix issue109 - sibling conftest.py files will not be loaded.
(and Directory collectors cannot be customized anymore from a Directory’s
conftest.py - this needs to happen at least one level up).

	introduce (customizable) assertion failure representations and enhance
output on assertion failures for comparisons and other cases (Floris Bruynooghe)

	nose-plugin: pass through type-signature failures in setup/teardown
functions instead of not calling them (Ed Singleton)

	remove py.test.collect.Directory (follows from a major refactoring
and simplification of the collection process)

	majorly reduce py.test core code, shift function/python testing to own plugin

	fix issue88 (finding custom test nodes from command line arg)

	refine ‘tmpdir’ creation, will now create basenames better associated
with test names (thanks Ronny)

	“xpass” (unexpected pass) tests don’t cause exitcode!=0

	fix issue131 / issue60 - importing doctests in __init__ files used as namespace packages

	fix issue93 stdout/stderr is captured while importing conftest.py

	fix bug: unittest collected functions now also can have “pytestmark”
applied at class/module level

	add ability to use “class” level for cached_setup helper

	fix strangeness: mark.* objects are now immutable, create new instances

1.3.4 (2010-09-14)

	fix issue111: improve install documentation for windows

	fix issue119: fix custom collectability of __init__.py as a module

	fix issue116: –doctestmodules work with __init__.py files as well

	fix issue115: unify internal exception passthrough/catching/GeneratorExit

	fix issue118: new –tb=native for presenting cpython-standard exceptions

1.3.3 (2010-07-30)

	fix issue113: assertion representation problem with triple-quoted strings
(and possibly other cases)

	make conftest loading detect that a conftest file with the same
content was already loaded, avoids surprises in nested directory structures
which can be produced e.g. by Hudson. It probably removes the need to use
–confcutdir in most cases.

	fix terminal coloring for win32
(thanks Michael Foord for reporting)

	fix weirdness: make terminal width detection work on stdout instead of stdin
(thanks Armin Ronacher for reporting)

	remove trailing whitespace in all py/text distribution files

1.3.2 (2010-07-08)

New features

	fix issue103: introduce py.test.raises as context manager, examples:

with py.test.raises(ZeroDivisionError):
 x = 0
 1 / x

with py.test.raises(RuntimeError) as excinfo:
 call_something()

you may do extra checks on excinfo.value|type|traceback here

(thanks Ronny Pfannschmidt)

	Funcarg factories can now dynamically apply a marker to a
test invocation. This is for example useful if a factory
provides parameters to a test which are expected-to-fail:

def pytest_funcarg__arg(request):
 request.applymarker(py.test.mark.xfail(reason="flaky config"))
 ...

def test_function(arg):
 ...

	improved error reporting on collection and import errors. This makes
use of a more general mechanism, namely that for custom test item/collect
nodes node.repr_failure(excinfo) is now uniformly called so that you can
override it to return a string error representation of your choice
which is going to be reported as a (red) string.

	introduce ‘–junitprefix=STR’ option to prepend a prefix
to all reports in the junitxml file.

Bug fixes

	make tests and the pytest_recwarn plugin in particular fully compatible
to Python2.7 (if you use the recwarn funcarg warnings will be enabled so that
you can properly check for their existence in a cross-python manner).

	refine –pdb: ignore xfailed tests, unify its TB-reporting and
don’t display failures again at the end.

	fix assertion interpretation with the ** operator (thanks Benjamin Peterson)

	fix issue105 assignment on the same line as a failing assertion (thanks Benjamin Peterson)

	fix issue104 proper escaping for test names in junitxml plugin (thanks anonymous)

	fix issue57 -f|–looponfail to work with xpassing tests (thanks Ronny)

	fix issue92 collectonly reporter and –pastebin (thanks Benjamin Peterson)

	fix py.code.compile(source) to generate unique filenames

	fix assertion re-interp problems on PyPy, by defering code
compilation to the (overridable) Frame.eval class. (thanks Amaury Forgeot)

	fix py.path.local.pyimport() to work with directories

	streamline py.path.local.mkdtemp implementation and usage

	don’t print empty lines when showing junitxml-filename

	add optional boolean ignore_errors parameter to py.path.local.remove

	fix terminal writing on win32/python2.4

	py.process.cmdexec() now tries harder to return properly encoded unicode objects
on all python versions

	install plain py.test/py.which scripts also for Jython, this helps to
get canonical script paths in virtualenv situations

	make path.bestrelpath(path) return “.”, note that when calling
X.bestrelpath the assumption is that X is a directory.

	make initial conftest discovery ignore “–” prefixed arguments

	fix resultlog plugin when used in a multicpu/multihost xdist situation
(thanks Jakub Gustak)

	perform distributed testing related reporting in the xdist-plugin
rather than having dist-related code in the generic py.test
distribution

	fix homedir detection on Windows

	ship distribute_setup.py version 0.6.13

1.3.1 (2010-05-25)

New features

	issue91: introduce new py.test.xfail(reason) helper
to imperatively mark a test as expected to fail. Can
be used from within setup and test functions. This is
useful especially for parametrized tests when certain
configurations are expected-to-fail. In this case the
declarative approach with the @py.test.mark.xfail cannot
be used as it would mark all configurations as xfail.

	issue102: introduce new –maxfail=NUM option to stop
test runs after NUM failures. This is a generalization
of the ‘-x’ or ‘–exitfirst’ option which is now equivalent
to ‘–maxfail=1’. Both ‘-x’ and ‘–maxfail’ will
now also print a line near the end indicating the Interruption.

	issue89: allow py.test.mark decorators to be used on classes
(class decorators were introduced with python2.6) and
also allow to have multiple markers applied at class/module level
by specifying a list.

	improve and refine letter reporting in the progress bar:
. pass
f failed test
s skipped tests (reminder: use for dependency/platform mismatch only)
x xfailed test (test that was expected to fail)
X xpassed test (test that was expected to fail but passed)

You can use any combination of ‘fsxX’ with the ‘-r’ extended
reporting option. The xfail/xpass results will show up as
skipped tests in the junitxml output - which also fixes
issue99.

	make py.test.cmdline.main() return the exitstatus instead of raising
SystemExit and also allow it to be called multiple times. This of
course requires that your application and tests are properly teared
down and don’t have global state.

Bug Fixes

	improved traceback presentation:
- improved and unified reporting for “–tb=short” option
- Errors during test module imports are much shorter, (using –tb=short style)
- raises shows shorter more relevant tracebacks
- –fulltrace now more systematically makes traces longer / inhibits cutting

	improve support for raises and other dynamically compiled code by
manipulating python’s linecache.cache instead of the previous
rather hacky way of creating custom code objects. This makes
it seemlessly work on Jython and PyPy where it previously didn’t.

	fix issue96: make capturing more resilient against Control-C
interruptions (involved somewhat substantial refactoring
to the underlying capturing functionality to avoid race
conditions).

	fix chaining of conditional skipif/xfail decorators - so it works now
as expected to use multiple @py.test.mark.skipif(condition) decorators,
including specific reporting which of the conditions lead to skipping.

	fix issue95: late-import zlib so that it’s not required
for general py.test startup.

	fix issue94: make reporting more robust against bogus source code
(and internally be more careful when presenting unexpected byte sequences)

1.3.0 (2010-05-05)

	deprecate –report option in favour of a new shorter and easier to
remember -r option: it takes a string argument consisting of any
combination of ‘xfsX’ characters. They relate to the single chars
you see during the dotted progress printing and will print an extra line
per test at the end of the test run. This extra line indicates the exact
position or test ID that you directly paste to the py.test cmdline in order
to re-run a particular test.

	allow external plugins to register new hooks via the new
pytest_addhooks(pluginmanager) hook. The new release of
the pytest-xdist plugin for distributed and looponfailing
testing requires this feature.

	add a new pytest_ignore_collect(path, config) hook to allow projects and
plugins to define exclusion behaviour for their directory structure -
for example you may define in a conftest.py this method:

def pytest_ignore_collect(path):
 return path.check(link=1)

to prevent even a collection try of any tests in symlinked dirs.

	new pytest_pycollect_makemodule(path, parent) hook for
allowing customization of the Module collection object for a
matching test module.

	extend and refine xfail mechanism:
@py.test.mark.xfail(run=False) do not run the decorated test
@py.test.mark.xfail(reason="...") prints the reason string in xfail summaries
specifying --runxfail on command line virtually ignores xfail markers

	expose (previously internal) commonly useful methods:
py.io.get_terminal_with() -> return terminal width
py.io.ansi_print(…) -> print colored/bold text on linux/win32
py.io.saferepr(obj) -> return limited representation string

	expose test outcome related exceptions as py.test.skip.Exception,
py.test.raises.Exception etc., useful mostly for plugins
doing special outcome interpretation/tweaking

	(issue85) fix junitxml plugin to handle tests with non-ascii output

	fix/refine python3 compatibility (thanks Benjamin Peterson)

	fixes for making the jython/win32 combination work, note however:
jython2.5.1/win32 does not provide a command line launcher, see
http://bugs.jython.org/issue1491 . See pylib install documentation
for how to work around.

	fixes for handling of unicode exception values and unprintable objects

	(issue87) fix unboundlocal error in assertionold code

	(issue86) improve documentation for looponfailing

	refine IO capturing: stdin-redirect pseudo-file now has a NOP close() method

	ship distribute_setup.py version 0.6.10

	added links to the new capturelog and coverage plugins

1.2.0 (2010-01-18)

	refined usage and options for “py.cleanup”:

py.cleanup # remove "*.pyc" and "*$py.class" (jython) files
py.cleanup -e .swp -e .cache # also remove files with these extensions
py.cleanup -s # remove "build" and "dist" directory next to setup.py files
py.cleanup -d # also remove empty directories
py.cleanup -a # synonym for "-s -d -e 'pip-log.txt'"
py.cleanup -n # dry run, only show what would be removed

	add a new option “py.test –funcargs” which shows available funcargs
and their help strings (docstrings on their respective factory function)
for a given test path

	display a short and concise traceback if a funcarg lookup fails

	early-load “conftest.py” files in non-dot first-level sub directories.
allows to conveniently keep and access test-related options in a test
subdir and still add command line options.

	fix issue67: new super-short traceback-printing option: “–tb=line” will print a single line for each failing (python) test indicating its filename, lineno and the failure value

	fix issue78: always call python-level teardown functions even if the
according setup failed. This includes refinements for calling setup_module/class functions
which will now only be called once instead of the previous behaviour where they’d be called
multiple times if they raise an exception (including a Skipped exception). Any exception
will be re-corded and associated with all tests in the according module/class scope.

	fix issue63: assume <40 columns to be a bogus terminal width, default to 80

	fix pdb debugging to be in the correct frame on raises-related errors

	update apipkg.py to fix an issue where recursive imports might
unnecessarily break importing

	fix plugin links

1.1.1 (2009-11-24)

	moved dist/looponfailing from py.test core into a new
separately released pytest-xdist plugin.

	new junitxml plugin: –junitxml=path will generate a junit style xml file
which is processable e.g. by the Hudson CI system.

	new option: –genscript=path will generate a standalone py.test script
which will not need any libraries installed. thanks to Ralf Schmitt.

	new option: –ignore will prevent specified path from collection.
Can be specified multiple times.

	new option: –confcutdir=dir will make py.test only consider conftest
files that are relative to the specified dir.

	new funcarg: “pytestconfig” is the pytest config object for access
to command line args and can now be easily used in a test.

	install py.test and py.which with a -$VERSION suffix to
disambiguate between Python3, python2.X, Jython and PyPy installed versions.

	new “pytestconfig” funcarg allows access to test config object

	new “pytest_report_header” hook can return additional lines
to be displayed at the header of a test run.

	(experimental) allow “py.test path::name1::name2::…” for pointing
to a test within a test collection directly. This might eventually
evolve as a full substitute to “-k” specifications.

	streamlined plugin loading: order is now as documented in
customize.html: setuptools, ENV, commandline, conftest.
also setuptools entry point names are turned to canonical namees (“pytest_*”)

	automatically skip tests that need ‘capfd’ but have no os.dup

	allow pytest_generate_tests to be defined in classes as well

	deprecate usage of ‘disabled’ attribute in favour of pytestmark

	deprecate definition of Directory, Module, Class and Function nodes
in conftest.py files. Use pytest collect hooks instead.

	collection/item node specific runtest/collect hooks are only called exactly
on matching conftest.py files, i.e. ones which are exactly below
the filesystem path of an item

	change: the first pytest_collect_directory hook to return something
will now prevent further hooks to be called.

	change: figleaf plugin now requires –figleaf to run. Also
change its long command line options to be a bit shorter (see py.test -h).

	change: pytest doctest plugin is now enabled by default and has a
new option –doctest-glob to set a pattern for file matches.

	change: remove internal py._* helper vars, only keep py._pydir

	robustify capturing to survive if custom pytest_runtest_setup
code failed and prevented the capturing setup code from running.

	make py.test.* helpers provided by default plugins visible early -
works transparently both for pydoc and for interactive sessions
which will regularly see e.g. py.test.mark and py.test.importorskip.

	simplify internal plugin manager machinery

	simplify internal collection tree by introducing a RootCollector node

	fix assert reinterpreation that sees a call containing “keyword=…”

	fix issue66: invoke pytest_sessionstart and pytest_sessionfinish
hooks on slaves during dist-testing, report module/session teardown
hooks correctly.

	fix issue65: properly handle dist-testing if no
execnet/py lib installed remotely.

	skip some install-tests if no execnet is available

	fix docs, fix internal bin/ script generation

1.1.0 (2009-11-05)

	introduce automatic plugin registration via ‘pytest11’
entrypoints via setuptools’ pkg_resources.iter_entry_points

	fix py.test dist-testing to work with execnet >= 1.0.0b4

	re-introduce py.test.cmdline.main() for better backward compatibility

	svn paths: fix a bug with path.check(versioned=True) for svn paths,
allow ‘%’ in svn paths, make svnwc.update() default to interactive mode
like in 1.0.x and add svnwc.update(interactive=False) to inhibit interaction.

	refine distributed tarball to contain test and no pyc files

	try harder to have deprecation warnings for py.compat.* accesses
report a correct location

1.0.3

	adjust and improve docs

	remove py.rest tool and internal namespace - it was
never really advertised and can still be used with
the old release if needed. If there is interest
it could be revived into its own tool i guess.

	fix issue48 and issue59: raise an Error if the module
from an imported test file does not seem to come from
the filepath - avoids “same-name” confusion that has
been reported repeatedly

	merged Ronny’s nose-compatibility hacks: now
nose-style setup_module() and setup() functions are
supported

	introduce generalized py.test.mark function marking

	reshuffle / refine command line grouping

	deprecate parser.addgroup in favour of getgroup which creates option group

	add –report command line option that allows to control showing of skipped/xfailed sections

	generalized skipping: a new way to mark python functions with skipif or xfail
at function, class and modules level based on platform or sys-module attributes.

	extend py.test.mark decorator to allow for positional args

	introduce and test “py.cleanup -d” to remove empty directories

	fix issue #59 - robustify unittest test collection

	make bpython/help interaction work by adding an __all__ attribute
to ApiModule, cleanup initpkg

	use MIT license for pylib, add some contributors

	remove py.execnet code and substitute all usages with ‘execnet’ proper

	fix issue50 - cached_setup now caches more to expectations
for test functions with multiple arguments.

	merge Jarko’s fixes, issue #45 and #46

	add the ability to specify a path for py.lookup to search in

	fix a funcarg cached_setup bug probably only occurring
in distributed testing and “module” scope with teardown.

	many fixes and changes for making the code base python3 compatible,
many thanks to Benjamin Peterson for helping with this.

	consolidate builtins implementation to be compatible with >=2.3,
add helpers to ease keeping 2 and 3k compatible code

	deprecate py.compat.doctest|subprocess|textwrap|optparse

	deprecate py.magic.autopath, remove py/magic directory

	move pytest assertion handling to py/code and a pytest_assertion
plugin, add “–no-assert” option, deprecate py.magic namespaces
in favour of (less) py.code ones.

	consolidate and cleanup py/code classes and files

	cleanup py/misc, move tests to bin-for-dist

	introduce delattr/delitem/delenv methods to py.test’s monkeypatch funcarg

	consolidate py.log implementation, remove old approach.

	introduce py.io.TextIO and py.io.BytesIO for distinguishing between
text/unicode and byte-streams (uses underlying standard lib io.*
if available)

	make py.unittest_convert helper script available which converts “unittest.py”
style files into the simpler assert/direct-test-classes py.test/nosetests
style. The script was written by Laura Creighton.

	simplified internal localpath implementation

1.0.2 (2009-08-27)

	fixing packaging issues, triggered by fedora redhat packaging,
also added doc, examples and contrib dirs to the tarball.

	added a documentation link to the new django plugin.

1.0.1 (2009-08-19)

	added a ‘pytest_nose’ plugin which handles nose.SkipTest,
nose-style function/method/generator setup/teardown and
tries to report functions correctly.

	capturing of unicode writes or encoded strings to sys.stdout/err
work better, also terminalwriting was adapted and somewhat
unified between windows and linux.

	improved documentation layout and content a lot

	added a “–help-config” option to show conftest.py / ENV-var names for
all longopt cmdline options, and some special conftest.py variables.
renamed ‘conf_capture’ conftest setting to ‘option_capture’ accordingly.

	fix issue #27: better reporting on non-collectable items given on commandline
(e.g. pyc files)

	fix issue #33: added –version flag (thanks Benjamin Peterson)

	fix issue #32: adding support for “incomplete” paths to wcpath.status()

	“Test” prefixed classes are not collected by default anymore if they
have an __init__ method

	monkeypatch setenv() now accepts a “prepend” parameter

	improved reporting of collection error tracebacks

	simplified multicall mechanism and plugin architecture,
renamed some internal methods and argnames

1.0.0 (2009-08-04)

	more terse reporting try to show filesystem path relatively to current dir

	improve xfail output a bit

1.0.0b9 (2009-07-31)

	cleanly handle and report final teardown of test setup

	fix svn-1.6 compat issue with py.path.svnwc().versioned()
(thanks Wouter Vanden Hove)

	setup/teardown or collection problems now show as ERRORs
or with big “E“‘s in the progress lines. they are reported
and counted separately.

	dist-testing: properly handle test items that get locally
collected but cannot be collected on the remote side - often
due to platform/dependency reasons

	simplified py.test.mark API - see keyword plugin documentation

	integrate better with logging: capturing now by default captures
test functions and their immediate setup/teardown in a single stream

	capsys and capfd funcargs now have a readouterr() and a close() method
(underlyingly py.io.StdCapture/FD objects are used which grew a
readouterr() method as well to return snapshots of captured out/err)

	make assert-reinterpretation work better with comparisons not
returning bools (reported with numpy from thanks maciej fijalkowski)

	reworked per-test output capturing into the pytest_iocapture.py plugin
and thus removed capturing code from config object

	item.repr_failure(excinfo) instead of item.repr_failure(excinfo, outerr)

1.0.0b8 (2009-07-22)

	pytest_unittest-plugin is now enabled by default

	introduced pytest_keyboardinterrupt hook and
refined pytest_sessionfinish hooked, added tests.

	workaround a buggy logging module interaction (“closing already closed
files”). Thanks to Sridhar Ratnakumar for triggering.

	if plugins use “py.test.importorskip” for importing
a dependency only a warning will be issued instead
of exiting the testing process.

	many improvements to docs:
- refined funcargs doc , use the term “factory” instead of “provider”
- added a new talk/tutorial doc page
- better download page
- better plugin docstrings
- added new plugins page and automatic doc generation script

	fixed teardown problem related to partially failing funcarg setups
(thanks MrTopf for reporting), “pytest_runtest_teardown” is now
always invoked even if the “pytest_runtest_setup” failed.

	tweaked doctest output for docstrings in py modules,
thanks Radomir.

1.0.0b7

	renamed py.test.xfail back to py.test.mark.xfail to avoid
two ways to decorate for xfail

	re-added py.test.mark decorator for setting keywords on functions
(it was actually documented so removing it was not nice)

	remove scope-argument from request.addfinalizer() because
request.cached_setup has the scope arg. TOOWTDI.

	perform setup finalization before reporting failures

	apply modified patches from Andreas Kloeckner to allow
test functions to have no func_code (#22) and to make
“-k” and function keywords work (#20)

	apply patch from Daniel Peolzleithner (issue #23)

	resolve issue #18, multiprocessing.Manager() and
redirection clash

	make __name__ == “__channelexec__” for remote_exec code

1.0.0b3 (2009-06-19)

	plugin classes are removed: one now defines
hooks directly in conftest.py or global pytest_*.py
files.

	added new pytest_namespace(config) hook that allows
to inject helpers directly to the py.test.* namespace.

	documented and refined many hooks

	added new style of generative tests via
pytest_generate_tests hook that integrates
well with function arguments.

1.0.0b1

	introduced new “funcarg” setup method,
see doc/test/funcarg.txt

	introduced plugin architecture and many
new py.test plugins, see
doc/test/plugins.txt

	teardown_method is now guaranteed to get
called after a test method has run.

	new method: py.test.importorskip(mod,minversion)
will either import or call py.test.skip()

	completely revised internal py.test architecture

	new py.process.ForkedFunc object allowing to
fork execution of a function to a sub process
and getting a result back.

XXX lots of things missing here XXX

0.9.2

	refined installation and metadata, created new setup.py,
now based on setuptools/ez_setup (thanks to Ralf Schmitt
for his support).

	improved the way of making py.* scripts available in
windows environments, they are now added to the
Scripts directory as “.cmd” files.

	py.path.svnwc.status() now is more complete and
uses xml output from the ‘svn’ command if available
(Guido Wesdorp)

	fix for py.path.svn* to work with svn 1.5
(Chris Lamb)

	fix path.relto(otherpath) method on windows to
use normcase for checking if a path is relative.

	py.test’s traceback is better parseable from editors
(follows the filenames:LINENO: MSG convention)
(thanks to Osmo Salomaa)

	fix to javascript-generation, “py.test –runbrowser”
should work more reliably now

	removed previously accidentally added
py.test.broken and py.test.notimplemented helpers.

	there now is a py.__version__ attribute

0.9.1

This is a fairly complete list of v0.9.1, which can
serve as a reference for developers.

	allowing + signs in py.path.svn urls [39106]

	fixed support for Failed exceptions without excinfo in py.test [39340]

	added support for killing processes for Windows (as well as platforms that
support os.kill) in py.misc.killproc [39655]

	added setup/teardown for generative tests to py.test [40702]

	added detection of FAILED TO LOAD MODULE to py.test [40703, 40738, 40739]

	fixed problem with calling .remove() on wcpaths of non-versioned files in
py.path [44248]

	fixed some import and inheritance issues in py.test [41480, 44648, 44655]

	fail to run greenlet tests when pypy is available, but without stackless
[45294]

	small fixes in rsession tests [45295]

	fixed issue with 2.5 type representations in py.test [45483, 45484]

	made that internal reporting issues displaying is done atomically in py.test
[45518]

	made that non-existing files are ignored by the py.lookup script [45519]

	improved exception name creation in py.test [45535]

	made that less threads are used in execnet [merge in 45539]

	removed lock required for atomic reporting issue displaying in py.test
[45545]

	removed globals from execnet [45541, 45547]

	refactored cleanup mechanics, made that setDaemon is set to 1 to make atexit
get called in 2.5 (py.execnet) [45548]

	fixed bug in joining threads in py.execnet’s servemain [45549]

	refactored py.test.rsession tests to not rely on exact output format anymore
[45646]

	using repr() on test outcome [45647]

	added ‘Reason’ classes for py.test.skip() [45648, 45649]

	killed some unnecessary sanity check in py.test.collect [45655]

	avoid using os.tmpfile() in py.io.fdcapture because on Windows it’s only
usable by Administrators [45901]

	added support for locking and non-recursive commits to py.path.svnwc [45994]

	locking files in py.execnet to prevent CPython from segfaulting [46010]

	added export() method to py.path.svnurl

	fixed -d -x in py.test [47277]

	fixed argument concatenation problem in py.path.svnwc [49423]

	restore py.test behaviour that it exits with code 1 when there are failures
[49974]

	don’t fail on html files that don’t have an accompanying .txt file [50606]

	fixed ‘utestconvert.py < input’ [50645]

	small fix for code indentation in py.code.source [50755]

	fix _docgen.py documentation building [51285]

	improved checks for source representation of code blocks in py.test [51292]

	added support for passing authentication to py.path.svn* objects [52000,
52001]

	removed sorted() call for py.apigen tests in favour of [].sort() to support
Python 2.3 [52481]

April 2015 is “adopt pytest month”

Are you an enthusiastic pytest user, the local testing guru in your workplace? Or are you considering using pytest for your open source project, but not sure how to get started? Then you may be interested in “adopt pytest month”!

We will pair experienced pytest users with open source projects, for a month’s effort of getting new development teams started with pytest.

In 2015 we are trying this for the first time. In February and March 2015 we will gather volunteers on both sides, in April we will do the work, and in May we will evaluate how it went. This effort is being coordinated by Brianna Laugher. If you have any questions or comments, you can raise them on the @pytestdotorg twitter account [https://twitter.com/pytestdotorg] the issue tracker [https://github.com/pytest-dev/pytest/issues/676] or the pytest-dev mailing list [https://mail.python.org/mailman/listinfo/pytest-dev].

The ideal pytest helper

	will be able to commit 2-4 hours a week to working with their particular project (this might involve joining their mailing list, installing the software and exploring any existing tests, offering advice, writing some example tests)

	feels confident in using pytest (e.g. has explored command line options, knows how to write parametrized tests, has an idea about conftest contents)

	does not need to be an expert in every aspect!

Pytest helpers, sign up here [http://goo.gl/forms/nxqAhqWt1P]! (preferably in February, hard deadline 22 March)

The ideal partner project

	is open source, and predominantly written in Python

	has an automated/documented install process for developers

	has more than one core developer

	has at least one official release (e.g. is available on pypi)

	has the support of the core development team, in trying out pytest adoption

	has no tests… or 100% test coverage… or somewhere in between!

Partner projects, sign up here [http://goo.gl/forms/ZGyqlHiwk3]! (by 22 March)

What does it mean to “adopt pytest”?

There can be many different definitions of “success”. Pytest can run many nose and unittest tests by default, so using pytest as your testrunner may be possible from day 1. Job done, right?

Progressive success might look like:

	tests can be run (by pytest) without errors (there may be failures)

	tests can be run (by pytest) without failures

	test runner is integrated into CI server

	
	existing tests are rewritten to take advantage of pytest features - this can happen in several iterations, for example:

	
	changing to native assert statements (pycmd [https://bitbucket.org/hpk42/pycmd/overview] has a script to help with that, pyconvert_unittest.py)

	changing setUp/tearDown methods to fixtures

	adding markers

	other changes to reduce boilerplate

	assess needs for future tests to be written, e.g. new fixtures, distributed testing tweaks

“Success” should also include that the development team feels comfortable with their knowledge of how to use pytest. In fact this is probably more important than anything else. So spending a lot of time on communication, giving examples, etc will probably be important - both in running the tests, and in writing them.

It may be after the month is up, the partner project decides that pytest is not right for it. That’s okay - hopefully the pytest team will also learn something about its weaknesses or deficiencies.

Other ways to help

Promote! Do your favourite open source Python projects use pytest? If not, why not tell them about this page?

Pytest API and builtin fixtures

Most of the information of this page has been moved over to Command Reference [https://docs.python.org/3/distutils/commandref.html#reference].

For information on plugin hooks and objects, see Writing plugins.

For information on the pytest.mark mechanism, see Marking test functions with attributes.

For information about fixtures, see pytest fixtures: explicit, modular, scalable. To see a complete list of available fixtures (add -v to also see fixtures with leading _), type :

$ pytest -q --fixtures
cache
 Return a cache object that can persist state between testing sessions.

 cache.get(key, default)
 cache.set(key, value)

 Keys must be a ``/`` separated value, where the first part is usually the
 name of your plugin or application to avoid clashes with other cache users.

 Values can be any object handled by the json stdlib module.

capsys
 Enable text capturing of writes to ``sys.stdout`` and ``sys.stderr``.

 The captured output is made available via ``capsys.readouterr()`` method
 calls, which return a ``(out, err)`` namedtuple.
 ``out`` and ``err`` will be ``text`` objects.

capsysbinary
 Enable bytes capturing of writes to ``sys.stdout`` and ``sys.stderr``.

 The captured output is made available via ``capsysbinary.readouterr()``
 method calls, which return a ``(out, err)`` namedtuple.
 ``out`` and ``err`` will be ``bytes`` objects.

capfd
 Enable text capturing of writes to file descriptors ``1`` and ``2``.

 The captured output is made available via ``capfd.readouterr()`` method
 calls, which return a ``(out, err)`` namedtuple.
 ``out`` and ``err`` will be ``text`` objects.

capfdbinary
 Enable bytes capturing of writes to file descriptors ``1`` and ``2``.

 The captured output is made available via ``capfd.readouterr()`` method
 calls, which return a ``(out, err)`` namedtuple.
 ``out`` and ``err`` will be ``byte`` objects.

doctest_namespace [session scope]
 Fixture that returns a :py:class:`dict` that will be injected into the namespace of doctests.

pytestconfig [session scope]
 Session-scoped fixture that returns the :class:`_pytest.config.Config` object.

 Example::

 def test_foo(pytestconfig):
 if pytestconfig.getoption("verbose") > 0:
 ...

record_property
 Add an extra properties the calling test.
 User properties become part of the test report and are available to the
 configured reporters, like JUnit XML.
 The fixture is callable with ``(name, value)``, with value being automatically
 xml-encoded.

 Example::

 def test_function(record_property):
 record_property("example_key", 1)

record_xml_attribute
 Add extra xml attributes to the tag for the calling test.
 The fixture is callable with ``(name, value)``, with value being
 automatically xml-encoded

record_testsuite_property [session scope]
 Records a new ``<property>`` tag as child of the root ``<testsuite>``. This is suitable to
 writing global information regarding the entire test suite, and is compatible with ``xunit2`` JUnit family.

 This is a ``session``-scoped fixture which is called with ``(name, value)``. Example:

 .. code-block:: python

 def test_foo(record_testsuite_property):
 record_testsuite_property("ARCH", "PPC")
 record_testsuite_property("STORAGE_TYPE", "CEPH")

 ``name`` must be a string, ``value`` will be converted to a string and properly xml-escaped.

caplog
 Access and control log capturing.

 Captured logs are available through the following properties/methods::

 * caplog.text -> string containing formatted log output
 * caplog.records -> list of logging.LogRecord instances
 * caplog.record_tuples -> list of (logger_name, level, message) tuples
 * caplog.clear() -> clear captured records and formatted log output string

monkeypatch
 The returned ``monkeypatch`` fixture provides these
 helper methods to modify objects, dictionaries or os.environ::

 monkeypatch.setattr(obj, name, value, raising=True)
 monkeypatch.delattr(obj, name, raising=True)
 monkeypatch.setitem(mapping, name, value)
 monkeypatch.delitem(obj, name, raising=True)
 monkeypatch.setenv(name, value, prepend=False)
 monkeypatch.delenv(name, raising=True)
 monkeypatch.syspath_prepend(path)
 monkeypatch.chdir(path)

 All modifications will be undone after the requesting
 test function or fixture has finished. The ``raising``
 parameter determines if a KeyError or AttributeError
 will be raised if the set/deletion operation has no target.

recwarn
 Return a :class:`WarningsRecorder` instance that records all warnings emitted by test functions.

 See http://docs.python.org/library/warnings.html for information
 on warning categories.

tmpdir_factory [session scope]
 Return a :class:`_pytest.tmpdir.TempdirFactory` instance for the test session.

tmp_path_factory [session scope]
 Return a :class:`_pytest.tmpdir.TempPathFactory` instance for the test session.

tmpdir
 Return a temporary directory path object
 which is unique to each test function invocation,
 created as a sub directory of the base temporary
 directory. The returned object is a `py.path.local`_
 path object.

 .. _`py.path.local`: https://py.readthedocs.io/en/latest/path.html

tmp_path
 Return a temporary directory path object
 which is unique to each test function invocation,
 created as a sub directory of the base temporary
 directory. The returned object is a :class:`pathlib.Path`
 object.

 .. note::

 in python < 3.6 this is a pathlib2.Path

no tests ran in 0.12 seconds

You can also interactively ask for help, e.g. by typing on the Python interactive prompt something like:

import pytest
help(pytest)

pytest-2.3: reasoning for fixture/funcarg evolution

Target audience: Reading this document requires basic knowledge of
python testing, xUnit setup methods and the (previous) basic pytest
funcarg mechanism, see https://docs.pytest.org/en/latest/historical-notes.html#funcargs-and-pytest-funcarg.
If you are new to pytest, then you can simply ignore this
section and read the other sections.

Shortcomings of the previous pytest_funcarg__ mechanism

The pre pytest-2.3 funcarg mechanism calls a factory each time a
funcarg for a test function is required. If a factory wants to
re-use a resource across different scopes, it often used
the request.cached_setup() helper to manage caching of
resources. Here is a basic example how we could implement
a per-session Database object:

content of conftest.py
class Database(object):
 def __init__(self):
 print("database instance created")
 def destroy(self):
 print("database instance destroyed")

def pytest_funcarg__db(request):
 return request.cached_setup(setup=DataBase,
 teardown=lambda db: db.destroy,
 scope="session")

There are several limitations and difficulties with this approach:

	Scoping funcarg resource creation is not straight forward, instead one must
understand the intricate cached_setup() method mechanics.

	parametrizing the “db” resource is not straight forward:
you need to apply a “parametrize” decorator or implement a
pytest_generate_tests() hook
calling parametrize() which
performs parametrization at the places where the resource
is used. Moreover, you need to modify the factory to use an
extrakey parameter containing request.param to the
cached_setup() call.

	Multiple parametrized session-scoped resources will be active
at the same time, making it hard for them to affect global state
of the application under test.

	there is no way how you can make use of funcarg factories
in xUnit setup methods.

	A non-parametrized fixture function cannot use a parametrized
funcarg resource if it isn’t stated in the test function signature.

All of these limitations are addressed with pytest-2.3 and its
improved fixture mechanism.

Direct scoping of fixture/funcarg factories

Instead of calling cached_setup() with a cache scope, you can use the
@pytest.fixture decorator and directly state
the scope:

@pytest.fixture(scope="session")
def db(request):
 # factory will only be invoked once per session -
 db = DataBase()
 request.addfinalizer(db.destroy) # destroy when session is finished
 return db

This factory implementation does not need to call cached_setup() anymore
because it will only be invoked once per session. Moreover, the
request.addfinalizer() registers a finalizer according to the specified
resource scope on which the factory function is operating.

Direct parametrization of funcarg resource factories

Previously, funcarg factories could not directly cause parametrization.
You needed to specify a @parametrize decorator on your test function
or implement a pytest_generate_tests hook to perform
parametrization, i.e. calling a test multiple times with different value
sets. pytest-2.3 introduces a decorator for use on the factory itself:

@pytest.fixture(params=["mysql", "pg"])
def db(request):
 ... # use request.param

Here the factory will be invoked twice (with the respective “mysql”
and “pg” values set as request.param attributes) and all of
the tests requiring “db” will run twice as well. The “mysql” and
“pg” values will also be used for reporting the test-invocation variants.

This new way of parametrizing funcarg factories should in many cases
allow to re-use already written factories because effectively
request.param was already used when test functions/classes were
parametrized via
parametrize(indirect=True)() calls.

Of course it’s perfectly fine to combine parametrization and scoping:

@pytest.fixture(scope="session", params=["mysql", "pg"])
def db(request):
 if request.param == "mysql":
 db = MySQL()
 elif request.param == "pg":
 db = PG()
 request.addfinalizer(db.destroy) # destroy when session is finished
 return db

This would execute all tests requiring the per-session “db” resource twice,
receiving the values created by the two respective invocations to the
factory function.

No pytest_funcarg__ prefix when using @fixture decorator

When using the @fixture decorator the name of the function
denotes the name under which the resource can be accessed as a function
argument:

@pytest.fixture()
def db(request):
 ...

The name under which the funcarg resource can be requested is db.

You can still use the “old” non-decorator way of specifying funcarg factories
aka:

def pytest_funcarg__db(request):
 ...

But it is then not possible to define scoping and parametrization.
It is thus recommended to use the factory decorator.

solving per-session setup / autouse fixtures

pytest for a long time offered a pytest_configure and a pytest_sessionstart
hook which are often used to setup global resources. This suffers from
several problems:

	in distributed testing the master process would setup test resources
that are never needed because it only co-ordinates the test run
activities of the slave processes.

	if you only perform a collection (with “–collect-only”)
resource-setup will still be executed.

	If a pytest_sessionstart is contained in some subdirectories
conftest.py file, it will not be called. This stems from the
fact that this hook is actually used for reporting, in particular
the test-header with platform/custom information.

Moreover, it was not easy to define a scoped setup from plugins or
conftest files other than to implement a pytest_runtest_setup() hook
and caring for scoping/caching yourself. And it’s virtually impossible
to do this with parametrization as pytest_runtest_setup() is called
during test execution and parametrization happens at collection time.

It follows that pytest_configure/session/runtest_setup are often not
appropriate for implementing common fixture needs. Therefore,
pytest-2.3 introduces Autouse fixtures (xUnit setup on steroids) which fully
integrate with the generic fixture mechanism
and obsolete many prior uses of pytest hooks.

funcargs/fixture discovery now happens at collection time

Since pytest-2.3, discovery of fixture/funcarg factories are taken care of
at collection time. This is more efficient especially for large test suites.
Moreover, a call to “pytest –collect-only” should be able to in the future
show a lot of setup-information and thus presents a nice method to get an
overview of fixture management in your project.

Conclusion and compatibility notes

funcargs were originally introduced to pytest-2.0. In pytest-2.3
the mechanism was extended and refined and is now described as
fixtures:

	previously funcarg factories were specified with a special
pytest_funcarg__NAME prefix instead of using the
@pytest.fixture decorator.

	Factories received a request object which managed caching through
request.cached_setup() calls and allowed using other funcargs via
request.getfuncargvalue() calls. These intricate APIs made it hard
to do proper parametrization and implement resource caching. The
new pytest.fixture() decorator allows to declare the scope
and let pytest figure things out for you.

	if you used parametrization and funcarg factories which made use of
request.cached_setup() it is recommended to invest a few minutes
and simplify your fixture function code to use the Fixtures as Function arguments
decorator instead. This will also allow to take advantage of
the automatic per-resource grouping of tests.

pytest: helps you write better programs

The pytest framework makes it easy to write small tests, yet
scales to support complex functional testing for applications and libraries.

An example of a simple test:

content of test_sample.py
def inc(x):
 return x + 1

def test_answer():
 assert inc(3) == 5

To execute it:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_sample.py F [100%]

================================= FAILURES =================================
_______________________________ test_answer ________________________________

 def test_answer():
> assert inc(3) == 5
E assert 4 == 5
E + where 4 = inc(3)

test_sample.py:6: AssertionError
========================= 1 failed in 0.12 seconds =========================

Due to pytest’s detailed assertion introspection, only plain assert statements are used.
See Getting Started for more examples.

Features

	Detailed info on failing assert statements (no need to remember self.assert* names);

	Auto-discovery of test modules and functions;

	Modular fixtures for managing small or parametrized long-lived test resources;

	Can run unittest (including trial) and nose test suites out of the box;

	Python 2.7, Python 3.4+, PyPy 2.3, Jython 2.5 (untested);

	Rich plugin architecture, with over 315+ external plugins [http://plugincompat.herokuapp.com] and thriving community;

Documentation

Please see Contents for full documentation, including installation, tutorials and PDF documents.

Bugs/Requests

Please use the GitHub issue tracker [https://github.com/pytest-dev/pytest/issues] to submit bugs or request features.

Changelog

Consult the Changelog page for fixes and enhancements of each version.

License

Copyright Holger Krekel and others, 2004-2020.

Distributed under the terms of the MIT [https://github.com/pytest-dev/pytest/blob/master/LICENSE] license, pytest is free and open source software.

 This page has been moved, please see Asserting warnings with the warns function.

“yield_fixture” functions

Important

Since pytest-3.0, fixtures using the normal fixture decorator can use a yield
statement to provide fixture values and execute teardown code, exactly like yield_fixture
in previous versions.

Marking functions as yield_fixture is still supported, but deprecated and should not
be used in new code.

 All modules for which code is available

	_pytest._code.code

	_pytest.assertion

	_pytest.cacheprovider

	_pytest.capture

	_pytest.config

	_pytest.config.argparsing

	_pytest.doctest

	_pytest.fixtures

	_pytest.freeze_support

	_pytest.hookspec

	_pytest.junitxml

	_pytest.logging

	_pytest.main

	_pytest.mark

	_pytest.mark.structures

	_pytest.monkeypatch

	_pytest.nodes

	_pytest.outcomes

	_pytest.pytester

	_pytest.python

	_pytest.python_api

	_pytest.recwarn

	_pytest.reports

	_pytest.runner

	_pytest.tmpdir

	_pytest.warning_types

	builtins

	pluggy.callers

	pluggy.manager

 Source code for _pytest.assertion

-*- coding: utf-8 -*-
"""
support for presenting detailed information in failing assertions.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys

import six

from _pytest.assertion import rewrite
from _pytest.assertion import truncate
from _pytest.assertion import util

def pytest_addoption(parser):
 group = parser.getgroup("debugconfig")
 group.addoption(
 "--assert",
 action="store",
 dest="assertmode",
 choices=("rewrite", "plain"),
 default="rewrite",
 metavar="MODE",
 help="""Control assertion debugging tools. 'plain'
 performs no assertion debugging. 'rewrite'
 (the default) rewrites assert statements in
 test modules on import to provide assert
 expression information.""",
)

[docs]def register_assert_rewrite(*names):
 """Register one or more module names to be rewritten on import.

 This function will make sure that this module or all modules inside
 the package will get their assert statements rewritten.
 Thus you should make sure to call this before the module is
 actually imported, usually in your __init__.py if you are a plugin
 using a package.

 :raise TypeError: if the given module names are not strings.
 """
 for name in names:
 if not isinstance(name, str):
 msg = "expected module names as *args, got {0} instead"
 raise TypeError(msg.format(repr(names)))
 for hook in sys.meta_path:
 if isinstance(hook, rewrite.AssertionRewritingHook):
 importhook = hook
 break
 else:
 importhook = DummyRewriteHook()
 importhook.mark_rewrite(*names)

class DummyRewriteHook(object):
 """A no-op import hook for when rewriting is disabled."""

 def mark_rewrite(self, *names):
 pass

class AssertionState(object):
 """State for the assertion plugin."""

 def __init__(self, config, mode):
 self.mode = mode
 self.trace = config.trace.root.get("assertion")
 self.hook = None

def install_importhook(config):
 """Try to install the rewrite hook, raise SystemError if it fails."""
 # Jython has an AST bug that make the assertion rewriting hook malfunction.
 if sys.platform.startswith("java"):
 raise SystemError("rewrite not supported")

 config._assertstate = AssertionState(config, "rewrite")
 config._assertstate.hook = hook = rewrite.AssertionRewritingHook(config)
 sys.meta_path.insert(0, hook)
 config._assertstate.trace("installed rewrite import hook")

 def undo():
 hook = config._assertstate.hook
 if hook is not None and hook in sys.meta_path:
 sys.meta_path.remove(hook)

 config.add_cleanup(undo)
 return hook

def pytest_collection(session):
 # this hook is only called when test modules are collected
 # so for example not in the master process of pytest-xdist
 # (which does not collect test modules)
 assertstate = getattr(session.config, "_assertstate", None)
 if assertstate:
 if assertstate.hook is not None:
 assertstate.hook.set_session(session)

def pytest_runtest_setup(item):
 """Setup the pytest_assertrepr_compare hook

 The newinterpret and rewrite modules will use util._reprcompare if
 it exists to use custom reporting via the
 pytest_assertrepr_compare hook. This sets up this custom
 comparison for the test.
 """

 def callbinrepr(op, left, right):
 """Call the pytest_assertrepr_compare hook and prepare the result

 This uses the first result from the hook and then ensures the
 following:
 * Overly verbose explanations are truncated unless configured otherwise
 (eg. if running in verbose mode).
 * Embedded newlines are escaped to help util.format_explanation()
 later.
 * If the rewrite mode is used embedded %-characters are replaced
 to protect later % formatting.

 The result can be formatted by util.format_explanation() for
 pretty printing.
 """
 hook_result = item.ihook.pytest_assertrepr_compare(
 config=item.config, op=op, left=left, right=right
)
 for new_expl in hook_result:
 if new_expl:
 new_expl = truncate.truncate_if_required(new_expl, item)
 new_expl = [line.replace("\n", "\\n") for line in new_expl]
 res = six.text_type("\n~").join(new_expl)
 if item.config.getvalue("assertmode") == "rewrite":
 res = res.replace("%", "%%")
 return res

 util._reprcompare = callbinrepr

def pytest_runtest_teardown(item):
 util._reprcompare = None

def pytest_sessionfinish(session):
 assertstate = getattr(session.config, "_assertstate", None)
 if assertstate:
 if assertstate.hook is not None:
 assertstate.hook.set_session(None)

Expose this plugin's implementation for the pytest_assertrepr_compare hook
pytest_assertrepr_compare = util.assertrepr_compare

 Source code for _pytest.cacheprovider

-*- coding: utf-8 -*-
"""
merged implementation of the cache provider

the name cache was not chosen to ensure pluggy automatically
ignores the external pytest-cache
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
from collections import OrderedDict

import attr
import py
import six

import pytest
from .compat import _PY2 as PY2
from .pathlib import Path
from .pathlib import resolve_from_str
from .pathlib import rm_rf

README_CONTENT = u"""\
pytest cache directory

This directory contains data from the pytest's cache plugin,
which provides the `--lf` and `--ff` options, as well as the `cache` fixture.

Do not commit this to version control.

See [the docs](https://docs.pytest.org/en/latest/cache.html) for more information.
"""

CACHEDIR_TAG_CONTENT = b"""\
Signature: 8a477f597d28d172789f06886806bc55
This file is a cache directory tag created by pytest.
For information about cache directory tags, see:
#	http://www.bford.info/cachedir/spec.html
"""

@attr.s
class Cache(object):
 _cachedir = attr.ib(repr=False)
 _config = attr.ib(repr=False)

 @classmethod
 def for_config(cls, config):
 cachedir = cls.cache_dir_from_config(config)
 if config.getoption("cacheclear") and cachedir.exists():
 rm_rf(cachedir)
 cachedir.mkdir()
 return cls(cachedir, config)

 @staticmethod
 def cache_dir_from_config(config):
 return resolve_from_str(config.getini("cache_dir"), config.rootdir)

 def warn(self, fmt, **args):
 from _pytest.warnings import _issue_warning_captured
 from _pytest.warning_types import PytestCacheWarning

 _issue_warning_captured(
 PytestCacheWarning(fmt.format(**args) if args else fmt),
 self._config.hook,
 stacklevel=3,
)

[docs] def makedir(self, name):
 """ return a directory path object with the given name. If the
 directory does not yet exist, it will be created. You can use it
 to manage files likes e. g. store/retrieve database
 dumps across test sessions.

 :param name: must be a string not containing a ``/`` separator.
 Make sure the name contains your plugin or application
 identifiers to prevent clashes with other cache users.
 """
 name = Path(name)
 if len(name.parts) > 1:
 raise ValueError("name is not allowed to contain path separators")
 res = self._cachedir.joinpath("d", name)
 res.mkdir(exist_ok=True, parents=True)
 return py.path.local(res)

 def _getvaluepath(self, key):
 return self._cachedir.joinpath("v", Path(key))

[docs] def get(self, key, default):
 """ return cached value for the given key. If no value
 was yet cached or the value cannot be read, the specified
 default is returned.

 :param key: must be a ``/`` separated value. Usually the first
 name is the name of your plugin or your application.
 :param default: must be provided in case of a cache-miss or
 invalid cache values.

 """
 path = self._getvaluepath(key)
 try:
 with path.open("r") as f:
 return json.load(f)
 except (ValueError, IOError, OSError):
 return default

[docs] def set(self, key, value):
 """ save value for the given key.

 :param key: must be a ``/`` separated value. Usually the first
 name is the name of your plugin or your application.
 :param value: must be of any combination of basic
 python types, including nested types
 like e. g. lists of dictionaries.
 """
 path = self._getvaluepath(key)
 try:
 if path.parent.is_dir():
 cache_dir_exists_already = True
 else:
 cache_dir_exists_already = self._cachedir.exists()
 path.parent.mkdir(exist_ok=True, parents=True)
 except (IOError, OSError):
 self.warn("could not create cache path {path}", path=path)
 return
 if not cache_dir_exists_already:
 self._ensure_supporting_files()
 try:
 f = path.open("wb" if PY2 else "w")
 except (IOError, OSError):
 self.warn("cache could not write path {path}", path=path)
 else:
 with f:
 json.dump(value, f, indent=2, sort_keys=True)

 def _ensure_supporting_files(self):
 """Create supporting files in the cache dir that are not really part of the cache."""
 readme_path = self._cachedir / "README.md"
 readme_path.write_text(README_CONTENT)

 gitignore_path = self._cachedir.joinpath(".gitignore")
 msg = u"# Created by pytest automatically.\n*"
 gitignore_path.write_text(msg, encoding="UTF-8")

 cachedir_tag_path = self._cachedir.joinpath("CACHEDIR.TAG")
 cachedir_tag_path.write_bytes(CACHEDIR_TAG_CONTENT)

class LFPlugin(object):
 """ Plugin which implements the --lf (run last-failing) option """

 def __init__(self, config):
 self.config = config
 active_keys = "lf", "failedfirst"
 self.active = any(config.getoption(key) for key in active_keys)
 self.lastfailed = config.cache.get("cache/lastfailed", {})
 self._previously_failed_count = None
 self._report_status = None
 self._skipped_files = 0 # count skipped files during collection due to --lf

 def last_failed_paths(self):
 """Returns a set with all Paths()s of the previously failed nodeids (cached).
 """
 try:
 return self._last_failed_paths
 except AttributeError:
 rootpath = Path(self.config.rootdir)
 result = {rootpath / nodeid.split("::")[0] for nodeid in self.lastfailed}
 result = {x for x in result if x.exists()}
 self._last_failed_paths = result
 return result

 def pytest_ignore_collect(self, path):
 """
 Ignore this file path if we are in --lf mode and it is not in the list of
 previously failed files.
 """
 if self.active and self.config.getoption("lf") and path.isfile():
 last_failed_paths = self.last_failed_paths()
 if last_failed_paths:
 skip_it = Path(path) not in self.last_failed_paths()
 if skip_it:
 self._skipped_files += 1
 return skip_it

 def pytest_report_collectionfinish(self):
 if self.active and self.config.getoption("verbose") >= 0:
 return "run-last-failure: %s" % self._report_status

 def pytest_runtest_logreport(self, report):
 if (report.when == "call" and report.passed) or report.skipped:
 self.lastfailed.pop(report.nodeid, None)
 elif report.failed:
 self.lastfailed[report.nodeid] = True

 def pytest_collectreport(self, report):
 passed = report.outcome in ("passed", "skipped")
 if passed:
 if report.nodeid in self.lastfailed:
 self.lastfailed.pop(report.nodeid)
 self.lastfailed.update((item.nodeid, True) for item in report.result)
 else:
 self.lastfailed[report.nodeid] = True

 def pytest_collection_modifyitems(self, session, config, items):
 if not self.active:
 return

 if self.lastfailed:
 previously_failed = []
 previously_passed = []
 for item in items:
 if item.nodeid in self.lastfailed:
 previously_failed.append(item)
 else:
 previously_passed.append(item)
 self._previously_failed_count = len(previously_failed)

 if not previously_failed:
 # Running a subset of all tests with recorded failures
 # only outside of it.
 self._report_status = "%d known failures not in selected tests" % (
 len(self.lastfailed),
)
 else:
 if self.config.getoption("lf"):
 items[:] = previously_failed
 config.hook.pytest_deselected(items=previously_passed)
 else: # --failedfirst
 items[:] = previously_failed + previously_passed

 noun = "failure" if self._previously_failed_count == 1 else "failures"
 suffix = " first" if self.config.getoption("failedfirst") else ""
 self._report_status = "rerun previous {count} {noun}{suffix}".format(
 count=self._previously_failed_count, suffix=suffix, noun=noun
)

 if self._skipped_files > 0:
 files_noun = "file" if self._skipped_files == 1 else "files"
 self._report_status += " (skipped {files} {files_noun})".format(
 files=self._skipped_files, files_noun=files_noun
)
 else:
 self._report_status = "no previously failed tests, "
 if self.config.getoption("last_failed_no_failures") == "none":
 self._report_status += "deselecting all items."
 config.hook.pytest_deselected(items=items)
 items[:] = []
 else:
 self._report_status += "not deselecting items."

 def pytest_sessionfinish(self, session):
 config = self.config
 if config.getoption("cacheshow") or hasattr(config, "slaveinput"):
 return

 saved_lastfailed = config.cache.get("cache/lastfailed", {})
 if saved_lastfailed != self.lastfailed:
 config.cache.set("cache/lastfailed", self.lastfailed)

class NFPlugin(object):
 """ Plugin which implements the --nf (run new-first) option """

 def __init__(self, config):
 self.config = config
 self.active = config.option.newfirst
 self.cached_nodeids = config.cache.get("cache/nodeids", [])

 def pytest_collection_modifyitems(self, session, config, items):
 if self.active:
 new_items = OrderedDict()
 other_items = OrderedDict()
 for item in items:
 if item.nodeid not in self.cached_nodeids:
 new_items[item.nodeid] = item
 else:
 other_items[item.nodeid] = item

 items[:] = self._get_increasing_order(
 six.itervalues(new_items)
) + self._get_increasing_order(six.itervalues(other_items))
 self.cached_nodeids = [x.nodeid for x in items if isinstance(x, pytest.Item)]

 def _get_increasing_order(self, items):
 return sorted(items, key=lambda item: item.fspath.mtime(), reverse=True)

 def pytest_sessionfinish(self, session):
 config = self.config
 if config.getoption("cacheshow") or hasattr(config, "slaveinput"):
 return

 config.cache.set("cache/nodeids", self.cached_nodeids)

def pytest_addoption(parser):
 group = parser.getgroup("general")
 group.addoption(
 "--lf",
 "--last-failed",
 action="store_true",
 dest="lf",
 help="rerun only the tests that failed "
 "at the last run (or all if none failed)",
)
 group.addoption(
 "--ff",
 "--failed-first",
 action="store_true",
 dest="failedfirst",
 help="run all tests but run the last failures first. "
 "This may re-order tests and thus lead to "
 "repeated fixture setup/teardown",
)
 group.addoption(
 "--nf",
 "--new-first",
 action="store_true",
 dest="newfirst",
 help="run tests from new files first, then the rest of the tests "
 "sorted by file mtime",
)
 group.addoption(
 "--cache-show",
 action="append",
 nargs="?",
 dest="cacheshow",
 help=(
 "show cache contents, don't perform collection or tests. "
 "Optional argument: glob (default: '*')."
),
)
 group.addoption(
 "--cache-clear",
 action="store_true",
 dest="cacheclear",
 help="remove all cache contents at start of test run.",
)
 cache_dir_default = ".pytest_cache"
 if "TOX_ENV_DIR" in os.environ:
 cache_dir_default = os.path.join(os.environ["TOX_ENV_DIR"], cache_dir_default)
 parser.addini("cache_dir", default=cache_dir_default, help="cache directory path.")
 group.addoption(
 "--lfnf",
 "--last-failed-no-failures",
 action="store",
 dest="last_failed_no_failures",
 choices=("all", "none"),
 default="all",
 help="which tests to run with no previously (known) failures.",
)

def pytest_cmdline_main(config):
 if config.option.cacheshow:
 from _pytest.main import wrap_session

 return wrap_session(config, cacheshow)

@pytest.hookimpl(tryfirst=True)
def pytest_configure(config):
 config.cache = Cache.for_config(config)
 config.pluginmanager.register(LFPlugin(config), "lfplugin")
 config.pluginmanager.register(NFPlugin(config), "nfplugin")

@pytest.fixture
def cache(request):
 """
 Return a cache object that can persist state between testing sessions.

 cache.get(key, default)
 cache.set(key, value)

 Keys must be a ``/`` separated value, where the first part is usually the
 name of your plugin or application to avoid clashes with other cache users.

 Values can be any object handled by the json stdlib module.
 """
 return request.config.cache

def pytest_report_header(config):
 """Display cachedir with --cache-show and if non-default."""
 if config.option.verbose > 0 or config.getini("cache_dir") != ".pytest_cache":
 cachedir = config.cache._cachedir
 # TODO: evaluate generating upward relative paths
 # starting with .., ../.. if sensible

 try:
 displaypath = cachedir.relative_to(config.rootdir)
 except ValueError:
 displaypath = cachedir
 return "cachedir: {}".format(displaypath)

def cacheshow(config, session):
 from pprint import pformat

 tw = py.io.TerminalWriter()
 tw.line("cachedir: " + str(config.cache._cachedir))
 if not config.cache._cachedir.is_dir():
 tw.line("cache is empty")
 return 0

 glob = config.option.cacheshow[0]
 if glob is None:
 glob = "*"

 dummy = object()
 basedir = config.cache._cachedir
 vdir = basedir / "v"
 tw.sep("-", "cache values for %r" % glob)
 for valpath in sorted(x for x in vdir.rglob(glob) if x.is_file()):
 key = valpath.relative_to(vdir)
 val = config.cache.get(key, dummy)
 if val is dummy:
 tw.line("%s contains unreadable content, will be ignored" % key)
 else:
 tw.line("%s contains:" % key)
 for line in pformat(val).splitlines():
 tw.line(" " + line)

 ddir = basedir / "d"
 if ddir.is_dir():
 contents = sorted(ddir.rglob(glob))
 tw.sep("-", "cache directories for %r" % glob)
 for p in contents:
 # if p.check(dir=1):
 # print("%s/" % p.relto(basedir))
 if p.is_file():
 key = p.relative_to(basedir)
 tw.line("{} is a file of length {:d}".format(key, p.stat().st_size))
 return 0

 Source code for _pytest.capture

-*- coding: utf-8 -*-
"""
per-test stdout/stderr capturing mechanism.

"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import contextlib
import io
import os
import sys
from io import UnsupportedOperation
from tempfile import TemporaryFile

import six

import pytest
from _pytest.compat import _PY3
from _pytest.compat import CaptureIO

patchsysdict = {0: "stdin", 1: "stdout", 2: "stderr"}

def pytest_addoption(parser):
 group = parser.getgroup("general")
 group._addoption(
 "--capture",
 action="store",
 default="fd" if hasattr(os, "dup") else "sys",
 metavar="method",
 choices=["fd", "sys", "no"],
 help="per-test capturing method: one of fd|sys|no.",
)
 group._addoption(
 "-s",
 action="store_const",
 const="no",
 dest="capture",
 help="shortcut for --capture=no.",
)

@pytest.hookimpl(hookwrapper=True)
def pytest_load_initial_conftests(early_config, parser, args):
 ns = early_config.known_args_namespace
 if ns.capture == "fd":
 _py36_windowsconsoleio_workaround(sys.stdout)
 _colorama_workaround()
 _readline_workaround()
 pluginmanager = early_config.pluginmanager
 capman = CaptureManager(ns.capture)
 pluginmanager.register(capman, "capturemanager")

 # make sure that capturemanager is properly reset at final shutdown
 early_config.add_cleanup(capman.stop_global_capturing)

 # finally trigger conftest loading but while capturing (issue93)
 capman.start_global_capturing()
 outcome = yield
 capman.suspend_global_capture()
 if outcome.excinfo is not None:
 out, err = capman.read_global_capture()
 sys.stdout.write(out)
 sys.stderr.write(err)

class CaptureManager(object):
 """
 Capture plugin, manages that the appropriate capture method is enabled/disabled during collection and each
 test phase (setup, call, teardown). After each of those points, the captured output is obtained and
 attached to the collection/runtest report.

 There are two levels of capture:
 * global: which is enabled by default and can be suppressed by the ``-s`` option. This is always enabled/disabled
 during collection and each test phase.
 * fixture: when a test function or one of its fixture depend on the ``capsys`` or ``capfd`` fixtures. In this
 case special handling is needed to ensure the fixtures take precedence over the global capture.
 """

 def __init__(self, method):
 self._method = method
 self._global_capturing = None
 self._current_item = None

 def __repr__(self):
 return "<CaptureManager _method=%r _global_capturing=%r _current_item=%r>" % (
 self._method,
 self._global_capturing,
 self._current_item,
)

 def _getcapture(self, method):
 if method == "fd":
 return MultiCapture(out=True, err=True, Capture=FDCapture)
 elif method == "sys":
 return MultiCapture(out=True, err=True, Capture=SysCapture)
 elif method == "no":
 return MultiCapture(out=False, err=False, in_=False)
 raise ValueError("unknown capturing method: %r" % method) # pragma: no cover

 def is_capturing(self):
 if self.is_globally_capturing():
 return "global"
 capture_fixture = getattr(self._current_item, "_capture_fixture", None)
 if capture_fixture is not None:
 return (
 "fixture %s" % self._current_item._capture_fixture.request.fixturename
)
 return False

 # Global capturing control

 def is_globally_capturing(self):
 return self._method != "no"

 def start_global_capturing(self):
 assert self._global_capturing is None
 self._global_capturing = self._getcapture(self._method)
 self._global_capturing.start_capturing()

 def stop_global_capturing(self):
 if self._global_capturing is not None:
 self._global_capturing.pop_outerr_to_orig()
 self._global_capturing.stop_capturing()
 self._global_capturing = None

 def resume_global_capture(self):
 # During teardown of the python process, and on rare occasions, capture
 # attributes can be `None` while trying to resume global capture.
 if self._global_capturing is not None:
 self._global_capturing.resume_capturing()

 def suspend_global_capture(self, in_=False):
 cap = getattr(self, "_global_capturing", None)
 if cap is not None:
 cap.suspend_capturing(in_=in_)

 def suspend(self, in_=False):
 # Need to undo local capsys-et-al if it exists before disabling global capture.
 self.suspend_fixture(self._current_item)
 self.suspend_global_capture(in_)

 def resume(self):
 self.resume_global_capture()
 self.resume_fixture(self._current_item)

 def read_global_capture(self):
 return self._global_capturing.readouterr()

 # Fixture Control (it's just forwarding, think about removing this later)

 def activate_fixture(self, item):
 """If the current item is using ``capsys`` or ``capfd``, activate them so they take precedence over
 the global capture.
 """
 fixture = getattr(item, "_capture_fixture", None)
 if fixture is not None:
 fixture._start()

 def deactivate_fixture(self, item):
 """Deactivates the ``capsys`` or ``capfd`` fixture of this item, if any."""
 fixture = getattr(item, "_capture_fixture", None)
 if fixture is not None:
 fixture.close()

 def suspend_fixture(self, item):
 fixture = getattr(item, "_capture_fixture", None)
 if fixture is not None:
 fixture._suspend()

 def resume_fixture(self, item):
 fixture = getattr(item, "_capture_fixture", None)
 if fixture is not None:
 fixture._resume()

 # Helper context managers

 @contextlib.contextmanager
 def global_and_fixture_disabled(self):
 """Context manager to temporarily disable global and current fixture capturing."""
 self.suspend()
 try:
 yield
 finally:
 self.resume()

 @contextlib.contextmanager
 def item_capture(self, when, item):
 self.resume_global_capture()
 self.activate_fixture(item)
 try:
 yield
 finally:
 self.deactivate_fixture(item)
 self.suspend_global_capture(in_=False)

 out, err = self.read_global_capture()
 item.add_report_section(when, "stdout", out)
 item.add_report_section(when, "stderr", err)

 # Hooks

 @pytest.hookimpl(hookwrapper=True)
 def pytest_make_collect_report(self, collector):
 if isinstance(collector, pytest.File):
 self.resume_global_capture()
 outcome = yield
 self.suspend_global_capture()
 out, err = self.read_global_capture()
 rep = outcome.get_result()
 if out:
 rep.sections.append(("Captured stdout", out))
 if err:
 rep.sections.append(("Captured stderr", err))
 else:
 yield

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtest_protocol(self, item):
 self._current_item = item
 yield
 self._current_item = None

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtest_setup(self, item):
 with self.item_capture("setup", item):
 yield

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtest_call(self, item):
 with self.item_capture("call", item):
 yield

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtest_teardown(self, item):
 with self.item_capture("teardown", item):
 yield

 @pytest.hookimpl(tryfirst=True)
 def pytest_keyboard_interrupt(self, excinfo):
 self.stop_global_capturing()

 @pytest.hookimpl(tryfirst=True)
 def pytest_internalerror(self, excinfo):
 self.stop_global_capturing()

capture_fixtures = {"capfd", "capfdbinary", "capsys", "capsysbinary"}

def _ensure_only_one_capture_fixture(request, name):
 fixtures = set(request.fixturenames) & capture_fixtures - {name}
 if fixtures:
 fixtures = sorted(fixtures)
 fixtures = fixtures[0] if len(fixtures) == 1 else fixtures
 raise request.raiseerror(
 "cannot use {} and {} at the same time".format(fixtures, name)
)

[docs]@pytest.fixture
def capsys(request):
 """Enable text capturing of writes to ``sys.stdout`` and ``sys.stderr``.

 The captured output is made available via ``capsys.readouterr()`` method
 calls, which return a ``(out, err)`` namedtuple.
 ``out`` and ``err`` will be ``text`` objects.
 """
 _ensure_only_one_capture_fixture(request, "capsys")
 with _install_capture_fixture_on_item(request, SysCapture) as fixture:
 yield fixture

[docs]@pytest.fixture
def capsysbinary(request):
 """Enable bytes capturing of writes to ``sys.stdout`` and ``sys.stderr``.

 The captured output is made available via ``capsysbinary.readouterr()``
 method calls, which return a ``(out, err)`` namedtuple.
 ``out`` and ``err`` will be ``bytes`` objects.
 """
 _ensure_only_one_capture_fixture(request, "capsysbinary")
 # Currently, the implementation uses the python3 specific `.buffer`
 # property of CaptureIO.
 if sys.version_info < (3,):
 raise request.raiseerror("capsysbinary is only supported on Python 3")
 with _install_capture_fixture_on_item(request, SysCaptureBinary) as fixture:
 yield fixture

[docs]@pytest.fixture
def capfd(request):
 """Enable text capturing of writes to file descriptors ``1`` and ``2``.

 The captured output is made available via ``capfd.readouterr()`` method
 calls, which return a ``(out, err)`` namedtuple.
 ``out`` and ``err`` will be ``text`` objects.
 """
 _ensure_only_one_capture_fixture(request, "capfd")
 if not hasattr(os, "dup"):
 pytest.skip(
 "capfd fixture needs os.dup function which is not available in this system"
)
 with _install_capture_fixture_on_item(request, FDCapture) as fixture:
 yield fixture

[docs]@pytest.fixture
def capfdbinary(request):
 """Enable bytes capturing of writes to file descriptors ``1`` and ``2``.

 The captured output is made available via ``capfd.readouterr()`` method
 calls, which return a ``(out, err)`` namedtuple.
 ``out`` and ``err`` will be ``byte`` objects.
 """
 _ensure_only_one_capture_fixture(request, "capfdbinary")
 if not hasattr(os, "dup"):
 pytest.skip(
 "capfdbinary fixture needs os.dup function which is not available in this system"
)
 with _install_capture_fixture_on_item(request, FDCaptureBinary) as fixture:
 yield fixture

@contextlib.contextmanager
def _install_capture_fixture_on_item(request, capture_class):
 """
 Context manager which creates a ``CaptureFixture`` instance and "installs" it on
 the item/node of the given request. Used by ``capsys`` and ``capfd``.

 The CaptureFixture is added as attribute of the item because it needs to accessed
 by ``CaptureManager`` during its ``pytest_runtest_*`` hooks.
 """
 request.node._capture_fixture = fixture = CaptureFixture(capture_class, request)
 capmanager = request.config.pluginmanager.getplugin("capturemanager")
 # Need to active this fixture right away in case it is being used by another fixture (setup phase).
 # If this fixture is being used only by a test function (call phase), then we wouldn't need this
 # activation, but it doesn't hurt.
 capmanager.activate_fixture(request.node)
 yield fixture
 fixture.close()
 del request.node._capture_fixture

[docs]class CaptureFixture(object):
 """
 Object returned by :py:func:`capsys`, :py:func:`capsysbinary`, :py:func:`capfd` and :py:func:`capfdbinary`
 fixtures.
 """

 def __init__(self, captureclass, request):
 self.captureclass = captureclass
 self.request = request
 self._capture = None
 self._captured_out = self.captureclass.EMPTY_BUFFER
 self._captured_err = self.captureclass.EMPTY_BUFFER

 def _start(self):
 if self._capture is None:
 self._capture = MultiCapture(
 out=True, err=True, in_=False, Capture=self.captureclass
)
 self._capture.start_capturing()

 def close(self):
 if self._capture is not None:
 out, err = self._capture.pop_outerr_to_orig()
 self._captured_out += out
 self._captured_err += err
 self._capture.stop_capturing()
 self._capture = None

[docs] def readouterr(self):
 """Read and return the captured output so far, resetting the internal buffer.

 :return: captured content as a namedtuple with ``out`` and ``err`` string attributes
 """
 captured_out, captured_err = self._captured_out, self._captured_err
 if self._capture is not None:
 out, err = self._capture.readouterr()
 captured_out += out
 captured_err += err
 self._captured_out = self.captureclass.EMPTY_BUFFER
 self._captured_err = self.captureclass.EMPTY_BUFFER
 return CaptureResult(captured_out, captured_err)

 def _suspend(self):
 """Suspends this fixture's own capturing temporarily."""
 if self._capture is not None:
 self._capture.suspend_capturing()

 def _resume(self):
 """Resumes this fixture's own capturing temporarily."""
 if self._capture is not None:
 self._capture.resume_capturing()

[docs] @contextlib.contextmanager
 def disabled(self):
 """Temporarily disables capture while inside the 'with' block."""
 capmanager = self.request.config.pluginmanager.getplugin("capturemanager")
 with capmanager.global_and_fixture_disabled():
 yield

def safe_text_dupfile(f, mode, default_encoding="UTF8"):
 """ return an open text file object that's a duplicate of f on the
 FD-level if possible.
 """
 encoding = getattr(f, "encoding", None)
 try:
 fd = f.fileno()
 except Exception:
 if "b" not in getattr(f, "mode", "") and hasattr(f, "encoding"):
 # we seem to have a text stream, let's just use it
 return f
 else:
 newfd = os.dup(fd)
 if "b" not in mode:
 mode += "b"
 f = os.fdopen(newfd, mode, 0) # no buffering
 return EncodedFile(f, encoding or default_encoding)

class EncodedFile(object):
 errors = "strict" # possibly needed by py3 code (issue555)

 def __init__(self, buffer, encoding):
 self.buffer = buffer
 self.encoding = encoding

 def write(self, obj):
 if isinstance(obj, six.text_type):
 obj = obj.encode(self.encoding, "replace")
 elif _PY3:
 raise TypeError(
 "write() argument must be str, not {}".format(type(obj).__name__)
)
 self.buffer.write(obj)

 def writelines(self, linelist):
 data = "".join(linelist)
 self.write(data)

 @property
 def name(self):
 """Ensure that file.name is a string."""
 return repr(self.buffer)

 @property
 def mode(self):
 return self.buffer.mode.replace("b", "")

 def __getattr__(self, name):
 return getattr(object.__getattribute__(self, "buffer"), name)

CaptureResult = collections.namedtuple("CaptureResult", ["out", "err"])

class MultiCapture(object):
 out = err = in_ = None
 _state = None

 def __init__(self, out=True, err=True, in_=True, Capture=None):
 if in_:
 self.in_ = Capture(0)
 if out:
 self.out = Capture(1)
 if err:
 self.err = Capture(2)

 def __repr__(self):
 return "<MultiCapture out=%r err=%r in_=%r _state=%r _in_suspended=%r>" % (
 self.out,
 self.err,
 self.in_,
 self._state,
 getattr(self, "_in_suspended", "<UNSET>"),
)

 def start_capturing(self):
 self._state = "started"
 if self.in_:
 self.in_.start()
 if self.out:
 self.out.start()
 if self.err:
 self.err.start()

 def pop_outerr_to_orig(self):
 """ pop current snapshot out/err capture and flush to orig streams. """
 out, err = self.readouterr()
 if out:
 self.out.writeorg(out)
 if err:
 self.err.writeorg(err)
 return out, err

 def suspend_capturing(self, in_=False):
 self._state = "suspended"
 if self.out:
 self.out.suspend()
 if self.err:
 self.err.suspend()
 if in_ and self.in_:
 self.in_.suspend()
 self._in_suspended = True

 def resume_capturing(self):
 self._state = "resumed"
 if self.out:
 self.out.resume()
 if self.err:
 self.err.resume()
 if hasattr(self, "_in_suspended"):
 self.in_.resume()
 del self._in_suspended

 def stop_capturing(self):
 """ stop capturing and reset capturing streams """
 if self._state == "stopped":
 raise ValueError("was already stopped")
 self._state = "stopped"
 if self.out:
 self.out.done()
 if self.err:
 self.err.done()
 if self.in_:
 self.in_.done()

 def readouterr(self):
 """ return snapshot unicode value of stdout/stderr capturings. """
 return CaptureResult(
 self.out.snap() if self.out is not None else "",
 self.err.snap() if self.err is not None else "",
)

class NoCapture(object):
 EMPTY_BUFFER = None
 __init__ = start = done = suspend = resume = lambda *args: None

class FDCaptureBinary(object):
 """Capture IO to/from a given os-level filedescriptor.

 snap() produces `bytes`
 """

 EMPTY_BUFFER = b""
 _state = None

 def __init__(self, targetfd, tmpfile=None):
 self.targetfd = targetfd
 try:
 self.targetfd_save = os.dup(self.targetfd)
 except OSError:
 self.start = lambda: None
 self.done = lambda: None
 else:
 if targetfd == 0:
 assert not tmpfile, "cannot set tmpfile with stdin"
 tmpfile = open(os.devnull, "r")
 self.syscapture = SysCapture(targetfd)
 else:
 if tmpfile is None:
 f = TemporaryFile()
 with f:
 tmpfile = safe_text_dupfile(f, mode="wb+")
 if targetfd in patchsysdict:
 self.syscapture = SysCapture(targetfd, tmpfile)
 else:
 self.syscapture = NoCapture()
 self.tmpfile = tmpfile
 self.tmpfile_fd = tmpfile.fileno()

 def __repr__(self):
 return "<FDCapture %s oldfd=%s _state=%r>" % (
 self.targetfd,
 getattr(self, "targetfd_save", None),
 self._state,
)

 def start(self):
 """ Start capturing on targetfd using memorized tmpfile. """
 try:
 os.fstat(self.targetfd_save)
 except (AttributeError, OSError):
 raise ValueError("saved filedescriptor not valid anymore")
 os.dup2(self.tmpfile_fd, self.targetfd)
 self.syscapture.start()
 self._state = "started"

 def snap(self):
 self.tmpfile.seek(0)
 res = self.tmpfile.read()
 self.tmpfile.seek(0)
 self.tmpfile.truncate()
 return res

 def done(self):
 """ stop capturing, restore streams, return original capture file,
 seeked to position zero. """
 targetfd_save = self.__dict__.pop("targetfd_save")
 os.dup2(targetfd_save, self.targetfd)
 os.close(targetfd_save)
 self.syscapture.done()
 _attempt_to_close_capture_file(self.tmpfile)
 self._state = "done"

 def suspend(self):
 self.syscapture.suspend()
 os.dup2(self.targetfd_save, self.targetfd)
 self._state = "suspended"

 def resume(self):
 self.syscapture.resume()
 os.dup2(self.tmpfile_fd, self.targetfd)
 self._state = "resumed"

 def writeorg(self, data):
 """ write to original file descriptor. """
 if isinstance(data, six.text_type):
 data = data.encode("utf8") # XXX use encoding of original stream
 os.write(self.targetfd_save, data)

class FDCapture(FDCaptureBinary):
 """Capture IO to/from a given os-level filedescriptor.

 snap() produces text
 """

 EMPTY_BUFFER = str()

 def snap(self):
 res = super(FDCapture, self).snap()
 enc = getattr(self.tmpfile, "encoding", None)
 if enc and isinstance(res, bytes):
 res = six.text_type(res, enc, "replace")
 return res

class SysCapture(object):

 EMPTY_BUFFER = str()
 _state = None

 def __init__(self, fd, tmpfile=None):
 name = patchsysdict[fd]
 self._old = getattr(sys, name)
 self.name = name
 if tmpfile is None:
 if name == "stdin":
 tmpfile = DontReadFromInput()
 else:
 tmpfile = CaptureIO()
 self.tmpfile = tmpfile

 def __repr__(self):
 return "<SysCapture %s _old=%r, tmpfile=%r _state=%r>" % (
 self.name,
 self._old,
 self.tmpfile,
 self._state,
)

 def start(self):
 setattr(sys, self.name, self.tmpfile)
 self._state = "started"

 def snap(self):
 res = self.tmpfile.getvalue()
 self.tmpfile.seek(0)
 self.tmpfile.truncate()
 return res

 def done(self):
 setattr(sys, self.name, self._old)
 del self._old
 _attempt_to_close_capture_file(self.tmpfile)
 self._state = "done"

 def suspend(self):
 setattr(sys, self.name, self._old)
 self._state = "suspended"

 def resume(self):
 setattr(sys, self.name, self.tmpfile)
 self._state = "resumed"

 def writeorg(self, data):
 self._old.write(data)
 self._old.flush()

class SysCaptureBinary(SysCapture):
 EMPTY_BUFFER = b""

 def snap(self):
 res = self.tmpfile.buffer.getvalue()
 self.tmpfile.seek(0)
 self.tmpfile.truncate()
 return res

class DontReadFromInput(six.Iterator):
 """Temporary stub class. Ideally when stdin is accessed, the
 capturing should be turned off, with possibly all data captured
 so far sent to the screen. This should be configurable, though,
 because in automated test runs it is better to crash than
 hang indefinitely.
 """

 encoding = None

 def read(self, *args):
 raise IOError("reading from stdin while output is captured")

 readline = read
 readlines = read
 __next__ = read

 def __iter__(self):
 return self

 def fileno(self):
 raise UnsupportedOperation("redirected stdin is pseudofile, has no fileno()")

 def isatty(self):
 return False

 def close(self):
 pass

 @property
 def buffer(self):
 if sys.version_info >= (3, 0):
 return self
 else:
 raise AttributeError("redirected stdin has no attribute buffer")

def _colorama_workaround():
 """
 Ensure colorama is imported so that it attaches to the correct stdio
 handles on Windows.

 colorama uses the terminal on import time. So if something does the
 first import of colorama while I/O capture is active, colorama will
 fail in various ways.
 """
 if sys.platform.startswith("win32"):
 try:
 import colorama # noqa: F401
 except ImportError:
 pass

def _readline_workaround():
 """
 Ensure readline is imported so that it attaches to the correct stdio
 handles on Windows.

 Pdb uses readline support where available--when not running from the Python
 prompt, the readline module is not imported until running the pdb REPL. If
 running pytest with the --pdb option this means the readline module is not
 imported until after I/O capture has been started.

 This is a problem for pyreadline, which is often used to implement readline
 support on Windows, as it does not attach to the correct handles for stdout
 and/or stdin if they have been redirected by the FDCapture mechanism. This
 workaround ensures that readline is imported before I/O capture is setup so
 that it can attach to the actual stdin/out for the console.

 See https://github.com/pytest-dev/pytest/pull/1281
 """
 if sys.platform.startswith("win32"):
 try:
 import readline # noqa: F401
 except ImportError:
 pass

def _py36_windowsconsoleio_workaround(stream):
 """
 Python 3.6 implemented unicode console handling for Windows. This works
 by reading/writing to the raw console handle using
 ``{Read,Write}ConsoleW``.

 The problem is that we are going to ``dup2`` over the stdio file
 descriptors when doing ``FDCapture`` and this will ``CloseHandle`` the
 handles used by Python to write to the console. Though there is still some
 weirdness and the console handle seems to only be closed randomly and not
 on the first call to ``CloseHandle``, or maybe it gets reopened with the
 same handle value when we suspend capturing.

 The workaround in this case will reopen stdio with a different fd which
 also means a different handle by replicating the logic in
 "Py_lifecycle.c:initstdio/create_stdio".

 :param stream: in practice ``sys.stdout`` or ``sys.stderr``, but given
 here as parameter for unittesting purposes.

 See https://github.com/pytest-dev/py/issues/103
 """
 if not sys.platform.startswith("win32") or sys.version_info[:2] < (3, 6):
 return

 # bail out if ``stream`` doesn't seem like a proper ``io`` stream (#2666)
 if not hasattr(stream, "buffer"):
 return

 buffered = hasattr(stream.buffer, "raw")
 raw_stdout = stream.buffer.raw if buffered else stream.buffer

 if not isinstance(raw_stdout, io._WindowsConsoleIO):
 return

 def _reopen_stdio(f, mode):
 if not buffered and mode[0] == "w":
 buffering = 0
 else:
 buffering = -1

 return io.TextIOWrapper(
 open(os.dup(f.fileno()), mode, buffering),
 f.encoding,
 f.errors,
 f.newlines,
 f.line_buffering,
)

 sys.stdin = _reopen_stdio(sys.stdin, "rb")
 sys.stdout = _reopen_stdio(sys.stdout, "wb")
 sys.stderr = _reopen_stdio(sys.stderr, "wb")

def _attempt_to_close_capture_file(f):
 """Suppress IOError when closing the temporary file used for capturing streams in py27 (#2370)"""
 if six.PY2:
 try:
 f.close()
 except IOError:
 pass
 else:
 f.close()

 Source code for _pytest.config

-*- coding: utf-8 -*-
""" command line options, ini-file and conftest.py processing. """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import copy
import inspect
import os
import shlex
import sys
import types
import warnings

import attr
import py
import six
from packaging.version import Version
from pluggy import HookimplMarker
from pluggy import HookspecMarker
from pluggy import PluginManager

import _pytest._code
import _pytest.assertion
import _pytest.hookspec # the extension point definitions
from .exceptions import PrintHelp
from .exceptions import UsageError
from .findpaths import determine_setup
from .findpaths import exists
from _pytest import deprecated
from _pytest._code import ExceptionInfo
from _pytest._code import filter_traceback
from _pytest.compat import importlib_metadata
from _pytest.compat import lru_cache
from _pytest.compat import safe_str
from _pytest.outcomes import fail
from _pytest.outcomes import Skipped
from _pytest.pathlib import Path
from _pytest.warning_types import PytestConfigWarning

hookimpl = HookimplMarker("pytest")
hookspec = HookspecMarker("pytest")

class ConftestImportFailure(Exception):
 def __init__(self, path, excinfo):
 Exception.__init__(self, path, excinfo)
 self.path = path
 self.excinfo = excinfo

[docs]def main(args=None, plugins=None):
 """ return exit code, after performing an in-process test run.

 :arg args: list of command line arguments.

 :arg plugins: list of plugin objects to be auto-registered during
 initialization.
 """
 from _pytest.main import EXIT_USAGEERROR

 try:
 try:
 config = _prepareconfig(args, plugins)
 except ConftestImportFailure as e:
 exc_info = ExceptionInfo(e.excinfo)
 tw = py.io.TerminalWriter(sys.stderr)
 tw.line(
 "ImportError while loading conftest '{e.path}'.".format(e=e), red=True
)
 exc_info.traceback = exc_info.traceback.filter(filter_traceback)
 exc_repr = (
 exc_info.getrepr(style="short", chain=False)
 if exc_info.traceback
 else exc_info.exconly()
)
 formatted_tb = safe_str(exc_repr)
 for line in formatted_tb.splitlines():
 tw.line(line.rstrip(), red=True)
 return 4
 else:
 try:
 return config.hook.pytest_cmdline_main(config=config)
 finally:
 config._ensure_unconfigure()
 except UsageError as e:
 tw = py.io.TerminalWriter(sys.stderr)
 for msg in e.args:
 tw.line("ERROR: {}\n".format(msg), red=True)
 return EXIT_USAGEERROR

class cmdline(object): # compatibility namespace
 main = staticmethod(main)

def filename_arg(path, optname):
 """ Argparse type validator for filename arguments.

 :path: path of filename
 :optname: name of the option
 """
 if os.path.isdir(path):
 raise UsageError("{} must be a filename, given: {}".format(optname, path))
 return path

def directory_arg(path, optname):
 """Argparse type validator for directory arguments.

 :path: path of directory
 :optname: name of the option
 """
 if not os.path.isdir(path):
 raise UsageError("{} must be a directory, given: {}".format(optname, path))
 return path

Plugins that cannot be disabled via "-p no:X" currently.
essential_plugins = (
 "mark",
 "main",
 "runner",
 "fixtures",
 "helpconfig", # Provides -p.
)

default_plugins = essential_plugins + (
 "python",
 "terminal",
 "debugging",
 "unittest",
 "capture",
 "skipping",
 "tmpdir",
 "monkeypatch",
 "recwarn",
 "pastebin",
 "nose",
 "assertion",
 "junitxml",
 "resultlog",
 "doctest",
 "cacheprovider",
 "freeze_support",
 "setuponly",
 "setupplan",
 "stepwise",
 "warnings",
 "logging",
 "reports",
)

builtin_plugins = set(default_plugins)
builtin_plugins.add("pytester")

def get_config(args=None, plugins=None):
 # subsequent calls to main will create a fresh instance
 pluginmanager = PytestPluginManager()
 config = Config(
 pluginmanager,
 invocation_params=Config.InvocationParams(
 args=args, plugins=plugins, dir=Path().resolve()
),
)

 if args is not None:
 # Handle any "-p no:plugin" args.
 pluginmanager.consider_preparse(args)

 for spec in default_plugins:
 pluginmanager.import_plugin(spec)
 return config

def get_plugin_manager():
 """
 Obtain a new instance of the
 :py:class:`_pytest.config.PytestPluginManager`, with default plugins
 already loaded.

 This function can be used by integration with other tools, like hooking
 into pytest to run tests into an IDE.
 """
 return get_config().pluginmanager

def _prepareconfig(args=None, plugins=None):
 warning = None
 if args is None:
 args = sys.argv[1:]
 elif isinstance(args, py.path.local):
 args = [str(args)]
 elif not isinstance(args, (tuple, list)):
 msg = "`args` parameter expected to be a list or tuple of strings, got: {!r} (type: {})"
 raise TypeError(msg.format(args, type(args)))

 config = get_config(args, plugins)
 pluginmanager = config.pluginmanager
 try:
 if plugins:
 for plugin in plugins:
 if isinstance(plugin, six.string_types):
 pluginmanager.consider_pluginarg(plugin)
 else:
 pluginmanager.register(plugin)
 if warning:
 from _pytest.warnings import _issue_warning_captured

 _issue_warning_captured(warning, hook=config.hook, stacklevel=4)
 return pluginmanager.hook.pytest_cmdline_parse(
 pluginmanager=pluginmanager, args=args
)
 except BaseException:
 config._ensure_unconfigure()
 raise

[docs]class PytestPluginManager(PluginManager):
 """
 Overwrites :py:class:`pluggy.PluginManager <pluggy.PluginManager>` to add pytest-specific
 functionality:

 * loading plugins from the command line, ``PYTEST_PLUGINS`` env variable and
 ``pytest_plugins`` global variables found in plugins being loaded;
 * ``conftest.py`` loading during start-up;
 """

 def __init__(self):
 super(PytestPluginManager, self).__init__("pytest")
 self._conftest_plugins = set()

 # state related to local conftest plugins
 self._dirpath2confmods = {}
 self._conftestpath2mod = {}
 self._confcutdir = None
 self._noconftest = False
 self._duplicatepaths = set()

 self.add_hookspecs(_pytest.hookspec)
 self.register(self)
 if os.environ.get("PYTEST_DEBUG"):
 err = sys.stderr
 encoding = getattr(err, "encoding", "utf8")
 try:
 err = py.io.dupfile(err, encoding=encoding)
 except Exception:
 pass
 self.trace.root.setwriter(err.write)
 self.enable_tracing()

 # Config._consider_importhook will set a real object if required.
 self.rewrite_hook = _pytest.assertion.DummyRewriteHook()
 # Used to know when we are importing conftests after the pytest_configure stage
 self._configured = False

[docs] def addhooks(self, module_or_class):
 """
 .. deprecated:: 2.8

 Use :py:meth:`pluggy.PluginManager.add_hookspecs <PluginManager.add_hookspecs>`
 instead.
 """
 warnings.warn(deprecated.PLUGIN_MANAGER_ADDHOOKS, stacklevel=2)
 return self.add_hookspecs(module_or_class)

[docs] def parse_hookimpl_opts(self, plugin, name):
 # pytest hooks are always prefixed with pytest_
 # so we avoid accessing possibly non-readable attributes
 # (see issue #1073)
 if not name.startswith("pytest_"):
 return
 # ignore names which can not be hooks
 if name == "pytest_plugins":
 return

 method = getattr(plugin, name)
 opts = super(PytestPluginManager, self).parse_hookimpl_opts(plugin, name)

 # consider only actual functions for hooks (#3775)
 if not inspect.isroutine(method):
 return

 # collect unmarked hooks as long as they have the `pytest_' prefix
 if opts is None and name.startswith("pytest_"):
 opts = {}
 if opts is not None:
 # TODO: DeprecationWarning, people should use hookimpl
 # https://github.com/pytest-dev/pytest/issues/4562
 known_marks = {m.name for m in getattr(method, "pytestmark", [])}

 for name in ("tryfirst", "trylast", "optionalhook", "hookwrapper"):
 opts.setdefault(name, hasattr(method, name) or name in known_marks)
 return opts

[docs] def parse_hookspec_opts(self, module_or_class, name):
 opts = super(PytestPluginManager, self).parse_hookspec_opts(
 module_or_class, name
)
 if opts is None:
 method = getattr(module_or_class, name)

 if name.startswith("pytest_"):
 # todo: deprecate hookspec hacks
 # https://github.com/pytest-dev/pytest/issues/4562
 known_marks = {m.name for m in getattr(method, "pytestmark", [])}
 opts = {
 "firstresult": hasattr(method, "firstresult")
 or "firstresult" in known_marks,
 "historic": hasattr(method, "historic")
 or "historic" in known_marks,
 }
 return opts

[docs] def register(self, plugin, name=None):
 if name in ["pytest_catchlog", "pytest_capturelog"]:
 warnings.warn(
 PytestConfigWarning(
 "{} plugin has been merged into the core, "
 "please remove it from your requirements.".format(
 name.replace("_", "-")
)
)
)
 return
 ret = super(PytestPluginManager, self).register(plugin, name)
 if ret:
 self.hook.pytest_plugin_registered.call_historic(
 kwargs=dict(plugin=plugin, manager=self)
)

 if isinstance(plugin, types.ModuleType):
 self.consider_module(plugin)
 return ret

[docs] def getplugin(self, name):
 # support deprecated naming because plugins (xdist e.g.) use it
 return self.get_plugin(name)

[docs] def hasplugin(self, name):
 """Return True if the plugin with the given name is registered."""
 return bool(self.get_plugin(name))

[docs] def pytest_configure(self, config):
 # XXX now that the pluginmanager exposes hookimpl(tryfirst...)
 # we should remove tryfirst/trylast as markers
 config.addinivalue_line(
 "markers",
 "tryfirst: mark a hook implementation function such that the "
 "plugin machinery will try to call it first/as early as possible.",
)
 config.addinivalue_line(
 "markers",
 "trylast: mark a hook implementation function such that the "
 "plugin machinery will try to call it last/as late as possible.",
)
 self._configured = True

 #
 # internal API for local conftest plugin handling
 #
 def _set_initial_conftests(self, namespace):
 """ load initial conftest files given a preparsed "namespace".
 As conftest files may add their own command line options
 which have arguments ('--my-opt somepath') we might get some
 false positives. All builtin and 3rd party plugins will have
 been loaded, however, so common options will not confuse our logic
 here.
 """
 current = py.path.local()
 self._confcutdir = (
 current.join(namespace.confcutdir, abs=True)
 if namespace.confcutdir
 else None
)
 self._noconftest = namespace.noconftest
 self._using_pyargs = namespace.pyargs
 testpaths = namespace.file_or_dir
 foundanchor = False
 for path in testpaths:
 path = str(path)
 # remove node-id syntax
 i = path.find("::")
 if i != -1:
 path = path[:i]
 anchor = current.join(path, abs=1)
 if exists(anchor): # we found some file object
 self._try_load_conftest(anchor)
 foundanchor = True
 if not foundanchor:
 self._try_load_conftest(current)

 def _try_load_conftest(self, anchor):
 self._getconftestmodules(anchor)
 # let's also consider test* subdirs
 if anchor.check(dir=1):
 for x in anchor.listdir("test*"):
 if x.check(dir=1):
 self._getconftestmodules(x)

 @lru_cache(maxsize=128)
 def _getconftestmodules(self, path):
 if self._noconftest:
 return []

 if path.isfile():
 directory = path.dirpath()
 else:
 directory = path

 if six.PY2: # py2 is not using lru_cache.
 try:
 return self._dirpath2confmods[directory]
 except KeyError:
 pass

 # XXX these days we may rather want to use config.rootdir
 # and allow users to opt into looking into the rootdir parent
 # directories instead of requiring to specify confcutdir
 clist = []
 for parent in directory.realpath().parts():
 if self._confcutdir and self._confcutdir.relto(parent):
 continue
 conftestpath = parent.join("conftest.py")
 if conftestpath.isfile():
 # Use realpath to avoid loading the same conftest twice
 # with build systems that create build directories containing
 # symlinks to actual files.
 mod = self._importconftest(conftestpath.realpath())
 clist.append(mod)
 self._dirpath2confmods[directory] = clist
 return clist

 def _rget_with_confmod(self, name, path):
 modules = self._getconftestmodules(path)
 for mod in reversed(modules):
 try:
 return mod, getattr(mod, name)
 except AttributeError:
 continue
 raise KeyError(name)

 def _importconftest(self, conftestpath):
 try:
 return self._conftestpath2mod[conftestpath]
 except KeyError:
 pkgpath = conftestpath.pypkgpath()
 if pkgpath is None:
 _ensure_removed_sysmodule(conftestpath.purebasename)
 try:
 mod = conftestpath.pyimport()
 if (
 hasattr(mod, "pytest_plugins")
 and self._configured
 and not self._using_pyargs
):
 from _pytest.deprecated import (
 PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST,
)

 fail(
 PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST.format(
 conftestpath, self._confcutdir
),
 pytrace=False,
)
 except Exception:
 raise ConftestImportFailure(conftestpath, sys.exc_info())

 self._conftest_plugins.add(mod)
 self._conftestpath2mod[conftestpath] = mod
 dirpath = conftestpath.dirpath()
 if dirpath in self._dirpath2confmods:
 for path, mods in self._dirpath2confmods.items():
 if path and path.relto(dirpath) or path == dirpath:
 assert mod not in mods
 mods.append(mod)
 self.trace("loaded conftestmodule %r" % (mod))
 self.consider_conftest(mod)
 return mod

 #
 # API for bootstrapping plugin loading
 #
 #

[docs] def consider_preparse(self, args):
 i = 0
 n = len(args)
 while i < n:
 opt = args[i]
 i += 1
 if isinstance(opt, six.string_types):
 if opt == "-p":
 try:
 parg = args[i]
 except IndexError:
 return
 i += 1
 elif opt.startswith("-p"):
 parg = opt[2:]
 else:
 continue
 self.consider_pluginarg(parg)

[docs] def consider_pluginarg(self, arg):
 if arg.startswith("no:"):
 name = arg[3:]
 if name in essential_plugins:
 raise UsageError("plugin %s cannot be disabled" % name)

 # PR #4304 : remove stepwise if cacheprovider is blocked
 if name == "cacheprovider":
 self.set_blocked("stepwise")
 self.set_blocked("pytest_stepwise")

 self.set_blocked(name)
 if not name.startswith("pytest_"):
 self.set_blocked("pytest_" + name)
 else:
 name = arg
 # Unblock the plugin. None indicates that it has been blocked.
 # There is no interface with pluggy for this.
 if self._name2plugin.get(name, -1) is None:
 del self._name2plugin[name]
 if not name.startswith("pytest_"):
 if self._name2plugin.get("pytest_" + name, -1) is None:
 del self._name2plugin["pytest_" + name]
 self.import_plugin(arg, consider_entry_points=True)

[docs] def consider_conftest(self, conftestmodule):
 self.register(conftestmodule, name=conftestmodule.__file__)

[docs] def consider_env(self):
 self._import_plugin_specs(os.environ.get("PYTEST_PLUGINS"))

[docs] def consider_module(self, mod):
 self._import_plugin_specs(getattr(mod, "pytest_plugins", []))

 def _import_plugin_specs(self, spec):
 plugins = _get_plugin_specs_as_list(spec)
 for import_spec in plugins:
 self.import_plugin(import_spec)

[docs] def import_plugin(self, modname, consider_entry_points=False):
 """
 Imports a plugin with ``modname``. If ``consider_entry_points`` is True, entry point
 names are also considered to find a plugin.
 """
 # most often modname refers to builtin modules, e.g. "pytester",
 # "terminal" or "capture". Those plugins are registered under their
 # basename for historic purposes but must be imported with the
 # _pytest prefix.
 assert isinstance(modname, six.string_types), (
 "module name as text required, got %r" % modname
)
 modname = str(modname)
 if self.is_blocked(modname) or self.get_plugin(modname) is not None:
 return

 importspec = "_pytest." + modname if modname in builtin_plugins else modname
 self.rewrite_hook.mark_rewrite(importspec)

 if consider_entry_points:
 loaded = self.load_setuptools_entrypoints("pytest11", name=modname)
 if loaded:
 return

 try:
 __import__(importspec)
 except ImportError as e:
 new_exc_message = 'Error importing plugin "%s": %s' % (
 modname,
 safe_str(e.args[0]),
)
 new_exc = ImportError(new_exc_message)
 tb = sys.exc_info()[2]

 six.reraise(ImportError, new_exc, tb)

 except Skipped as e:
 from _pytest.warnings import _issue_warning_captured

 _issue_warning_captured(
 PytestConfigWarning("skipped plugin %r: %s" % (modname, e.msg)),
 self.hook,
 stacklevel=1,
)
 else:
 mod = sys.modules[importspec]
 self.register(mod, modname)

def _get_plugin_specs_as_list(specs):
 """
 Parses a list of "plugin specs" and returns a list of plugin names.

 Plugin specs can be given as a list of strings separated by "," or already as a list/tuple in
 which case it is returned as a list. Specs can also be `None` in which case an
 empty list is returned.
 """
 if specs is not None and not isinstance(specs, types.ModuleType):
 if isinstance(specs, six.string_types):
 specs = specs.split(",") if specs else []
 if not isinstance(specs, (list, tuple)):
 raise UsageError(
 "Plugin specs must be a ','-separated string or a "
 "list/tuple of strings for plugin names. Given: %r" % specs
)
 return list(specs)
 return []

def _ensure_removed_sysmodule(modname):
 try:
 del sys.modules[modname]
 except KeyError:
 pass

class Notset(object):
 def __repr__(self):
 return "<NOTSET>"

notset = Notset()

def _iter_rewritable_modules(package_files):
 """
 Given an iterable of file names in a source distribution, return the "names" that should
 be marked for assertion rewrite (for example the package "pytest_mock/__init__.py" should
 be added as "pytest_mock" in the assertion rewrite mechanism.

 This function has to deal with dist-info based distributions and egg based distributions
 (which are still very much in use for "editable" installs).

 Here are the file names as seen in a dist-info based distribution:

 pytest_mock/__init__.py
 pytest_mock/_version.py
 pytest_mock/plugin.py
 pytest_mock.egg-info/PKG-INFO

 Here are the file names as seen in an egg based distribution:

 src/pytest_mock/__init__.py
 src/pytest_mock/_version.py
 src/pytest_mock/plugin.py
 src/pytest_mock.egg-info/PKG-INFO
 LICENSE
 setup.py

 We have to take in account those two distribution flavors in order to determine which
 names should be considered for assertion rewriting.

 More information:
 https://github.com/pytest-dev/pytest-mock/issues/167
 """
 package_files = list(package_files)
 seen_some = False
 for fn in package_files:
 is_simple_module = "/" not in fn and fn.endswith(".py")
 is_package = fn.count("/") == 1 and fn.endswith("__init__.py")
 if is_simple_module:
 module_name, _ = os.path.splitext(fn)
 # we ignore "setup.py" at the root of the distribution
 if module_name != "setup":
 seen_some = True
 yield module_name
 elif is_package:
 package_name = os.path.dirname(fn)
 seen_some = True
 yield package_name

 if not seen_some:
 # at this point we did not find any packages or modules suitable for assertion
 # rewriting, so we try again by stripping the first path component (to account for
 # "src" based source trees for example)
 # this approach lets us have the common case continue to be fast, as egg-distributions
 # are rarer
 new_package_files = []
 for fn in package_files:
 parts = fn.split("/")
 new_fn = "/".join(parts[1:])
 if new_fn:
 new_package_files.append(new_fn)
 if new_package_files:
 for _module in _iter_rewritable_modules(new_package_files):
 yield _module

[docs]class Config(object):
 """
 Access to configuration values, pluginmanager and plugin hooks.

 :ivar PytestPluginManager pluginmanager: the plugin manager handles plugin registration and hook invocation.

 :ivar argparse.Namespace option: access to command line option as attributes.

 :ivar InvocationParams invocation_params:

 Object containing the parameters regarding the ``pytest.main``
 invocation.
 Contains the followinig read-only attributes:
 * ``args``: list of command-line arguments as passed to ``pytest.main()``.
 * ``plugins``: list of extra plugins, might be None
 * ``dir``: directory where ``pytest.main()`` was invoked from.
 """

[docs] @attr.s(frozen=True)
 class InvocationParams(object):
 """Holds parameters passed during ``pytest.main()``

 .. note::

 Currently the environment variable PYTEST_ADDOPTS is also handled by
 pytest implicitly, not being part of the invocation.

 Plugins accessing ``InvocationParams`` must be aware of that.
 """

 args = attr.ib()
 plugins = attr.ib()
 dir = attr.ib()

 def __init__(self, pluginmanager, invocation_params=None, *args):
 from .argparsing import Parser, FILE_OR_DIR

 if invocation_params is None:
 invocation_params = self.InvocationParams(
 args=(), plugins=None, dir=Path().resolve()
)

 #: access to command line option as attributes.
 #: (deprecated), use :py:func:`getoption() <_pytest.config.Config.getoption>` instead
 self.option = argparse.Namespace()

 self.invocation_params = invocation_params

 _a = FILE_OR_DIR
 self._parser = Parser(
 usage="%%(prog)s [options] [%s] [%s] [...]" % (_a, _a),
 processopt=self._processopt,
)
 #: a pluginmanager instance
 self.pluginmanager = pluginmanager
 self.trace = self.pluginmanager.trace.root.get("config")
 self.hook = self.pluginmanager.hook
 self._inicache = {}
 self._override_ini = ()
 self._opt2dest = {}
 self._cleanup = []
 self.pluginmanager.register(self, "pytestconfig")
 self._configured = False
 self.hook.pytest_addoption.call_historic(kwargs=dict(parser=self._parser))

 @property
 def invocation_dir(self):
 """Backward compatibility"""
 return py.path.local(str(self.invocation_params.dir))

[docs] def add_cleanup(self, func):
 """ Add a function to be called when the config object gets out of
 use (usually coninciding with pytest_unconfigure)."""
 self._cleanup.append(func)

 def _do_configure(self):
 assert not self._configured
 self._configured = True
 self.hook.pytest_configure.call_historic(kwargs=dict(config=self))

 def _ensure_unconfigure(self):
 if self._configured:
 self._configured = False
 self.hook.pytest_unconfigure(config=self)
 self.hook.pytest_configure._call_history = []
 while self._cleanup:
 fin = self._cleanup.pop()
 fin()

 def get_terminal_writer(self):
 return self.pluginmanager.get_plugin("terminalreporter")._tw

 def pytest_cmdline_parse(self, pluginmanager, args):
 try:
 self.parse(args)
 except UsageError:

 # Handle --version and --help here in a minimal fashion.
 # This gets done via helpconfig normally, but its
 # pytest_cmdline_main is not called in case of errors.
 if getattr(self.option, "version", False) or "--version" in args:
 from _pytest.helpconfig import showversion

 showversion(self)
 elif (
 getattr(self.option, "help", False) or "--help" in args or "-h" in args
):
 self._parser._getparser().print_help()
 sys.stdout.write(
 "\nNOTE: displaying only minimal help due to UsageError.\n\n"
)

 raise

 return self

 def notify_exception(self, excinfo, option=None):
 if option and getattr(option, "fulltrace", False):
 style = "long"
 else:
 style = "native"
 excrepr = excinfo.getrepr(
 funcargs=True, showlocals=getattr(option, "showlocals", False), style=style
)
 res = self.hook.pytest_internalerror(excrepr=excrepr, excinfo=excinfo)
 if not any(res):
 for line in str(excrepr).split("\n"):
 sys.stderr.write("INTERNALERROR> %s\n" % line)
 sys.stderr.flush()

 def cwd_relative_nodeid(self, nodeid):
 # nodeid's are relative to the rootpath, compute relative to cwd
 if self.invocation_dir != self.rootdir:
 fullpath = self.rootdir.join(nodeid)
 nodeid = self.invocation_dir.bestrelpath(fullpath)
 return nodeid

[docs] @classmethod
 def fromdictargs(cls, option_dict, args):
 """ constructor useable for subprocesses. """
 config = get_config(args)
 config.option.__dict__.update(option_dict)
 config.parse(args, addopts=False)
 for x in config.option.plugins:
 config.pluginmanager.consider_pluginarg(x)
 return config

 def _processopt(self, opt):
 for name in opt._short_opts + opt._long_opts:
 self._opt2dest[name] = opt.dest

 if hasattr(opt, "default") and opt.dest:
 if not hasattr(self.option, opt.dest):
 setattr(self.option, opt.dest, opt.default)

 @hookimpl(trylast=True)
 def pytest_load_initial_conftests(self, early_config):
 self.pluginmanager._set_initial_conftests(early_config.known_args_namespace)

 def _initini(self, args):
 ns, unknown_args = self._parser.parse_known_and_unknown_args(
 args, namespace=copy.copy(self.option)
)
 r = determine_setup(
 ns.inifilename,
 ns.file_or_dir + unknown_args,
 rootdir_cmd_arg=ns.rootdir or None,
 config=self,
)
 self.rootdir, self.inifile, self.inicfg = r
 self._parser.extra_info["rootdir"] = self.rootdir
 self._parser.extra_info["inifile"] = self.inifile
 self._parser.addini("addopts", "extra command line options", "args")
 self._parser.addini("minversion", "minimally required pytest version")
 self._override_ini = ns.override_ini or ()

 def _consider_importhook(self, args):
 """Install the PEP 302 import hook if using assertion rewriting.

 Needs to parse the --assert=<mode> option from the commandline
 and find all the installed plugins to mark them for rewriting
 by the importhook.
 """
 ns, unknown_args = self._parser.parse_known_and_unknown_args(args)
 mode = getattr(ns, "assertmode", "plain")
 if mode == "rewrite":
 try:
 hook = _pytest.assertion.install_importhook(self)
 except SystemError:
 mode = "plain"
 else:
 self._mark_plugins_for_rewrite(hook)
 _warn_about_missing_assertion(mode)

 def _mark_plugins_for_rewrite(self, hook):
 """
 Given an importhook, mark for rewrite any top-level
 modules or packages in the distribution package for
 all pytest plugins.
 """
 self.pluginmanager.rewrite_hook = hook

 if os.environ.get("PYTEST_DISABLE_PLUGIN_AUTOLOAD"):
 # We don't autoload from setuptools entry points, no need to continue.
 return

 package_files = (
 str(file)
 for dist in importlib_metadata.distributions()
 if any(ep.group == "pytest11" for ep in dist.entry_points)
 for file in dist.files or []
)

 for name in _iter_rewritable_modules(package_files):
 hook.mark_rewrite(name)

 def _validate_args(self, args, via):
 """Validate known args."""
 self._parser._config_source_hint = via
 try:
 self._parser.parse_known_and_unknown_args(
 args, namespace=copy.copy(self.option)
)
 finally:
 del self._parser._config_source_hint

 return args

 def _preparse(self, args, addopts=True):
 if addopts:
 env_addopts = os.environ.get("PYTEST_ADDOPTS", "")
 if len(env_addopts):
 args[:] = (
 self._validate_args(shlex.split(env_addopts), "via PYTEST_ADDOPTS")
 + args
)
 self._initini(args)
 if addopts:
 args[:] = (
 self._validate_args(self.getini("addopts"), "via addopts config") + args
)

 self._checkversion()
 self._consider_importhook(args)
 self.pluginmanager.consider_preparse(args)
 if not os.environ.get("PYTEST_DISABLE_PLUGIN_AUTOLOAD"):
 # Don't autoload from setuptools entry point. Only explicitly specified
 # plugins are going to be loaded.
 self.pluginmanager.load_setuptools_entrypoints("pytest11")
 self.pluginmanager.consider_env()
 self.known_args_namespace = ns = self._parser.parse_known_args(
 args, namespace=copy.copy(self.option)
)
 if self.known_args_namespace.confcutdir is None and self.inifile:
 confcutdir = py.path.local(self.inifile).dirname
 self.known_args_namespace.confcutdir = confcutdir
 try:
 self.hook.pytest_load_initial_conftests(
 early_config=self, args=args, parser=self._parser
)
 except ConftestImportFailure:
 e = sys.exc_info()[1]
 if ns.help or ns.version:
 # we don't want to prevent --help/--version to work
 # so just let is pass and print a warning at the end
 from _pytest.warnings import _issue_warning_captured

 _issue_warning_captured(
 PytestConfigWarning(
 "could not load initial conftests: {}".format(e.path)
),
 self.hook,
 stacklevel=2,
)
 else:
 raise

 def _checkversion(self):
 import pytest

 minver = self.inicfg.get("minversion", None)
 if minver:
 if Version(minver) > Version(pytest.__version__):
 raise pytest.UsageError(
 "%s:%d: requires pytest-%s, actual pytest-%s'"
 % (
 self.inicfg.config.path,
 self.inicfg.lineof("minversion"),
 minver,
 pytest.__version__,
)
)

 def parse(self, args, addopts=True):
 # parse given cmdline arguments into this config object.
 assert not hasattr(
 self, "args"
), "can only parse cmdline args at most once per Config object"
 self._origargs = args
 self.hook.pytest_addhooks.call_historic(
 kwargs=dict(pluginmanager=self.pluginmanager)
)
 self._preparse(args, addopts=addopts)
 # XXX deprecated hook:
 self.hook.pytest_cmdline_preparse(config=self, args=args)
 self._parser.after_preparse = True
 try:
 args = self._parser.parse_setoption(
 args, self.option, namespace=self.option
)
 if not args:
 if self.invocation_dir == self.rootdir:
 args = self.getini("testpaths")
 if not args:
 args = [str(self.invocation_dir)]
 self.args = args
 except PrintHelp:
 pass

[docs] def addinivalue_line(self, name, line):
 """ add a line to an ini-file option. The option must have been
 declared but might not yet be set in which case the line becomes the
 the first line in its value. """
 x = self.getini(name)
 assert isinstance(x, list)
 x.append(line) # modifies the cached list inline

[docs] def getini(self, name):
 """ return configuration value from an :ref:`ini file <inifiles>`. If the
 specified name hasn't been registered through a prior
 :py:func:`parser.addini <_pytest.config.Parser.addini>`
 call (usually from a plugin), a ValueError is raised. """
 try:
 return self._inicache[name]
 except KeyError:
 self._inicache[name] = val = self._getini(name)
 return val

 def _getini(self, name):
 try:
 description, type, default = self._parser._inidict[name]
 except KeyError:
 raise ValueError("unknown configuration value: %r" % (name,))
 value = self._get_override_ini_value(name)
 if value is None:
 try:
 value = self.inicfg[name]
 except KeyError:
 if default is not None:
 return default
 if type is None:
 return ""
 return []
 if type == "pathlist":
 dp = py.path.local(self.inicfg.config.path).dirpath()
 values = []
 for relpath in shlex.split(value):
 values.append(dp.join(relpath, abs=True))
 return values
 elif type == "args":
 return shlex.split(value)
 elif type == "linelist":
 return [t for t in map(lambda x: x.strip(), value.split("\n")) if t]
 elif type == "bool":
 return bool(_strtobool(value.strip()))
 else:
 assert type is None
 return value

 def _getconftest_pathlist(self, name, path):
 try:
 mod, relroots = self.pluginmanager._rget_with_confmod(name, path)
 except KeyError:
 return None
 modpath = py.path.local(mod.__file__).dirpath()
 values = []
 for relroot in relroots:
 if not isinstance(relroot, py.path.local):
 relroot = relroot.replace("/", py.path.local.sep)
 relroot = modpath.join(relroot, abs=True)
 values.append(relroot)
 return values

 def _get_override_ini_value(self, name):
 value = None
 # override_ini is a list of "ini=value" options
 # always use the last item if multiple values are set for same ini-name,
 # e.g. -o foo=bar1 -o foo=bar2 will set foo to bar2
 for ini_config in self._override_ini:
 try:
 key, user_ini_value = ini_config.split("=", 1)
 except ValueError:
 raise UsageError("-o/--override-ini expects option=value style.")
 else:
 if key == name:
 value = user_ini_value
 return value

[docs] def getoption(self, name, default=notset, skip=False):
 """ return command line option value.

 :arg name: name of the option. You may also specify
 the literal ``--OPT`` option instead of the "dest" option name.
 :arg default: default value if no option of that name exists.
 :arg skip: if True raise pytest.skip if option does not exists
 or has a None value.
 """
 name = self._opt2dest.get(name, name)
 try:
 val = getattr(self.option, name)
 if val is None and skip:
 raise AttributeError(name)
 return val
 except AttributeError:
 if default is not notset:
 return default
 if skip:
 import pytest

 pytest.skip("no %r option found" % (name,))
 raise ValueError("no option named %r" % (name,))

[docs] def getvalue(self, name, path=None):
 """ (deprecated, use getoption()) """
 return self.getoption(name)

[docs] def getvalueorskip(self, name, path=None):
 """ (deprecated, use getoption(skip=True)) """
 return self.getoption(name, skip=True)

def _assertion_supported():
 try:
 assert False
 except AssertionError:
 return True
 else:
 return False

def _warn_about_missing_assertion(mode):
 if not _assertion_supported():
 if mode == "plain":
 sys.stderr.write(
 "WARNING: ASSERTIONS ARE NOT EXECUTED"
 " and FAILING TESTS WILL PASS. Are you"
 " using python -O?"
)
 else:
 sys.stderr.write(
 "WARNING: assertions not in test modules or"
 " plugins will be ignored"
 " because assert statements are not executed "
 "by the underlying Python interpreter "
 "(are you using python -O?)\n"
)

def setns(obj, dic):
 import pytest

 for name, value in dic.items():
 if isinstance(value, dict):
 mod = getattr(obj, name, None)
 if mod is None:
 modname = "pytest.%s" % name
 mod = types.ModuleType(modname)
 sys.modules[modname] = mod
 mod.__all__ = []
 setattr(obj, name, mod)
 obj.__all__.append(name)
 setns(mod, value)
 else:
 setattr(obj, name, value)
 obj.__all__.append(name)
 # if obj != pytest:
 # pytest.__all__.append(name)
 setattr(pytest, name, value)

def create_terminal_writer(config, *args, **kwargs):
 """Create a TerminalWriter instance configured according to the options
 in the config object. Every code which requires a TerminalWriter object
 and has access to a config object should use this function.
 """
 tw = py.io.TerminalWriter(*args, **kwargs)
 if config.option.color == "yes":
 tw.hasmarkup = True
 if config.option.color == "no":
 tw.hasmarkup = False
 return tw

def _strtobool(val):
 """Convert a string representation of truth to true (1) or false (0).

 True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values
 are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if
 'val' is anything else.

 .. note:: copied from distutils.util
 """
 val = val.lower()
 if val in ("y", "yes", "t", "true", "on", "1"):
 return 1
 elif val in ("n", "no", "f", "false", "off", "0"):
 return 0
 else:
 raise ValueError("invalid truth value %r" % (val,))

 Source code for _pytest.doctest

-*- coding: utf-8 -*-
""" discover and run doctests in modules and test files."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import platform
import sys
import traceback
import warnings
from contextlib import contextmanager

import pytest
from _pytest._code.code import ExceptionInfo
from _pytest._code.code import ReprFileLocation
from _pytest._code.code import TerminalRepr
from _pytest.compat import safe_getattr
from _pytest.fixtures import FixtureRequest
from _pytest.outcomes import Skipped
from _pytest.warning_types import PytestWarning

DOCTEST_REPORT_CHOICE_NONE = "none"
DOCTEST_REPORT_CHOICE_CDIFF = "cdiff"
DOCTEST_REPORT_CHOICE_NDIFF = "ndiff"
DOCTEST_REPORT_CHOICE_UDIFF = "udiff"
DOCTEST_REPORT_CHOICE_ONLY_FIRST_FAILURE = "only_first_failure"

DOCTEST_REPORT_CHOICES = (
 DOCTEST_REPORT_CHOICE_NONE,
 DOCTEST_REPORT_CHOICE_CDIFF,
 DOCTEST_REPORT_CHOICE_NDIFF,
 DOCTEST_REPORT_CHOICE_UDIFF,
 DOCTEST_REPORT_CHOICE_ONLY_FIRST_FAILURE,
)

Lazy definition of runner class
RUNNER_CLASS = None

def pytest_addoption(parser):
 parser.addini(
 "doctest_optionflags",
 "option flags for doctests",
 type="args",
 default=["ELLIPSIS"],
)
 parser.addini(
 "doctest_encoding", "encoding used for doctest files", default="utf-8"
)
 group = parser.getgroup("collect")
 group.addoption(
 "--doctest-modules",
 action="store_true",
 default=False,
 help="run doctests in all .py modules",
 dest="doctestmodules",
)
 group.addoption(
 "--doctest-report",
 type=str.lower,
 default="udiff",
 help="choose another output format for diffs on doctest failure",
 choices=DOCTEST_REPORT_CHOICES,
 dest="doctestreport",
)
 group.addoption(
 "--doctest-glob",
 action="append",
 default=[],
 metavar="pat",
 help="doctests file matching pattern, default: test*.txt",
 dest="doctestglob",
)
 group.addoption(
 "--doctest-ignore-import-errors",
 action="store_true",
 default=False,
 help="ignore doctest ImportErrors",
 dest="doctest_ignore_import_errors",
)
 group.addoption(
 "--doctest-continue-on-failure",
 action="store_true",
 default=False,
 help="for a given doctest, continue to run after the first failure",
 dest="doctest_continue_on_failure",
)

def pytest_collect_file(path, parent):
 config = parent.config
 if path.ext == ".py":
 if config.option.doctestmodules and not _is_setup_py(config, path, parent):
 return DoctestModule(path, parent)
 elif _is_doctest(config, path, parent):
 return DoctestTextfile(path, parent)

def _is_setup_py(config, path, parent):
 if path.basename != "setup.py":
 return False
 contents = path.read()
 return "setuptools" in contents or "distutils" in contents

def _is_doctest(config, path, parent):
 if path.ext in (".txt", ".rst") and parent.session.isinitpath(path):
 return True
 globs = config.getoption("doctestglob") or ["test*.txt"]
 for glob in globs:
 if path.check(fnmatch=glob):
 return True
 return False

class ReprFailDoctest(TerminalRepr):
 def __init__(self, reprlocation_lines):
 # List of (reprlocation, lines) tuples
 self.reprlocation_lines = reprlocation_lines

 def toterminal(self, tw):
 for reprlocation, lines in self.reprlocation_lines:
 for line in lines:
 tw.line(line)
 reprlocation.toterminal(tw)

class MultipleDoctestFailures(Exception):
 def __init__(self, failures):
 super(MultipleDoctestFailures, self).__init__()
 self.failures = failures

def _init_runner_class():
 import doctest

 class PytestDoctestRunner(doctest.DebugRunner):
 """
 Runner to collect failures. Note that the out variable in this case is
 a list instead of a stdout-like object
 """

 def __init__(
 self, checker=None, verbose=None, optionflags=0, continue_on_failure=True
):
 doctest.DebugRunner.__init__(
 self, checker=checker, verbose=verbose, optionflags=optionflags
)
 self.continue_on_failure = continue_on_failure

 def report_failure(self, out, test, example, got):
 failure = doctest.DocTestFailure(test, example, got)
 if self.continue_on_failure:
 out.append(failure)
 else:
 raise failure

 def report_unexpected_exception(self, out, test, example, exc_info):
 if isinstance(exc_info[1], Skipped):
 raise exc_info[1]
 failure = doctest.UnexpectedException(test, example, exc_info)
 if self.continue_on_failure:
 out.append(failure)
 else:
 raise failure

 return PytestDoctestRunner

def _get_runner(checker=None, verbose=None, optionflags=0, continue_on_failure=True):
 # We need this in order to do a lazy import on doctest
 global RUNNER_CLASS
 if RUNNER_CLASS is None:
 RUNNER_CLASS = _init_runner_class()
 return RUNNER_CLASS(
 checker=checker,
 verbose=verbose,
 optionflags=optionflags,
 continue_on_failure=continue_on_failure,
)

class DoctestItem(pytest.Item):
 def __init__(self, name, parent, runner=None, dtest=None):
 super(DoctestItem, self).__init__(name, parent)
 self.runner = runner
 self.dtest = dtest
 self.obj = None
 self.fixture_request = None

 def setup(self):
 if self.dtest is not None:
 self.fixture_request = _setup_fixtures(self)
 globs = dict(getfixture=self.fixture_request.getfixturevalue)
 for name, value in self.fixture_request.getfixturevalue(
 "doctest_namespace"
).items():
 globs[name] = value
 self.dtest.globs.update(globs)

 def runtest(self):
 _check_all_skipped(self.dtest)
 self._disable_output_capturing_for_darwin()
 failures = []
 self.runner.run(self.dtest, out=failures)
 if failures:
 raise MultipleDoctestFailures(failures)

 def _disable_output_capturing_for_darwin(self):
 """
 Disable output capturing. Otherwise, stdout is lost to doctest (#985)
 """
 if platform.system() != "Darwin":
 return
 capman = self.config.pluginmanager.getplugin("capturemanager")
 if capman:
 capman.suspend_global_capture(in_=True)
 out, err = capman.read_global_capture()
 sys.stdout.write(out)
 sys.stderr.write(err)

 def repr_failure(self, excinfo):
 import doctest

 failures = None
 if excinfo.errisinstance((doctest.DocTestFailure, doctest.UnexpectedException)):
 failures = [excinfo.value]
 elif excinfo.errisinstance(MultipleDoctestFailures):
 failures = excinfo.value.failures

 if failures is not None:
 reprlocation_lines = []
 for failure in failures:
 example = failure.example
 test = failure.test
 filename = test.filename
 if test.lineno is None:
 lineno = None
 else:
 lineno = test.lineno + example.lineno + 1
 message = type(failure).__name__
 reprlocation = ReprFileLocation(filename, lineno, message)
 checker = _get_checker()
 report_choice = _get_report_choice(
 self.config.getoption("doctestreport")
)
 if lineno is not None:
 lines = failure.test.docstring.splitlines(False)
 # add line numbers to the left of the error message
 lines = [
 "%03d %s" % (i + test.lineno + 1, x)
 for (i, x) in enumerate(lines)
]
 # trim docstring error lines to 10
 lines = lines[max(example.lineno - 9, 0) : example.lineno + 1]
 else:
 lines = [
 "EXAMPLE LOCATION UNKNOWN, not showing all tests of that example"
]
 indent = ">>>"
 for line in example.source.splitlines():
 lines.append("??? %s %s" % (indent, line))
 indent = "..."
 if isinstance(failure, doctest.DocTestFailure):
 lines += checker.output_difference(
 example, failure.got, report_choice
).split("\n")
 else:
 inner_excinfo = ExceptionInfo(failure.exc_info)
 lines += ["UNEXPECTED EXCEPTION: %s" % repr(inner_excinfo.value)]
 lines += traceback.format_exception(*failure.exc_info)
 reprlocation_lines.append((reprlocation, lines))
 return ReprFailDoctest(reprlocation_lines)
 else:
 return super(DoctestItem, self).repr_failure(excinfo)

 def reportinfo(self):
 return self.fspath, self.dtest.lineno, "[doctest] %s" % self.name

def _get_flag_lookup():
 import doctest

 return dict(
 DONT_ACCEPT_TRUE_FOR_1=doctest.DONT_ACCEPT_TRUE_FOR_1,
 DONT_ACCEPT_BLANKLINE=doctest.DONT_ACCEPT_BLANKLINE,
 NORMALIZE_WHITESPACE=doctest.NORMALIZE_WHITESPACE,
 ELLIPSIS=doctest.ELLIPSIS,
 IGNORE_EXCEPTION_DETAIL=doctest.IGNORE_EXCEPTION_DETAIL,
 COMPARISON_FLAGS=doctest.COMPARISON_FLAGS,
 ALLOW_UNICODE=_get_allow_unicode_flag(),
 ALLOW_BYTES=_get_allow_bytes_flag(),
)

def get_optionflags(parent):
 optionflags_str = parent.config.getini("doctest_optionflags")
 flag_lookup_table = _get_flag_lookup()
 flag_acc = 0
 for flag in optionflags_str:
 flag_acc |= flag_lookup_table[flag]
 return flag_acc

def _get_continue_on_failure(config):
 continue_on_failure = config.getvalue("doctest_continue_on_failure")
 if continue_on_failure:
 # We need to turn off this if we use pdb since we should stop at
 # the first failure
 if config.getvalue("usepdb"):
 continue_on_failure = False
 return continue_on_failure

class DoctestTextfile(pytest.Module):
 obj = None

 def collect(self):
 import doctest

 # inspired by doctest.testfile; ideally we would use it directly,
 # but it doesn't support passing a custom checker
 encoding = self.config.getini("doctest_encoding")
 text = self.fspath.read_text(encoding)
 filename = str(self.fspath)
 name = self.fspath.basename
 globs = {"__name__": "__main__"}

 optionflags = get_optionflags(self)

 runner = _get_runner(
 verbose=0,
 optionflags=optionflags,
 checker=_get_checker(),
 continue_on_failure=_get_continue_on_failure(self.config),
)
 _fix_spoof_python2(runner, encoding)

 parser = doctest.DocTestParser()
 test = parser.get_doctest(text, globs, name, filename, 0)
 if test.examples:
 yield DoctestItem(test.name, self, runner, test)

def _check_all_skipped(test):
 """raises pytest.skip() if all examples in the given DocTest have the SKIP
 option set.
 """
 import doctest

 all_skipped = all(x.options.get(doctest.SKIP, False) for x in test.examples)
 if all_skipped:
 pytest.skip("all tests skipped by +SKIP option")

def _is_mocked(obj):
 """
 returns if a object is possibly a mock object by checking the existence of a highly improbable attribute
 """
 return (
 safe_getattr(obj, "pytest_mock_example_attribute_that_shouldnt_exist", None)
 is not None
)

@contextmanager
def _patch_unwrap_mock_aware():
 """
 contextmanager which replaces ``inspect.unwrap`` with a version
 that's aware of mock objects and doesn't recurse on them
 """
 real_unwrap = getattr(inspect, "unwrap", None)
 if real_unwrap is None:
 yield
 else:

 def _mock_aware_unwrap(obj, stop=None):
 try:
 if stop is None or stop is _is_mocked:
 return real_unwrap(obj, stop=_is_mocked)
 return real_unwrap(obj, stop=lambda obj: _is_mocked(obj) or stop(obj))
 except Exception as e:
 warnings.warn(
 "Got %r when unwrapping %r. This is usually caused "
 "by a violation of Python's object protocol; see e.g. "
 "https://github.com/pytest-dev/pytest/issues/5080" % (e, obj),
 PytestWarning,
)
 raise

 inspect.unwrap = _mock_aware_unwrap
 try:
 yield
 finally:
 inspect.unwrap = real_unwrap

class DoctestModule(pytest.Module):
 def collect(self):
 import doctest

 class MockAwareDocTestFinder(doctest.DocTestFinder):
 """
 a hackish doctest finder that overrides stdlib internals to fix a stdlib bug

 https://github.com/pytest-dev/pytest/issues/3456
 https://bugs.python.org/issue25532
 """

 def _find(self, tests, obj, name, module, source_lines, globs, seen):
 if _is_mocked(obj):
 return
 with _patch_unwrap_mock_aware():

 doctest.DocTestFinder._find(
 self, tests, obj, name, module, source_lines, globs, seen
)

 if self.fspath.basename == "conftest.py":
 module = self.config.pluginmanager._importconftest(self.fspath)
 else:
 try:
 module = self.fspath.pyimport()
 except ImportError:
 if self.config.getvalue("doctest_ignore_import_errors"):
 pytest.skip("unable to import module %r" % self.fspath)
 else:
 raise
 # uses internal doctest module parsing mechanism
 finder = MockAwareDocTestFinder()
 optionflags = get_optionflags(self)
 runner = _get_runner(
 verbose=0,
 optionflags=optionflags,
 checker=_get_checker(),
 continue_on_failure=_get_continue_on_failure(self.config),
)

 for test in finder.find(module, module.__name__):
 if test.examples: # skip empty doctests
 yield DoctestItem(test.name, self, runner, test)

def _setup_fixtures(doctest_item):
 """
 Used by DoctestTextfile and DoctestItem to setup fixture information.
 """

 def func():
 pass

 doctest_item.funcargs = {}
 fm = doctest_item.session._fixturemanager
 doctest_item._fixtureinfo = fm.getfixtureinfo(
 node=doctest_item, func=func, cls=None, funcargs=False
)
 fixture_request = FixtureRequest(doctest_item)
 fixture_request._fillfixtures()
 return fixture_request

def _get_checker():
 """
 Returns a doctest.OutputChecker subclass that takes in account the
 ALLOW_UNICODE option to ignore u'' prefixes in strings and ALLOW_BYTES
 to strip b'' prefixes.
 Useful when the same doctest should run in Python 2 and Python 3.

 An inner class is used to avoid importing "doctest" at the module
 level.
 """
 if hasattr(_get_checker, "LiteralsOutputChecker"):
 return _get_checker.LiteralsOutputChecker()

 import doctest
 import re

 class LiteralsOutputChecker(doctest.OutputChecker):
 """
 Copied from doctest_nose_plugin.py from the nltk project:
 https://github.com/nltk/nltk

 Further extended to also support byte literals.
 """

 _unicode_literal_re = re.compile(r"(\W|^)[uU]([rR]?[\'\"])", re.UNICODE)
 _bytes_literal_re = re.compile(r"(\W|^)[bB]([rR]?[\'\"])", re.UNICODE)

 def check_output(self, want, got, optionflags):
 res = doctest.OutputChecker.check_output(self, want, got, optionflags)
 if res:
 return True

 allow_unicode = optionflags & _get_allow_unicode_flag()
 allow_bytes = optionflags & _get_allow_bytes_flag()
 if not allow_unicode and not allow_bytes:
 return False

 else: # pragma: no cover

 def remove_prefixes(regex, txt):
 return re.sub(regex, r"\1\2", txt)

 if allow_unicode:
 want = remove_prefixes(self._unicode_literal_re, want)
 got = remove_prefixes(self._unicode_literal_re, got)
 if allow_bytes:
 want = remove_prefixes(self._bytes_literal_re, want)
 got = remove_prefixes(self._bytes_literal_re, got)
 res = doctest.OutputChecker.check_output(self, want, got, optionflags)
 return res

 _get_checker.LiteralsOutputChecker = LiteralsOutputChecker
 return _get_checker.LiteralsOutputChecker()

def _get_allow_unicode_flag():
 """
 Registers and returns the ALLOW_UNICODE flag.
 """
 import doctest

 return doctest.register_optionflag("ALLOW_UNICODE")

def _get_allow_bytes_flag():
 """
 Registers and returns the ALLOW_BYTES flag.
 """
 import doctest

 return doctest.register_optionflag("ALLOW_BYTES")

def _get_report_choice(key):
 """
 This function returns the actual `doctest` module flag value, we want to do it as late as possible to avoid
 importing `doctest` and all its dependencies when parsing options, as it adds overhead and breaks tests.
 """
 import doctest

 return {
 DOCTEST_REPORT_CHOICE_UDIFF: doctest.REPORT_UDIFF,
 DOCTEST_REPORT_CHOICE_CDIFF: doctest.REPORT_CDIFF,
 DOCTEST_REPORT_CHOICE_NDIFF: doctest.REPORT_NDIFF,
 DOCTEST_REPORT_CHOICE_ONLY_FIRST_FAILURE: doctest.REPORT_ONLY_FIRST_FAILURE,
 DOCTEST_REPORT_CHOICE_NONE: 0,
 }[key]

def _fix_spoof_python2(runner, encoding):
 """
 Installs a "SpoofOut" into the given DebugRunner so it properly deals with unicode output. This
 should patch only doctests for text files because they don't have a way to declare their
 encoding. Doctests in docstrings from Python modules don't have the same problem given that
 Python already decoded the strings.

 This fixes the problem related in issue #2434.
 """
 from _pytest.compat import _PY2

 if not _PY2:
 return

 from doctest import _SpoofOut

 class UnicodeSpoof(_SpoofOut):
 def getvalue(self):
 result = _SpoofOut.getvalue(self)
 if encoding and isinstance(result, bytes):
 result = result.decode(encoding)
 return result

 runner._fakeout = UnicodeSpoof()

[docs]@pytest.fixture(scope="session")
def doctest_namespace():
 """
 Fixture that returns a :py:class:`dict` that will be injected into the namespace of doctests.
 """
 return dict()

 Source code for _pytest.fixtures

-*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import inspect
import itertools
import sys
import warnings
from collections import defaultdict
from collections import deque
from collections import OrderedDict

import attr
import py
import six

import _pytest
from _pytest import nodes
from _pytest._code.code import FormattedExcinfo
from _pytest._code.code import TerminalRepr
from _pytest.compat import _format_args
from _pytest.compat import _PytestWrapper
from _pytest.compat import exc_clear
from _pytest.compat import FuncargnamesCompatAttr
from _pytest.compat import get_real_func
from _pytest.compat import get_real_method
from _pytest.compat import getfslineno
from _pytest.compat import getfuncargnames
from _pytest.compat import getimfunc
from _pytest.compat import getlocation
from _pytest.compat import is_generator
from _pytest.compat import isclass
from _pytest.compat import NOTSET
from _pytest.compat import safe_getattr
from _pytest.deprecated import FIXTURE_FUNCTION_CALL
from _pytest.deprecated import FIXTURE_NAMED_REQUEST
from _pytest.outcomes import fail
from _pytest.outcomes import TEST_OUTCOME

@attr.s(frozen=True)
class PseudoFixtureDef(object):
 cached_result = attr.ib()
 scope = attr.ib()

def pytest_sessionstart(session):
 import _pytest.python
 import _pytest.nodes

 scopename2class.update(
 {
 "package": _pytest.python.Package,
 "class": _pytest.python.Class,
 "module": _pytest.python.Module,
 "function": _pytest.nodes.Item,
 "session": _pytest.main.Session,
 }
)
 session._fixturemanager = FixtureManager(session)

scopename2class = {}

scope2props = dict(session=())
scope2props["package"] = ("fspath",)
scope2props["module"] = ("fspath", "module")
scope2props["class"] = scope2props["module"] + ("cls",)
scope2props["instance"] = scope2props["class"] + ("instance",)
scope2props["function"] = scope2props["instance"] + ("function", "keywords")

def scopeproperty(name=None, doc=None):
 def decoratescope(func):
 scopename = name or func.__name__

 def provide(self):
 if func.__name__ in scope2props[self.scope]:
 return func(self)
 raise AttributeError(
 "%s not available in %s-scoped context" % (scopename, self.scope)
)

 return property(provide, None, None, func.__doc__)

 return decoratescope

def get_scope_package(node, fixturedef):
 import pytest

 cls = pytest.Package
 current = node
 fixture_package_name = "%s/%s" % (fixturedef.baseid, "__init__.py")
 while current and (
 type(current) is not cls or fixture_package_name != current.nodeid
):
 current = current.parent
 if current is None:
 return node.session
 return current

def get_scope_node(node, scope):
 cls = scopename2class.get(scope)
 if cls is None:
 raise ValueError("unknown scope")
 return node.getparent(cls)

def add_funcarg_pseudo_fixture_def(collector, metafunc, fixturemanager):
 # this function will transform all collected calls to a functions
 # if they use direct funcargs (i.e. direct parametrization)
 # because we want later test execution to be able to rely on
 # an existing FixtureDef structure for all arguments.
 # XXX we can probably avoid this algorithm if we modify CallSpec2
 # to directly care for creating the fixturedefs within its methods.
 if not metafunc._calls[0].funcargs:
 return # this function call does not have direct parametrization
 # collect funcargs of all callspecs into a list of values
 arg2params = {}
 arg2scope = {}
 for callspec in metafunc._calls:
 for argname, argvalue in callspec.funcargs.items():
 assert argname not in callspec.params
 callspec.params[argname] = argvalue
 arg2params_list = arg2params.setdefault(argname, [])
 callspec.indices[argname] = len(arg2params_list)
 arg2params_list.append(argvalue)
 if argname not in arg2scope:
 scopenum = callspec._arg2scopenum.get(argname, scopenum_function)
 arg2scope[argname] = scopes[scopenum]
 callspec.funcargs.clear()

 # register artificial FixtureDef's so that later at test execution
 # time we can rely on a proper FixtureDef to exist for fixture setup.
 arg2fixturedefs = metafunc._arg2fixturedefs
 for argname, valuelist in arg2params.items():
 # if we have a scope that is higher than function we need
 # to make sure we only ever create an according fixturedef on
 # a per-scope basis. We thus store and cache the fixturedef on the
 # node related to the scope.
 scope = arg2scope[argname]
 node = None
 if scope != "function":
 node = get_scope_node(collector, scope)
 if node is None:
 assert scope == "class" and isinstance(collector, _pytest.python.Module)
 # use module-level collector for class-scope (for now)
 node = collector
 if node and argname in node._name2pseudofixturedef:
 arg2fixturedefs[argname] = [node._name2pseudofixturedef[argname]]
 else:
 fixturedef = FixtureDef(
 fixturemanager,
 "",
 argname,
 get_direct_param_fixture_func,
 arg2scope[argname],
 valuelist,
 False,
 False,
)
 arg2fixturedefs[argname] = [fixturedef]
 if node is not None:
 node._name2pseudofixturedef[argname] = fixturedef

def getfixturemarker(obj):
 """ return fixturemarker or None if it doesn't exist or raised
 exceptions."""
 try:
 return getattr(obj, "_pytestfixturefunction", None)
 except TEST_OUTCOME:
 # some objects raise errors like request (from flask import request)
 # we don't expect them to be fixture functions
 return None

def get_parametrized_fixture_keys(item, scopenum):
 """ return list of keys for all parametrized arguments which match
 the specified scope. """
 assert scopenum < scopenum_function # function
 try:
 cs = item.callspec
 except AttributeError:
 pass
 else:
 # cs.indices.items() is random order of argnames. Need to
 # sort this so that different calls to
 # get_parametrized_fixture_keys will be deterministic.
 for argname, param_index in sorted(cs.indices.items()):
 if cs._arg2scopenum[argname] != scopenum:
 continue
 if scopenum == 0: # session
 key = (argname, param_index)
 elif scopenum == 1: # package
 key = (argname, param_index, item.fspath.dirpath())
 elif scopenum == 2: # module
 key = (argname, param_index, item.fspath)
 elif scopenum == 3: # class
 key = (argname, param_index, item.fspath, item.cls)
 yield key

algorithm for sorting on a per-parametrized resource setup basis
it is called for scopenum==0 (session) first and performs sorting
down to the lower scopes such as to minimize number of "high scope"
setups and teardowns

def reorder_items(items):
 argkeys_cache = {}
 items_by_argkey = {}
 for scopenum in range(0, scopenum_function):
 argkeys_cache[scopenum] = d = {}
 items_by_argkey[scopenum] = item_d = defaultdict(deque)
 for item in items:
 keys = OrderedDict.fromkeys(get_parametrized_fixture_keys(item, scopenum))
 if keys:
 d[item] = keys
 for key in keys:
 item_d[key].append(item)
 items = OrderedDict.fromkeys(items)
 return list(reorder_items_atscope(items, argkeys_cache, items_by_argkey, 0))

def fix_cache_order(item, argkeys_cache, items_by_argkey):
 for scopenum in range(0, scopenum_function):
 for key in argkeys_cache[scopenum].get(item, []):
 items_by_argkey[scopenum][key].appendleft(item)

def reorder_items_atscope(items, argkeys_cache, items_by_argkey, scopenum):
 if scopenum >= scopenum_function or len(items) < 3:
 return items
 ignore = set()
 items_deque = deque(items)
 items_done = OrderedDict()
 scoped_items_by_argkey = items_by_argkey[scopenum]
 scoped_argkeys_cache = argkeys_cache[scopenum]
 while items_deque:
 no_argkey_group = OrderedDict()
 slicing_argkey = None
 while items_deque:
 item = items_deque.popleft()
 if item in items_done or item in no_argkey_group:
 continue
 argkeys = OrderedDict.fromkeys(
 k for k in scoped_argkeys_cache.get(item, []) if k not in ignore
)
 if not argkeys:
 no_argkey_group[item] = None
 else:
 slicing_argkey, _ = argkeys.popitem()
 # we don't have to remove relevant items from later in the deque because they'll just be ignored
 matching_items = [
 i for i in scoped_items_by_argkey[slicing_argkey] if i in items
]
 for i in reversed(matching_items):
 fix_cache_order(i, argkeys_cache, items_by_argkey)
 items_deque.appendleft(i)
 break
 if no_argkey_group:
 no_argkey_group = reorder_items_atscope(
 no_argkey_group, argkeys_cache, items_by_argkey, scopenum + 1
)
 for item in no_argkey_group:
 items_done[item] = None
 ignore.add(slicing_argkey)
 return items_done

def fillfixtures(function):
 """ fill missing funcargs for a test function. """
 try:
 request = function._request
 except AttributeError:
 # XXX this special code path is only expected to execute
 # with the oejskit plugin. It uses classes with funcargs
 # and we thus have to work a bit to allow this.
 fm = function.session._fixturemanager
 fi = fm.getfixtureinfo(function.parent, function.obj, None)
 function._fixtureinfo = fi
 request = function._request = FixtureRequest(function)
 request._fillfixtures()
 # prune out funcargs for jstests
 newfuncargs = {}
 for name in fi.argnames:
 newfuncargs[name] = function.funcargs[name]
 function.funcargs = newfuncargs
 else:
 request._fillfixtures()

def get_direct_param_fixture_func(request):
 return request.param

@attr.s(slots=True)
class FuncFixtureInfo(object):
 # original function argument names
 argnames = attr.ib(type=tuple)
 # argnames that function immediately requires. These include argnames +
 # fixture names specified via usefixtures and via autouse=True in fixture
 # definitions.
 initialnames = attr.ib(type=tuple)
 names_closure = attr.ib() # List[str]
 name2fixturedefs = attr.ib() # List[str, List[FixtureDef]]

 def prune_dependency_tree(self):
 """Recompute names_closure from initialnames and name2fixturedefs

 Can only reduce names_closure, which means that the new closure will
 always be a subset of the old one. The order is preserved.

 This method is needed because direct parametrization may shadow some
 of the fixtures that were included in the originally built dependency
 tree. In this way the dependency tree can get pruned, and the closure
 of argnames may get reduced.
 """
 closure = set()
 working_set = set(self.initialnames)
 while working_set:
 argname = working_set.pop()
 # argname may be smth not included in the original names_closure,
 # in which case we ignore it. This currently happens with pseudo
 # FixtureDefs which wrap 'get_direct_param_fixture_func(request)'.
 # So they introduce the new dependency 'request' which might have
 # been missing in the original tree (closure).
 if argname not in closure and argname in self.names_closure:
 closure.add(argname)
 if argname in self.name2fixturedefs:
 working_set.update(self.name2fixturedefs[argname][-1].argnames)

 self.names_closure[:] = sorted(closure, key=self.names_closure.index)

[docs]class FixtureRequest(FuncargnamesCompatAttr):
 """ A request for a fixture from a test or fixture function.

 A request object gives access to the requesting test context
 and has an optional ``param`` attribute in case
 the fixture is parametrized indirectly.
 """

 def __init__(self, pyfuncitem):
 self._pyfuncitem = pyfuncitem
 #: fixture for which this request is being performed
 self.fixturename = None
 #: Scope string, one of "function", "class", "module", "session"
 self.scope = "function"
 self._fixture_defs = {} # argname -> FixtureDef
 fixtureinfo = pyfuncitem._fixtureinfo
 self._arg2fixturedefs = fixtureinfo.name2fixturedefs.copy()
 self._arg2index = {}
 self._fixturemanager = pyfuncitem.session._fixturemanager

 @property
 def fixturenames(self):
 """names of all active fixtures in this request"""
 result = list(self._pyfuncitem._fixtureinfo.names_closure)
 result.extend(set(self._fixture_defs).difference(result))
 return result

 @property
 def node(self):
 """ underlying collection node (depends on current request scope)"""
 return self._getscopeitem(self.scope)

 def _getnextfixturedef(self, argname):
 fixturedefs = self._arg2fixturedefs.get(argname, None)
 if fixturedefs is None:
 # we arrive here because of a dynamic call to
 # getfixturevalue(argname) usage which was naturally
 # not known at parsing/collection time
 parentid = self._pyfuncitem.parent.nodeid
 fixturedefs = self._fixturemanager.getfixturedefs(argname, parentid)
 self._arg2fixturedefs[argname] = fixturedefs
 # fixturedefs list is immutable so we maintain a decreasing index
 index = self._arg2index.get(argname, 0) - 1
 if fixturedefs is None or (-index > len(fixturedefs)):
 raise FixtureLookupError(argname, self)
 self._arg2index[argname] = index
 return fixturedefs[index]

 @property
 def config(self):
 """ the pytest config object associated with this request. """
 return self._pyfuncitem.config

 @scopeproperty()
 def function(self):
 """ test function object if the request has a per-function scope. """
 return self._pyfuncitem.obj

 @scopeproperty("class")
 def cls(self):
 """ class (can be None) where the test function was collected. """
 clscol = self._pyfuncitem.getparent(_pytest.python.Class)
 if clscol:
 return clscol.obj

 @property
 def instance(self):
 """ instance (can be None) on which test function was collected. """
 # unittest support hack, see _pytest.unittest.TestCaseFunction
 try:
 return self._pyfuncitem._testcase
 except AttributeError:
 function = getattr(self, "function", None)
 return getattr(function, "__self__", None)

 @scopeproperty()
 def module(self):
 """ python module object where the test function was collected. """
 return self._pyfuncitem.getparent(_pytest.python.Module).obj

 @scopeproperty()
 def fspath(self):
 """ the file system path of the test module which collected this test. """
 return self._pyfuncitem.fspath

 @property
 def keywords(self):
 """ keywords/markers dictionary for the underlying node. """
 return self.node.keywords

 @property
 def session(self):
 """ pytest session object. """
 return self._pyfuncitem.session

[docs] def addfinalizer(self, finalizer):
 """ add finalizer/teardown function to be called after the
 last test within the requesting test context finished
 execution. """
 # XXX usually this method is shadowed by fixturedef specific ones
 self._addfinalizer(finalizer, scope=self.scope)

 def _addfinalizer(self, finalizer, scope):
 colitem = self._getscopeitem(scope)
 self._pyfuncitem.session._setupstate.addfinalizer(
 finalizer=finalizer, colitem=colitem
)

[docs] def applymarker(self, marker):
 """ Apply a marker to a single test function invocation.
 This method is useful if you don't want to have a keyword/marker
 on all function invocations.

 :arg marker: a :py:class:`_pytest.mark.MarkDecorator` object
 created by a call to ``pytest.mark.NAME(...)``.
 """
 self.node.add_marker(marker)

[docs] def raiseerror(self, msg):
 """ raise a FixtureLookupError with the given message. """
 raise self._fixturemanager.FixtureLookupError(None, self, msg)

 def _fillfixtures(self):
 item = self._pyfuncitem
 fixturenames = getattr(item, "fixturenames", self.fixturenames)
 for argname in fixturenames:
 if argname not in item.funcargs:
 item.funcargs[argname] = self.getfixturevalue(argname)

[docs] def getfixturevalue(self, argname):
 """ Dynamically run a named fixture function.

 Declaring fixtures via function argument is recommended where possible.
 But if you can only decide whether to use another fixture at test
 setup time, you may use this function to retrieve it inside a fixture
 or test function body.
 """
 return self._get_active_fixturedef(argname).cached_result[0]

[docs] def getfuncargvalue(self, argname):
 """ Deprecated, use getfixturevalue. """
 from _pytest import deprecated

 warnings.warn(deprecated.GETFUNCARGVALUE, stacklevel=2)
 return self.getfixturevalue(argname)

 def _get_active_fixturedef(self, argname):
 try:
 return self._fixture_defs[argname]
 except KeyError:
 try:
 fixturedef = self._getnextfixturedef(argname)
 except FixtureLookupError:
 if argname == "request":
 cached_result = (self, [0], None)
 scope = "function"
 return PseudoFixtureDef(cached_result, scope)
 raise
 # remove indent to prevent the python3 exception
 # from leaking into the call
 self._compute_fixture_value(fixturedef)
 self._fixture_defs[argname] = fixturedef
 return fixturedef

 def _get_fixturestack(self):
 current = self
 values = []
 while 1:
 fixturedef = getattr(current, "_fixturedef", None)
 if fixturedef is None:
 values.reverse()
 return values
 values.append(fixturedef)
 current = current._parent_request

 def _compute_fixture_value(self, fixturedef):
 """
 Creates a SubRequest based on "self" and calls the execute method of the given fixturedef object. This will
 force the FixtureDef object to throw away any previous results and compute a new fixture value, which
 will be stored into the FixtureDef object itself.

 :param FixtureDef fixturedef:
 """
 # prepare a subrequest object before calling fixture function
 # (latter managed by fixturedef)
 argname = fixturedef.argname
 funcitem = self._pyfuncitem
 scope = fixturedef.scope
 try:
 param = funcitem.callspec.getparam(argname)
 except (AttributeError, ValueError):
 param = NOTSET
 param_index = 0
 has_params = fixturedef.params is not None
 fixtures_not_supported = getattr(funcitem, "nofuncargs", False)
 if has_params and fixtures_not_supported:
 msg = (
 "{name} does not support fixtures, maybe unittest.TestCase subclass?\n"
 "Node id: {nodeid}\n"
 "Function type: {typename}"
).format(
 name=funcitem.name,
 nodeid=funcitem.nodeid,
 typename=type(funcitem).__name__,
)
 fail(msg, pytrace=False)
 if has_params:
 frame = inspect.stack()[3]
 frameinfo = inspect.getframeinfo(frame[0])
 source_path = frameinfo.filename
 source_lineno = frameinfo.lineno
 source_path = py.path.local(source_path)
 if source_path.relto(funcitem.config.rootdir):
 source_path = source_path.relto(funcitem.config.rootdir)
 msg = (
 "The requested fixture has no parameter defined for test:\n"
 " {}\n\n"
 "Requested fixture '{}' defined in:\n{}"
 "\n\nRequested here:\n{}:{}".format(
 funcitem.nodeid,
 fixturedef.argname,
 getlocation(fixturedef.func, funcitem.config.rootdir),
 source_path,
 source_lineno,
)
)
 fail(msg, pytrace=False)
 else:
 param_index = funcitem.callspec.indices[argname]
 # if a parametrize invocation set a scope it will override
 # the static scope defined with the fixture function
 paramscopenum = funcitem.callspec._arg2scopenum.get(argname)
 if paramscopenum is not None:
 scope = scopes[paramscopenum]

 subrequest = SubRequest(self, scope, param, param_index, fixturedef)

 # check if a higher-level scoped fixture accesses a lower level one
 subrequest._check_scope(argname, self.scope, scope)

 # clear sys.exc_info before invoking the fixture (python bug?)
 # if it's not explicitly cleared it will leak into the call
 exc_clear()
 try:
 # call the fixture function
 fixturedef.execute(request=subrequest)
 finally:
 self._schedule_finalizers(fixturedef, subrequest)

 def _schedule_finalizers(self, fixturedef, subrequest):
 # if fixture function failed it might have registered finalizers
 self.session._setupstate.addfinalizer(
 functools.partial(fixturedef.finish, request=subrequest), subrequest.node
)

 def _check_scope(self, argname, invoking_scope, requested_scope):
 if argname == "request":
 return
 if scopemismatch(invoking_scope, requested_scope):
 # try to report something helpful
 lines = self._factorytraceback()
 fail(
 "ScopeMismatch: You tried to access the %r scoped "
 "fixture %r with a %r scoped request object, "
 "involved factories\n%s"
 % ((requested_scope, argname, invoking_scope, "\n".join(lines))),
 pytrace=False,
)

 def _factorytraceback(self):
 lines = []
 for fixturedef in self._get_fixturestack():
 factory = fixturedef.func
 fs, lineno = getfslineno(factory)
 p = self._pyfuncitem.session.fspath.bestrelpath(fs)
 args = _format_args(factory)
 lines.append("%s:%d: def %s%s" % (p, lineno + 1, factory.__name__, args))
 return lines

 def _getscopeitem(self, scope):
 if scope == "function":
 # this might also be a non-function Item despite its attribute name
 return self._pyfuncitem
 if scope == "package":
 node = get_scope_package(self._pyfuncitem, self._fixturedef)
 else:
 node = get_scope_node(self._pyfuncitem, scope)
 if node is None and scope == "class":
 # fallback to function item itself
 node = self._pyfuncitem
 assert node, 'Could not obtain a node for scope "{}" for function {!r}'.format(
 scope, self._pyfuncitem
)
 return node

 def __repr__(self):
 return "<FixtureRequest for %r>" % (self.node)

class SubRequest(FixtureRequest):
 """ a sub request for handling getting a fixture from a
 test function/fixture. """

 def __init__(self, request, scope, param, param_index, fixturedef):
 self._parent_request = request
 self.fixturename = fixturedef.argname
 if param is not NOTSET:
 self.param = param
 self.param_index = param_index
 self.scope = scope
 self._fixturedef = fixturedef
 self._pyfuncitem = request._pyfuncitem
 self._fixture_defs = request._fixture_defs
 self._arg2fixturedefs = request._arg2fixturedefs
 self._arg2index = request._arg2index
 self._fixturemanager = request._fixturemanager

 def __repr__(self):
 return "<SubRequest %r for %r>" % (self.fixturename, self._pyfuncitem)

 def addfinalizer(self, finalizer):
 self._fixturedef.addfinalizer(finalizer)

 def _schedule_finalizers(self, fixturedef, subrequest):
 # if the executing fixturedef was not explicitly requested in the argument list (via
 # getfixturevalue inside the fixture call) then ensure this fixture def will be finished
 # first
 if fixturedef.argname not in self.funcargnames:
 fixturedef.addfinalizer(
 functools.partial(self._fixturedef.finish, request=self)
)
 super(SubRequest, self)._schedule_finalizers(fixturedef, subrequest)

scopes = "session package module class function".split()
scopenum_function = scopes.index("function")

def scopemismatch(currentscope, newscope):
 return scopes.index(newscope) > scopes.index(currentscope)

def scope2index(scope, descr, where=None):
 """Look up the index of ``scope`` and raise a descriptive value error
 if not defined.
 """
 try:
 return scopes.index(scope)
 except ValueError:
 fail(
 "{} {}got an unexpected scope value '{}'".format(
 descr, "from {} ".format(where) if where else "", scope
),
 pytrace=False,
)

class FixtureLookupError(LookupError):
 """ could not return a requested Fixture (missing or invalid). """

 def __init__(self, argname, request, msg=None):
 self.argname = argname
 self.request = request
 self.fixturestack = request._get_fixturestack()
 self.msg = msg

 def formatrepr(self):
 tblines = []
 addline = tblines.append
 stack = [self.request._pyfuncitem.obj]
 stack.extend(map(lambda x: x.func, self.fixturestack))
 msg = self.msg
 if msg is not None:
 # the last fixture raise an error, let's present
 # it at the requesting side
 stack = stack[:-1]
 for function in stack:
 fspath, lineno = getfslineno(function)
 try:
 lines, _ = inspect.getsourcelines(get_real_func(function))
 except (IOError, IndexError, TypeError):
 error_msg = "file %s, line %s: source code not available"
 addline(error_msg % (fspath, lineno + 1))
 else:
 addline("file %s, line %s" % (fspath, lineno + 1))
 for i, line in enumerate(lines):
 line = line.rstrip()
 addline(" " + line)
 if line.lstrip().startswith("def"):
 break

 if msg is None:
 fm = self.request._fixturemanager
 available = set()
 parentid = self.request._pyfuncitem.parent.nodeid
 for name, fixturedefs in fm._arg2fixturedefs.items():
 faclist = list(fm._matchfactories(fixturedefs, parentid))
 if faclist:
 available.add(name)
 if self.argname in available:
 msg = " recursive dependency involving fixture '{}' detected".format(
 self.argname
)
 else:
 msg = "fixture '{}' not found".format(self.argname)
 msg += "\n available fixtures: {}".format(", ".join(sorted(available)))
 msg += "\n use 'pytest --fixtures [testpath]' for help on them."

 return FixtureLookupErrorRepr(fspath, lineno, tblines, msg, self.argname)

class FixtureLookupErrorRepr(TerminalRepr):
 def __init__(self, filename, firstlineno, tblines, errorstring, argname):
 self.tblines = tblines
 self.errorstring = errorstring
 self.filename = filename
 self.firstlineno = firstlineno
 self.argname = argname

 def toterminal(self, tw):
 # tw.line("FixtureLookupError: %s" %(self.argname), red=True)
 for tbline in self.tblines:
 tw.line(tbline.rstrip())
 lines = self.errorstring.split("\n")
 if lines:
 tw.line(
 "{} {}".format(FormattedExcinfo.fail_marker, lines[0].strip()),
 red=True,
)
 for line in lines[1:]:
 tw.line(
 "{} {}".format(FormattedExcinfo.flow_marker, line.strip()),
 red=True,
)
 tw.line()
 tw.line("%s:%d" % (self.filename, self.firstlineno + 1))

def fail_fixturefunc(fixturefunc, msg):
 fs, lineno = getfslineno(fixturefunc)
 location = "%s:%s" % (fs, lineno + 1)
 source = _pytest._code.Source(fixturefunc)
 fail(msg + ":\n\n" + str(source.indent()) + "\n" + location, pytrace=False)

def call_fixture_func(fixturefunc, request, kwargs):
 yieldctx = is_generator(fixturefunc)
 if yieldctx:
 it = fixturefunc(**kwargs)
 res = next(it)
 finalizer = functools.partial(_teardown_yield_fixture, fixturefunc, it)
 request.addfinalizer(finalizer)
 else:
 res = fixturefunc(**kwargs)
 return res

def _teardown_yield_fixture(fixturefunc, it):
 """Executes the teardown of a fixture function by advancing the iterator after the
 yield and ensure the iteration ends (if not it means there is more than one yield in the function)"""
 try:
 next(it)
 except StopIteration:
 pass
 else:
 fail_fixturefunc(
 fixturefunc, "yield_fixture function has more than one 'yield'"
)

[docs]class FixtureDef(object):
 """ A container for a factory definition. """

 def __init__(
 self,
 fixturemanager,
 baseid,
 argname,
 func,
 scope,
 params,
 unittest=False,
 ids=None,
):
 self._fixturemanager = fixturemanager
 self.baseid = baseid or ""
 self.has_location = baseid is not None
 self.func = func
 self.argname = argname
 self.scope = scope
 self.scopenum = scope2index(
 scope or "function",
 descr="Fixture '{}'".format(func.__name__),
 where=baseid,
)
 self.params = params
 self.argnames = getfuncargnames(func, is_method=unittest)
 self.unittest = unittest
 self.ids = ids
 self._finalizers = []

 def addfinalizer(self, finalizer):
 self._finalizers.append(finalizer)

 def finish(self, request):
 exceptions = []
 try:
 while self._finalizers:
 try:
 func = self._finalizers.pop()
 func()
 except: # noqa
 exceptions.append(sys.exc_info())
 if exceptions:
 e = exceptions[0]
 # Ensure to not keep frame references through traceback.
 del exceptions
 six.reraise(*e)
 finally:
 hook = self._fixturemanager.session.gethookproxy(request.node.fspath)
 hook.pytest_fixture_post_finalizer(fixturedef=self, request=request)
 # even if finalization fails, we invalidate
 # the cached fixture value and remove
 # all finalizers because they may be bound methods which will
 # keep instances alive
 if hasattr(self, "cached_result"):
 del self.cached_result
 self._finalizers = []

 def execute(self, request):
 # get required arguments and register our own finish()
 # with their finalization
 for argname in self.argnames:
 fixturedef = request._get_active_fixturedef(argname)
 if argname != "request":
 fixturedef.addfinalizer(functools.partial(self.finish, request=request))

 my_cache_key = request.param_index
 cached_result = getattr(self, "cached_result", None)
 if cached_result is not None:
 result, cache_key, err = cached_result
 if my_cache_key == cache_key:
 if err is not None:
 six.reraise(*err)
 else:
 return result
 # we have a previous but differently parametrized fixture instance
 # so we need to tear it down before creating a new one
 self.finish(request)
 assert not hasattr(self, "cached_result")

 hook = self._fixturemanager.session.gethookproxy(request.node.fspath)
 return hook.pytest_fixture_setup(fixturedef=self, request=request)

 def __repr__(self):
 return "<FixtureDef argname=%r scope=%r baseid=%r>" % (
 self.argname,
 self.scope,
 self.baseid,
)

def resolve_fixture_function(fixturedef, request):
 """Gets the actual callable that can be called to obtain the fixture value, dealing with unittest-specific
 instances and bound methods.
 """
 fixturefunc = fixturedef.func
 if fixturedef.unittest:
 if request.instance is not None:
 # bind the unbound method to the TestCase instance
 fixturefunc = fixturedef.func.__get__(request.instance)
 else:
 # the fixture function needs to be bound to the actual
 # request.instance so that code working with "fixturedef" behaves
 # as expected.
 if request.instance is not None:
 fixturefunc = getimfunc(fixturedef.func)
 if fixturefunc != fixturedef.func:
 fixturefunc = fixturefunc.__get__(request.instance)
 return fixturefunc

def pytest_fixture_setup(fixturedef, request):
 """ Execution of fixture setup. """
 kwargs = {}
 for argname in fixturedef.argnames:
 fixdef = request._get_active_fixturedef(argname)
 result, arg_cache_key, exc = fixdef.cached_result
 request._check_scope(argname, request.scope, fixdef.scope)
 kwargs[argname] = result

 fixturefunc = resolve_fixture_function(fixturedef, request)
 my_cache_key = request.param_index
 try:
 result = call_fixture_func(fixturefunc, request, kwargs)
 except TEST_OUTCOME:
 fixturedef.cached_result = (None, my_cache_key, sys.exc_info())
 raise
 fixturedef.cached_result = (result, my_cache_key, None)
 return result

def _ensure_immutable_ids(ids):
 if ids is None:
 return
 if callable(ids):
 return ids
 return tuple(ids)

def wrap_function_to_error_out_if_called_directly(function, fixture_marker):
 """Wrap the given fixture function so we can raise an error about it being called directly,
 instead of used as an argument in a test function.
 """
 message = FIXTURE_FUNCTION_CALL.format(
 name=fixture_marker.name or function.__name__
)

 @six.wraps(function)
 def result(*args, **kwargs):
 fail(message, pytrace=False)

 # keep reference to the original function in our own custom attribute so we don't unwrap
 # further than this point and lose useful wrappings like @mock.patch (#3774)
 result.__pytest_wrapped__ = _PytestWrapper(function)

 return result

@attr.s(frozen=True)
class FixtureFunctionMarker(object):
 scope = attr.ib()
 params = attr.ib(converter=attr.converters.optional(tuple))
 autouse = attr.ib(default=False)
 ids = attr.ib(default=None, converter=_ensure_immutable_ids)
 name = attr.ib(default=None)

 def __call__(self, function):
 if isclass(function):
 raise ValueError("class fixtures not supported (maybe in the future)")

 if getattr(function, "_pytestfixturefunction", False):
 raise ValueError(
 "fixture is being applied more than once to the same function"
)

 function = wrap_function_to_error_out_if_called_directly(function, self)

 name = self.name or function.__name__
 if name == "request":
 warnings.warn(FIXTURE_NAMED_REQUEST)
 function._pytestfixturefunction = self
 return function

[docs]def fixture(scope="function", params=None, autouse=False, ids=None, name=None):
 """Decorator to mark a fixture factory function.

 This decorator can be used, with or without parameters, to define a
 fixture function.

 The name of the fixture function can later be referenced to cause its
 invocation ahead of running tests: test
 modules or classes can use the ``pytest.mark.usefixtures(fixturename)``
 marker.

 Test functions can directly use fixture names as input
 arguments in which case the fixture instance returned from the fixture
 function will be injected.

 Fixtures can provide their values to test functions using ``return`` or ``yield``
 statements. When using ``yield`` the code block after the ``yield`` statement is executed
 as teardown code regardless of the test outcome, and must yield exactly once.

 :arg scope: the scope for which this fixture is shared, one of
 ``"function"`` (default), ``"class"``, ``"module"``,
 ``"package"`` or ``"session"``.

 ``"package"`` is considered **experimental** at this time.

 :arg params: an optional list of parameters which will cause multiple
 invocations of the fixture function and all of the tests
 using it.
 The current parameter is available in ``request.param``.

 :arg autouse: if True, the fixture func is activated for all tests that
 can see it. If False (the default) then an explicit
 reference is needed to activate the fixture.

 :arg ids: list of string ids each corresponding to the params
 so that they are part of the test id. If no ids are provided
 they will be generated automatically from the params.

 :arg name: the name of the fixture. This defaults to the name of the
 decorated function. If a fixture is used in the same module in
 which it is defined, the function name of the fixture will be
 shadowed by the function arg that requests the fixture; one way
 to resolve this is to name the decorated function
 ``fixture_<fixturename>`` and then use
 ``@pytest.fixture(name='<fixturename>')``.
 """
 if callable(scope) and params is None and autouse is False:
 # direct decoration
 return FixtureFunctionMarker("function", params, autouse, name=name)(scope)
 if params is not None and not isinstance(params, (list, tuple)):
 params = list(params)
 return FixtureFunctionMarker(scope, params, autouse, ids=ids, name=name)

def yield_fixture(scope="function", params=None, autouse=False, ids=None, name=None):
 """ (return a) decorator to mark a yield-fixture factory function.

 .. deprecated:: 3.0
 Use :py:func:`pytest.fixture` directly instead.
 """
 return fixture(scope=scope, params=params, autouse=autouse, ids=ids, name=name)

defaultfuncargprefixmarker = fixture()

[docs]@fixture(scope="session")
def pytestconfig(request):
 """Session-scoped fixture that returns the :class:`_pytest.config.Config` object.

 Example::

 def test_foo(pytestconfig):
 if pytestconfig.getoption("verbose") > 0:
 ...

 """
 return request.config

def pytest_addoption(parser):
 parser.addini(
 "usefixtures",
 type="args",
 default=[],
 help="list of default fixtures to be used with this project",
)

class FixtureManager(object):
 """
 pytest fixtures definitions and information is stored and managed
 from this class.

 During collection fm.parsefactories() is called multiple times to parse
 fixture function definitions into FixtureDef objects and internal
 data structures.

 During collection of test functions, metafunc-mechanics instantiate
 a FuncFixtureInfo object which is cached per node/func-name.
 This FuncFixtureInfo object is later retrieved by Function nodes
 which themselves offer a fixturenames attribute.

 The FuncFixtureInfo object holds information about fixtures and FixtureDefs
 relevant for a particular function. An initial list of fixtures is
 assembled like this:

 - ini-defined usefixtures
 - autouse-marked fixtures along the collection chain up from the function
 - usefixtures markers at module/class/function level
 - test function funcargs

 Subsequently the funcfixtureinfo.fixturenames attribute is computed
 as the closure of the fixtures needed to setup the initial fixtures,
 i. e. fixtures needed by fixture functions themselves are appended
 to the fixturenames list.

 Upon the test-setup phases all fixturenames are instantiated, retrieved
 by a lookup of their FuncFixtureInfo.
 """

 FixtureLookupError = FixtureLookupError
 FixtureLookupErrorRepr = FixtureLookupErrorRepr

 def __init__(self, session):
 self.session = session
 self.config = session.config
 self._arg2fixturedefs = {}
 self._holderobjseen = set()
 self._arg2finish = {}
 self._nodeid_and_autousenames = [("", self.config.getini("usefixtures"))]
 session.config.pluginmanager.register(self, "funcmanage")

 def _get_direct_parametrize_args(self, node):
 """This function returns all the direct parametrization
 arguments of a node, so we don't mistake them for fixtures

 Check https://github.com/pytest-dev/pytest/issues/5036

 This things are done later as well when dealing with parametrization
 so this could be improved
 """
 from _pytest.mark import ParameterSet

 parametrize_argnames = []
 for marker in node.iter_markers(name="parametrize"):
 if not marker.kwargs.get("indirect", False):
 p_argnames, _ = ParameterSet._parse_parametrize_args(
 *marker.args, **marker.kwargs
)
 parametrize_argnames.extend(p_argnames)

 return parametrize_argnames

 def getfixtureinfo(self, node, func, cls, funcargs=True):
 if funcargs and not getattr(node, "nofuncargs", False):
 argnames = getfuncargnames(func, cls=cls)
 else:
 argnames = ()

 usefixtures = itertools.chain.from_iterable(
 mark.args for mark in node.iter_markers(name="usefixtures")
)
 initialnames = tuple(usefixtures) + argnames
 fm = node.session._fixturemanager
 initialnames, names_closure, arg2fixturedefs = fm.getfixtureclosure(
 initialnames, node, ignore_args=self._get_direct_parametrize_args(node)
)
 return FuncFixtureInfo(argnames, initialnames, names_closure, arg2fixturedefs)

 def pytest_plugin_registered(self, plugin):
 nodeid = None
 try:
 p = py.path.local(plugin.__file__).realpath()
 except AttributeError:
 pass
 else:
 # construct the base nodeid which is later used to check
 # what fixtures are visible for particular tests (as denoted
 # by their test id)
 if p.basename.startswith("conftest.py"):
 nodeid = p.dirpath().relto(self.config.rootdir)
 if p.sep != nodes.SEP:
 nodeid = nodeid.replace(p.sep, nodes.SEP)

 self.parsefactories(plugin, nodeid)

 def _getautousenames(self, nodeid):
 """ return a tuple of fixture names to be used. """
 autousenames = []
 for baseid, basenames in self._nodeid_and_autousenames:
 if nodeid.startswith(baseid):
 if baseid:
 i = len(baseid)
 nextchar = nodeid[i : i + 1]
 if nextchar and nextchar not in ":/":
 continue
 autousenames.extend(basenames)
 return autousenames

 def getfixtureclosure(self, fixturenames, parentnode, ignore_args=()):
 # collect the closure of all fixtures , starting with the given
 # fixturenames as the initial set. As we have to visit all
 # factory definitions anyway, we also return an arg2fixturedefs
 # mapping so that the caller can reuse it and does not have
 # to re-discover fixturedefs again for each fixturename
 # (discovering matching fixtures for a given name/node is expensive)

 parentid = parentnode.nodeid
 fixturenames_closure = self._getautousenames(parentid)

 def merge(otherlist):
 for arg in otherlist:
 if arg not in fixturenames_closure:
 fixturenames_closure.append(arg)

 merge(fixturenames)

 # at this point, fixturenames_closure contains what we call "initialnames",
 # which is a set of fixturenames the function immediately requests. We
 # need to return it as well, so save this.
 initialnames = tuple(fixturenames_closure)

 arg2fixturedefs = {}
 lastlen = -1
 while lastlen != len(fixturenames_closure):
 lastlen = len(fixturenames_closure)
 for argname in fixturenames_closure:
 if argname in ignore_args:
 continue
 if argname in arg2fixturedefs:
 continue
 fixturedefs = self.getfixturedefs(argname, parentid)
 if fixturedefs:
 arg2fixturedefs[argname] = fixturedefs
 merge(fixturedefs[-1].argnames)

 def sort_by_scope(arg_name):
 try:
 fixturedefs = arg2fixturedefs[arg_name]
 except KeyError:
 return scopes.index("function")
 else:
 return fixturedefs[-1].scopenum

 fixturenames_closure.sort(key=sort_by_scope)
 return initialnames, fixturenames_closure, arg2fixturedefs

 def pytest_generate_tests(self, metafunc):
 for argname in metafunc.fixturenames:
 faclist = metafunc._arg2fixturedefs.get(argname)
 if faclist:
 fixturedef = faclist[-1]
 if fixturedef.params is not None:
 markers = list(metafunc.definition.iter_markers("parametrize"))
 for parametrize_mark in markers:
 if "argnames" in parametrize_mark.kwargs:
 argnames = parametrize_mark.kwargs["argnames"]
 else:
 argnames = parametrize_mark.args[0]

 if not isinstance(argnames, (tuple, list)):
 argnames = [
 x.strip() for x in argnames.split(",") if x.strip()
]
 if argname in argnames:
 break
 else:
 metafunc.parametrize(
 argname,
 fixturedef.params,
 indirect=True,
 scope=fixturedef.scope,
 ids=fixturedef.ids,
)
 else:
 continue # will raise FixtureLookupError at setup time

 def pytest_collection_modifyitems(self, items):
 # separate parametrized setups
 items[:] = reorder_items(items)

 def parsefactories(self, node_or_obj, nodeid=NOTSET, unittest=False):
 if nodeid is not NOTSET:
 holderobj = node_or_obj
 else:
 holderobj = node_or_obj.obj
 nodeid = node_or_obj.nodeid
 if holderobj in self._holderobjseen:
 return

 self._holderobjseen.add(holderobj)
 autousenames = []
 for name in dir(holderobj):
 # The attribute can be an arbitrary descriptor, so the attribute
 # access below can raise. safe_getatt() ignores such exceptions.
 obj = safe_getattr(holderobj, name, None)
 marker = getfixturemarker(obj)
 if not isinstance(marker, FixtureFunctionMarker):
 # magic globals with __getattr__ might have got us a wrong
 # fixture attribute
 continue

 if marker.name:
 name = marker.name

 # during fixture definition we wrap the original fixture function
 # to issue a warning if called directly, so here we unwrap it in order to not emit the warning
 # when pytest itself calls the fixture function
 if six.PY2 and unittest:
 # hack on Python 2 because of the unbound methods
 obj = get_real_func(obj)
 else:
 obj = get_real_method(obj, holderobj)

 fixture_def = FixtureDef(
 self,
 nodeid,
 name,
 obj,
 marker.scope,
 marker.params,
 unittest=unittest,
 ids=marker.ids,
)

 faclist = self._arg2fixturedefs.setdefault(name, [])
 if fixture_def.has_location:
 faclist.append(fixture_def)
 else:
 # fixturedefs with no location are at the front
 # so this inserts the current fixturedef after the
 # existing fixturedefs from external plugins but
 # before the fixturedefs provided in conftests.
 i = len([f for f in faclist if not f.has_location])
 faclist.insert(i, fixture_def)
 if marker.autouse:
 autousenames.append(name)

 if autousenames:
 self._nodeid_and_autousenames.append((nodeid or "", autousenames))

 def getfixturedefs(self, argname, nodeid):
 """
 Gets a list of fixtures which are applicable to the given node id.

 :param str argname: name of the fixture to search for
 :param str nodeid: full node id of the requesting test.
 :return: list[FixtureDef]
 """
 try:
 fixturedefs = self._arg2fixturedefs[argname]
 except KeyError:
 return None
 return tuple(self._matchfactories(fixturedefs, nodeid))

 def _matchfactories(self, fixturedefs, nodeid):
 for fixturedef in fixturedefs:
 if nodes.ischildnode(fixturedef.baseid, nodeid):
 yield fixturedef

 Source code for _pytest.freeze_support

-*- coding: utf-8 -*-
"""
Provides a function to report all internal modules for using freezing tools
pytest
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

[docs]def freeze_includes():
 """
 Returns a list of module names used by pytest that should be
 included by cx_freeze.
 """
 import py
 import _pytest

 result = list(_iter_all_modules(py))
 result += list(_iter_all_modules(_pytest))
 return result

def _iter_all_modules(package, prefix=""):
 """
 Iterates over the names of all modules that can be found in the given
 package, recursively.
 Example:
 _iter_all_modules(_pytest) ->
 ['_pytest.assertion.newinterpret',
 '_pytest.capture',
 '_pytest.core',
 ...
]
 """
 import os
 import pkgutil

 if type(package) is not str:
 path, prefix = package.__path__[0], package.__name__ + "."
 else:
 path = package
 for _, name, is_package in pkgutil.iter_modules([path]):
 if is_package:
 for m in _iter_all_modules(os.path.join(path, name), prefix=name + "."):
 yield prefix + m
 else:
 yield prefix + name

 Source code for _pytest.hookspec

-*- coding: utf-8 -*-
""" hook specifications for pytest plugins, invoked from main.py and builtin plugins. """
from pluggy import HookspecMarker

from _pytest.deprecated import PYTEST_LOGWARNING

hookspec = HookspecMarker("pytest")

Initialization hooks called for every plugin

[docs]@hookspec(historic=True)
def pytest_addhooks(pluginmanager):
 """called at plugin registration time to allow adding new hooks via a call to
 ``pluginmanager.add_hookspecs(module_or_class, prefix)``.

 :param _pytest.config.PytestPluginManager pluginmanager: pytest plugin manager

 .. note::
 This hook is incompatible with ``hookwrapper=True``.
 """

[docs]@hookspec(historic=True)
def pytest_plugin_registered(plugin, manager):
 """ a new pytest plugin got registered.

 :param plugin: the plugin module or instance
 :param _pytest.config.PytestPluginManager manager: pytest plugin manager

 .. note::
 This hook is incompatible with ``hookwrapper=True``.
 """

[docs]@hookspec(historic=True)
def pytest_addoption(parser):
 """register argparse-style options and ini-style config values,
 called once at the beginning of a test run.

 .. note::

 This function should be implemented only in plugins or ``conftest.py``
 files situated at the tests root directory due to how pytest
 :ref:`discovers plugins during startup <pluginorder>`.

 :arg _pytest.config.Parser parser: To add command line options, call
 :py:func:`parser.addoption(...) <_pytest.config.Parser.addoption>`.
 To add ini-file values call :py:func:`parser.addini(...)
 <_pytest.config.Parser.addini>`.

 Options can later be accessed through the
 :py:class:`config <_pytest.config.Config>` object, respectively:

 - :py:func:`config.getoption(name) <_pytest.config.Config.getoption>` to
 retrieve the value of a command line option.

 - :py:func:`config.getini(name) <_pytest.config.Config.getini>` to retrieve
 a value read from an ini-style file.

 The config object is passed around on many internal objects via the ``.config``
 attribute or can be retrieved as the ``pytestconfig`` fixture.

 .. note::
 This hook is incompatible with ``hookwrapper=True``.
 """

[docs]@hookspec(historic=True)
def pytest_configure(config):
 """
 Allows plugins and conftest files to perform initial configuration.

 This hook is called for every plugin and initial conftest file
 after command line options have been parsed.

 After that, the hook is called for other conftest files as they are
 imported.

 .. note::
 This hook is incompatible with ``hookwrapper=True``.

 :arg _pytest.config.Config config: pytest config object
 """

Bootstrapping hooks called for plugins registered early enough:
internal and 3rd party plugins.

[docs]@hookspec(firstresult=True)
def pytest_cmdline_parse(pluginmanager, args):
 """return initialized config object, parsing the specified args.

 Stops at first non-None result, see :ref:`firstresult`

 .. note::
 This hook will only be called for plugin classes passed to the ``plugins`` arg when using `pytest.main`_ to
 perform an in-process test run.

 :param _pytest.config.PytestPluginManager pluginmanager: pytest plugin manager
 :param list[str] args: list of arguments passed on the command line
 """

[docs]def pytest_cmdline_preparse(config, args):
 """(**Deprecated**) modify command line arguments before option parsing.

 This hook is considered deprecated and will be removed in a future pytest version. Consider
 using :func:`pytest_load_initial_conftests` instead.

 .. note::
 This hook will not be called for ``conftest.py`` files, only for setuptools plugins.

 :param _pytest.config.Config config: pytest config object
 :param list[str] args: list of arguments passed on the command line
 """

[docs]@hookspec(firstresult=True)
def pytest_cmdline_main(config):
 """ called for performing the main command line action. The default
 implementation will invoke the configure hooks and runtest_mainloop.

 .. note::
 This hook will not be called for ``conftest.py`` files, only for setuptools plugins.

 Stops at first non-None result, see :ref:`firstresult`

 :param _pytest.config.Config config: pytest config object
 """

[docs]def pytest_load_initial_conftests(early_config, parser, args):
 """ implements the loading of initial conftest files ahead
 of command line option parsing.

 .. note::
 This hook will not be called for ``conftest.py`` files, only for setuptools plugins.

 :param _pytest.config.Config early_config: pytest config object
 :param list[str] args: list of arguments passed on the command line
 :param _pytest.config.Parser parser: to add command line options
 """

collection hooks

[docs]@hookspec(firstresult=True)
def pytest_collection(session):
 """Perform the collection protocol for the given session.

 Stops at first non-None result, see :ref:`firstresult`.

 :param _pytest.main.Session session: the pytest session object
 """

[docs]def pytest_collection_modifyitems(session, config, items):
 """ called after collection has been performed, may filter or re-order
 the items in-place.

 :param _pytest.main.Session session: the pytest session object
 :param _pytest.config.Config config: pytest config object
 :param List[_pytest.nodes.Item] items: list of item objects
 """

[docs]def pytest_collection_finish(session):
 """ called after collection has been performed and modified.

 :param _pytest.main.Session session: the pytest session object
 """

[docs]@hookspec(firstresult=True)
def pytest_ignore_collect(path, config):
 """ return True to prevent considering this path for collection.
 This hook is consulted for all files and directories prior to calling
 more specific hooks.

 Stops at first non-None result, see :ref:`firstresult`

 :param path: a :py:class:`py.path.local` - the path to analyze
 :param _pytest.config.Config config: pytest config object
 """

[docs]@hookspec(firstresult=True)
def pytest_collect_directory(path, parent):
 """ called before traversing a directory for collection files.

 Stops at first non-None result, see :ref:`firstresult`

 :param path: a :py:class:`py.path.local` - the path to analyze
 """

[docs]def pytest_collect_file(path, parent):
 """ return collection Node or None for the given path. Any new node
 needs to have the specified ``parent`` as a parent.

 :param path: a :py:class:`py.path.local` - the path to collect
 """

logging hooks for collection

[docs]def pytest_collectstart(collector):
 """ collector starts collecting. """

[docs]def pytest_itemcollected(item):
 """ we just collected a test item. """

[docs]def pytest_collectreport(report):
 """ collector finished collecting. """

[docs]def pytest_deselected(items):
 """ called for test items deselected, e.g. by keyword. """

[docs]@hookspec(firstresult=True)
def pytest_make_collect_report(collector):
 """ perform ``collector.collect()`` and return a CollectReport.

 Stops at first non-None result, see :ref:`firstresult` """

Python test function related hooks

[docs]@hookspec(firstresult=True)
def pytest_pycollect_makemodule(path, parent):
 """ return a Module collector or None for the given path.
 This hook will be called for each matching test module path.
 The pytest_collect_file hook needs to be used if you want to
 create test modules for files that do not match as a test module.

 Stops at first non-None result, see :ref:`firstresult`

 :param path: a :py:class:`py.path.local` - the path of module to collect
 """

[docs]@hookspec(firstresult=True)
def pytest_pycollect_makeitem(collector, name, obj):
 """ return custom item/collector for a python object in a module, or None.

 Stops at first non-None result, see :ref:`firstresult` """

[docs]@hookspec(firstresult=True)
def pytest_pyfunc_call(pyfuncitem):
 """ call underlying test function.

 Stops at first non-None result, see :ref:`firstresult` """

[docs]def pytest_generate_tests(metafunc):
 """ generate (multiple) parametrized calls to a test function."""

[docs]@hookspec(firstresult=True)
def pytest_make_parametrize_id(config, val, argname):
 """Return a user-friendly string representation of the given ``val`` that will be used
 by @pytest.mark.parametrize calls. Return None if the hook doesn't know about ``val``.
 The parameter name is available as ``argname``, if required.

 Stops at first non-None result, see :ref:`firstresult`

 :param _pytest.config.Config config: pytest config object
 :param val: the parametrized value
 :param str argname: the automatic parameter name produced by pytest
 """

generic runtest related hooks

[docs]@hookspec(firstresult=True)
def pytest_runtestloop(session):
 """ called for performing the main runtest loop
 (after collection finished).

 Stops at first non-None result, see :ref:`firstresult`

 :param _pytest.main.Session session: the pytest session object
 """

def pytest_itemstart(item, node):
 """(**Deprecated**) use pytest_runtest_logstart. """

[docs]@hookspec(firstresult=True)
def pytest_runtest_protocol(item, nextitem):
 """ implements the runtest_setup/call/teardown protocol for
 the given test item, including capturing exceptions and calling
 reporting hooks.

 :arg item: test item for which the runtest protocol is performed.

 :arg nextitem: the scheduled-to-be-next test item (or None if this
 is the end my friend). This argument is passed on to
 :py:func:`pytest_runtest_teardown`.

 :return boolean: True if no further hook implementations should be invoked.

 Stops at first non-None result, see :ref:`firstresult` """

[docs]def pytest_runtest_logstart(nodeid, location):
 """ signal the start of running a single test item.

 This hook will be called **before** :func:`pytest_runtest_setup`, :func:`pytest_runtest_call` and
 :func:`pytest_runtest_teardown` hooks.

 :param str nodeid: full id of the item
 :param location: a triple of ``(filename, linenum, testname)``
 """

[docs]def pytest_runtest_logfinish(nodeid, location):
 """ signal the complete finish of running a single test item.

 This hook will be called **after** :func:`pytest_runtest_setup`, :func:`pytest_runtest_call` and
 :func:`pytest_runtest_teardown` hooks.

 :param str nodeid: full id of the item
 :param location: a triple of ``(filename, linenum, testname)``
 """

[docs]def pytest_runtest_setup(item):
 """ called before ``pytest_runtest_call(item)``. """

[docs]def pytest_runtest_call(item):
 """ called to execute the test ``item``. """

[docs]def pytest_runtest_teardown(item, nextitem):
 """ called after ``pytest_runtest_call``.

 :arg nextitem: the scheduled-to-be-next test item (None if no further
 test item is scheduled). This argument can be used to
 perform exact teardowns, i.e. calling just enough finalizers
 so that nextitem only needs to call setup-functions.
 """

[docs]@hookspec(firstresult=True)
def pytest_runtest_makereport(item, call):
 """ return a :py:class:`_pytest.runner.TestReport` object
 for the given :py:class:`pytest.Item <_pytest.main.Item>` and
 :py:class:`_pytest.runner.CallInfo`.

 Stops at first non-None result, see :ref:`firstresult` """

[docs]def pytest_runtest_logreport(report):
 """ process a test setup/call/teardown report relating to
 the respective phase of executing a test. """

@hookspec(firstresult=True)
def pytest_report_to_serializable(config, report):
 """
 .. warning::
 This hook is experimental and subject to change between pytest releases, even
 bug fixes.

 The intent is for this to be used by plugins maintained by the core-devs, such
 as ``pytest-xdist``, ``pytest-subtests``, and as a replacement for the internal
 'resultlog' plugin.

 In the future it might become part of the public hook API.

 Serializes the given report object into a data structure suitable for sending
 over the wire, e.g. converted to JSON.
 """

@hookspec(firstresult=True)
def pytest_report_from_serializable(config, data):
 """
 .. warning::
 This hook is experimental and subject to change between pytest releases, even
 bug fixes.

 The intent is for this to be used by plugins maintained by the core-devs, such
 as ``pytest-xdist``, ``pytest-subtests``, and as a replacement for the internal
 'resultlog' plugin.

 In the future it might become part of the public hook API.

 Restores a report object previously serialized with pytest_report_to_serializable().
 """

Fixture related hooks

[docs]@hookspec(firstresult=True)
def pytest_fixture_setup(fixturedef, request):
 """ performs fixture setup execution.

 :return: The return value of the call to the fixture function

 Stops at first non-None result, see :ref:`firstresult`

 .. note::
 If the fixture function returns None, other implementations of
 this hook function will continue to be called, according to the
 behavior of the :ref:`firstresult` option.
 """

[docs]def pytest_fixture_post_finalizer(fixturedef, request):
 """ called after fixture teardown, but before the cache is cleared so
 the fixture result cache ``fixturedef.cached_result`` can
 still be accessed."""

test session related hooks

[docs]def pytest_sessionstart(session):
 """ called after the ``Session`` object has been created and before performing collection
 and entering the run test loop.

 :param _pytest.main.Session session: the pytest session object
 """

[docs]def pytest_sessionfinish(session, exitstatus):
 """ called after whole test run finished, right before returning the exit status to the system.

 :param _pytest.main.Session session: the pytest session object
 :param int exitstatus: the status which pytest will return to the system
 """

[docs]def pytest_unconfigure(config):
 """ called before test process is exited.

 :param _pytest.config.Config config: pytest config object
 """

hooks for customizing the assert methods

[docs]def pytest_assertrepr_compare(config, op, left, right):
 """return explanation for comparisons in failing assert expressions.

 Return None for no custom explanation, otherwise return a list
 of strings. The strings will be joined by newlines but any newlines
 in a string will be escaped. Note that all but the first line will
 be indented slightly, the intention is for the first line to be a summary.

 :param _pytest.config.Config config: pytest config object
 """

hooks for influencing reporting (invoked from _pytest_terminal)

[docs]def pytest_report_header(config, startdir):
 """ return a string or list of strings to be displayed as header info for terminal reporting.

 :param _pytest.config.Config config: pytest config object
 :param startdir: py.path object with the starting dir

 .. note::

 This function should be implemented only in plugins or ``conftest.py``
 files situated at the tests root directory due to how pytest
 :ref:`discovers plugins during startup <pluginorder>`.
 """

[docs]def pytest_report_collectionfinish(config, startdir, items):
 """
 .. versionadded:: 3.2

 return a string or list of strings to be displayed after collection has finished successfully.

 This strings will be displayed after the standard "collected X items" message.

 :param _pytest.config.Config config: pytest config object
 :param startdir: py.path object with the starting dir
 :param items: list of pytest items that are going to be executed; this list should not be modified.
 """

[docs]@hookspec(firstresult=True)
def pytest_report_teststatus(report, config):
 """ return result-category, shortletter and verbose word for reporting.

 :param _pytest.config.Config config: pytest config object

 Stops at first non-None result, see :ref:`firstresult` """

[docs]def pytest_terminal_summary(terminalreporter, exitstatus, config):
 """Add a section to terminal summary reporting.

 :param _pytest.terminal.TerminalReporter terminalreporter: the internal terminal reporter object
 :param int exitstatus: the exit status that will be reported back to the OS
 :param _pytest.config.Config config: pytest config object

 .. versionadded:: 4.2
 The ``config`` parameter.
 """

@hookspec(historic=True, warn_on_impl=PYTEST_LOGWARNING)
def pytest_logwarning(message, code, nodeid, fslocation):
 """
 .. deprecated:: 3.8

 This hook is will stop working in a future release.

 pytest no longer triggers this hook, but the
 terminal writer still implements it to display warnings issued by
 :meth:`_pytest.config.Config.warn` and :meth:`_pytest.nodes.Node.warn`. Calling those functions will be
 an error in future releases.

 process a warning specified by a message, a code string,
 a nodeid and fslocation (both of which may be None
 if the warning is not tied to a particular node/location).

 .. note::
 This hook is incompatible with ``hookwrapper=True``.
 """

[docs]@hookspec(historic=True)
def pytest_warning_captured(warning_message, when, item):
 """
 Process a warning captured by the internal pytest warnings plugin.

 :param warnings.WarningMessage warning_message:
 The captured warning. This is the same object produced by :py:func:`warnings.catch_warnings`, and contains
 the same attributes as the parameters of :py:func:`warnings.showwarning`.

 :param str when:
 Indicates when the warning was captured. Possible values:

 * ``"config"``: during pytest configuration/initialization stage.
 * ``"collect"``: during test collection.
 * ``"runtest"``: during test execution.

 :param pytest.Item|None item:
 DEPRECATED: This parameter is incompatible with ``pytest-xdist``, and will always receive ``None``
 in a future release.

 The item being executed if ``when`` is ``"runtest"``, otherwise ``None``.
 """

doctest hooks

@hookspec(firstresult=True)
def pytest_doctest_prepare_content(content):
 """ return processed content for a given doctest

 Stops at first non-None result, see :ref:`firstresult` """

error handling and internal debugging hooks

[docs]def pytest_internalerror(excrepr, excinfo):
 """ called for internal errors. """

[docs]def pytest_keyboard_interrupt(excinfo):
 """ called for keyboard interrupt. """

[docs]def pytest_exception_interact(node, call, report):
 """called when an exception was raised which can potentially be
 interactively handled.

 This hook is only called if an exception was raised
 that is not an internal exception like ``skip.Exception``.
 """

[docs]def pytest_enter_pdb(config, pdb):
 """ called upon pdb.set_trace(), can be used by plugins to take special
 action just before the python debugger enters in interactive mode.

 :param _pytest.config.Config config: pytest config object
 :param pdb.Pdb pdb: Pdb instance
 """

def pytest_leave_pdb(config, pdb):
 """ called when leaving pdb (e.g. with continue after pdb.set_trace()).

 Can be used by plugins to take special action just after the python
 debugger leaves interactive mode.

 :param _pytest.config.Config config: pytest config object
 :param pdb.Pdb pdb: Pdb instance
 """

 Source code for _pytest.junitxml

-*- coding: utf-8 -*-
"""
 report test results in JUnit-XML format,
 for use with Jenkins and build integration servers.

Based on initial code from Ross Lawley.

Output conforms to https://github.com/jenkinsci/xunit-plugin/blob/master/
src/main/resources/org/jenkinsci/plugins/xunit/types/model/xsd/junit-10.xsd
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import os
import platform
import re
import sys
import time
from datetime import datetime

import py
import six

import pytest
from _pytest import nodes
from _pytest.config import filename_arg

Python 2.X and 3.X compatibility
if sys.version_info[0] < 3:
 from codecs import open

class Junit(py.xml.Namespace):
 pass

We need to get the subset of the invalid unicode ranges according to
XML 1.0 which are valid in this python build. Hence we calculate
this dynamically instead of hardcoding it. The spec range of valid
chars is: Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD]
| [#x10000-#x10FFFF]
_legal_chars = (0x09, 0x0A, 0x0D)
_legal_ranges = ((0x20, 0x7E), (0x80, 0xD7FF), (0xE000, 0xFFFD), (0x10000, 0x10FFFF))
_legal_xml_re = [
 u"%s-%s" % (six.unichr(low), six.unichr(high))
 for (low, high) in _legal_ranges
 if low < sys.maxunicode
]
_legal_xml_re = [six.unichr(x) for x in _legal_chars] + _legal_xml_re
illegal_xml_re = re.compile(u"[^%s]" % u"".join(_legal_xml_re))
del _legal_chars
del _legal_ranges
del _legal_xml_re

_py_ext_re = re.compile(r"\.py$")

def bin_xml_escape(arg):
 def repl(matchobj):
 i = ord(matchobj.group())
 if i <= 0xFF:
 return u"#x%02X" % i
 else:
 return u"#x%04X" % i

 return py.xml.raw(illegal_xml_re.sub(repl, py.xml.escape(arg)))

def merge_family(left, right):
 result = {}
 for kl, vl in left.items():
 for kr, vr in right.items():
 if not isinstance(vl, list):
 raise TypeError(type(vl))
 result[kl] = vl + vr
 left.update(result)

families = {}
families["_base"] = {"testcase": ["classname", "name"]}
families["_base_legacy"] = {"testcase": ["file", "line", "url"]}

xUnit 1.x inherits legacy attributes
families["xunit1"] = families["_base"].copy()
merge_family(families["xunit1"], families["_base_legacy"])

xUnit 2.x uses strict base attributes
families["xunit2"] = families["_base"]

class _NodeReporter(object):
 def __init__(self, nodeid, xml):
 self.id = nodeid
 self.xml = xml
 self.add_stats = self.xml.add_stats
 self.family = self.xml.family
 self.duration = 0
 self.properties = []
 self.nodes = []
 self.testcase = None
 self.attrs = {}

 def append(self, node):
 self.xml.add_stats(type(node).__name__)
 self.nodes.append(node)

 def add_property(self, name, value):
 self.properties.append((str(name), bin_xml_escape(value)))

 def add_attribute(self, name, value):
 self.attrs[str(name)] = bin_xml_escape(value)

 def make_properties_node(self):
 """Return a Junit node containing custom properties, if any.
 """
 if self.properties:
 return Junit.properties(
 [
 Junit.property(name=name, value=value)
 for name, value in self.properties
]
)
 return ""

 def record_testreport(self, testreport):
 assert not self.testcase
 names = mangle_test_address(testreport.nodeid)
 existing_attrs = self.attrs
 classnames = names[:-1]
 if self.xml.prefix:
 classnames.insert(0, self.xml.prefix)
 attrs = {
 "classname": ".".join(classnames),
 "name": bin_xml_escape(names[-1]),
 "file": testreport.location[0],
 }
 if testreport.location[1] is not None:
 attrs["line"] = testreport.location[1]
 if hasattr(testreport, "url"):
 attrs["url"] = testreport.url
 self.attrs = attrs
 self.attrs.update(existing_attrs) # restore any user-defined attributes

 # Preserve legacy testcase behavior
 if self.family == "xunit1":
 return

 # Filter out attributes not permitted by this test family.
 # Including custom attributes because they are not valid here.
 temp_attrs = {}
 for key in self.attrs.keys():
 if key in families[self.family]["testcase"]:
 temp_attrs[key] = self.attrs[key]
 self.attrs = temp_attrs

 def to_xml(self):
 testcase = Junit.testcase(time="%.3f" % self.duration, **self.attrs)
 testcase.append(self.make_properties_node())
 for node in self.nodes:
 testcase.append(node)
 return testcase

 def _add_simple(self, kind, message, data=None):
 data = bin_xml_escape(data)
 node = kind(data, message=message)
 self.append(node)

 def write_captured_output(self, report):
 if not self.xml.log_passing_tests and report.passed:
 return

 content_out = report.capstdout
 content_log = report.caplog
 content_err = report.capstderr

 if content_log or content_out:
 if content_log and self.xml.logging == "system-out":
 if content_out:
 # syncing stdout and the log-output is not done yet. It's
 # probably not worth the effort. Therefore, first the captured
 # stdout is shown and then the captured logs.
 content = "\n".join(
 [
 " Captured Stdout ".center(80, "-"),
 content_out,
 "",
 " Captured Log ".center(80, "-"),
 content_log,
]
)
 else:
 content = content_log
 else:
 content = content_out

 if content:
 tag = getattr(Junit, "system-out")
 self.append(tag(bin_xml_escape(content)))

 if content_log or content_err:
 if content_log and self.xml.logging == "system-err":
 if content_err:
 content = "\n".join(
 [
 " Captured Stderr ".center(80, "-"),
 content_err,
 "",
 " Captured Log ".center(80, "-"),
 content_log,
]
)
 else:
 content = content_log
 else:
 content = content_err

 if content:
 tag = getattr(Junit, "system-err")
 self.append(tag(bin_xml_escape(content)))

 def append_pass(self, report):
 self.add_stats("passed")

 def append_failure(self, report):
 # msg = str(report.longrepr.reprtraceback.extraline)
 if hasattr(report, "wasxfail"):
 self._add_simple(Junit.skipped, "xfail-marked test passes unexpectedly")
 else:
 if hasattr(report.longrepr, "reprcrash"):
 message = report.longrepr.reprcrash.message
 elif isinstance(report.longrepr, six.string_types):
 message = report.longrepr
 else:
 message = str(report.longrepr)
 message = bin_xml_escape(message)
 fail = Junit.failure(message=message)
 fail.append(bin_xml_escape(report.longrepr))
 self.append(fail)

 def append_collect_error(self, report):
 # msg = str(report.longrepr.reprtraceback.extraline)
 self.append(
 Junit.error(bin_xml_escape(report.longrepr), message="collection failure")
)

 def append_collect_skipped(self, report):
 self._add_simple(Junit.skipped, "collection skipped", report.longrepr)

 def append_error(self, report):
 if report.when == "teardown":
 msg = "test teardown failure"
 else:
 msg = "test setup failure"
 self._add_simple(Junit.error, msg, report.longrepr)

 def append_skipped(self, report):
 if hasattr(report, "wasxfail"):
 xfailreason = report.wasxfail
 if xfailreason.startswith("reason: "):
 xfailreason = xfailreason[8:]
 self.append(
 Junit.skipped(
 "", type="pytest.xfail", message=bin_xml_escape(xfailreason)
)
)
 else:
 filename, lineno, skipreason = report.longrepr
 if skipreason.startswith("Skipped: "):
 skipreason = skipreason[9:]
 details = "%s:%s: %s" % (filename, lineno, skipreason)

 self.append(
 Junit.skipped(
 bin_xml_escape(details),
 type="pytest.skip",
 message=bin_xml_escape(skipreason),
)
)
 self.write_captured_output(report)

 def finalize(self):
 data = self.to_xml().unicode(indent=0)
 self.__dict__.clear()
 self.to_xml = lambda: py.xml.raw(data)

def _warn_incompatibility_with_xunit2(request, fixture_name):
 """Emits a PytestWarning about the given fixture being incompatible with newer xunit revisions"""
 from _pytest.warning_types import PytestWarning

 xml = getattr(request.config, "_xml", None)
 if xml is not None and xml.family not in ("xunit1", "legacy"):
 request.node.warn(
 PytestWarning(
 "{fixture_name} is incompatible with junit_family '{family}' (use 'legacy' or 'xunit1')".format(
 fixture_name=fixture_name, family=xml.family
)
)
)

[docs]@pytest.fixture
def record_property(request):
 """Add an extra properties the calling test.
 User properties become part of the test report and are available to the
 configured reporters, like JUnit XML.
 The fixture is callable with ``(name, value)``, with value being automatically
 xml-encoded.

 Example::

 def test_function(record_property):
 record_property("example_key", 1)
 """
 _warn_incompatibility_with_xunit2(request, "record_property")

 def append_property(name, value):
 request.node.user_properties.append((name, value))

 return append_property

@pytest.fixture
def record_xml_attribute(request):
 """Add extra xml attributes to the tag for the calling test.
 The fixture is callable with ``(name, value)``, with value being
 automatically xml-encoded
 """
 from _pytest.warning_types import PytestExperimentalApiWarning

 request.node.warn(
 PytestExperimentalApiWarning("record_xml_attribute is an experimental feature")
)

 _warn_incompatibility_with_xunit2(request, "record_xml_attribute")

 # Declare noop
 def add_attr_noop(name, value):
 pass

 attr_func = add_attr_noop

 xml = getattr(request.config, "_xml", None)
 if xml is not None:
 node_reporter = xml.node_reporter(request.node.nodeid)
 attr_func = node_reporter.add_attribute

 return attr_func

def _check_record_param_type(param, v):
 """Used by record_testsuite_property to check that the given parameter name is of the proper
 type"""
 __tracebackhide__ = True
 if not isinstance(v, six.string_types):
 msg = "{param} parameter needs to be a string, but {g} given"
 raise TypeError(msg.format(param=param, g=type(v).__name__))

[docs]@pytest.fixture(scope="session")
def record_testsuite_property(request):
 """
 Records a new ``<property>`` tag as child of the root ``<testsuite>``. This is suitable to
 writing global information regarding the entire test suite, and is compatible with ``xunit2`` JUnit family.

 This is a ``session``-scoped fixture which is called with ``(name, value)``. Example:

 .. code-block:: python

 def test_foo(record_testsuite_property):
 record_testsuite_property("ARCH", "PPC")
 record_testsuite_property("STORAGE_TYPE", "CEPH")

 ``name`` must be a string, ``value`` will be converted to a string and properly xml-escaped.
 """

 __tracebackhide__ = True

 def record_func(name, value):
 """noop function in case --junitxml was not passed in the command-line"""
 __tracebackhide__ = True
 _check_record_param_type("name", name)

 xml = getattr(request.config, "_xml", None)
 if xml is not None:
 record_func = xml.add_global_property # noqa
 return record_func

def pytest_addoption(parser):
 group = parser.getgroup("terminal reporting")
 group.addoption(
 "--junitxml",
 "--junit-xml",
 action="store",
 dest="xmlpath",
 metavar="path",
 type=functools.partial(filename_arg, optname="--junitxml"),
 default=None,
 help="create junit-xml style report file at given path.",
)
 group.addoption(
 "--junitprefix",
 "--junit-prefix",
 action="store",
 metavar="str",
 default=None,
 help="prepend prefix to classnames in junit-xml output",
)
 parser.addini(
 "junit_suite_name", "Test suite name for JUnit report", default="pytest"
)
 parser.addini(
 "junit_logging",
 "Write captured log messages to JUnit report: "
 "one of no|system-out|system-err",
 default="no",
) # choices=['no', 'stdout', 'stderr'])
 parser.addini(
 "junit_log_passing_tests",
 "Capture log information for passing tests to JUnit report: ",
 type="bool",
 default=True,
)
 parser.addini(
 "junit_duration_report",
 "Duration time to report: one of total|call",
 default="total",
) # choices=['total', 'call'])
 parser.addini(
 "junit_family",
 "Emit XML for schema: one of legacy|xunit1|xunit2",
 default="xunit1",
)

def pytest_configure(config):
 xmlpath = config.option.xmlpath
 # prevent opening xmllog on slave nodes (xdist)
 if xmlpath and not hasattr(config, "slaveinput"):
 config._xml = LogXML(
 xmlpath,
 config.option.junitprefix,
 config.getini("junit_suite_name"),
 config.getini("junit_logging"),
 config.getini("junit_duration_report"),
 config.getini("junit_family"),
 config.getini("junit_log_passing_tests"),
)
 config.pluginmanager.register(config._xml)

def pytest_unconfigure(config):
 xml = getattr(config, "_xml", None)
 if xml:
 del config._xml
 config.pluginmanager.unregister(xml)

def mangle_test_address(address):
 path, possible_open_bracket, params = address.partition("[")
 names = path.split("::")
 try:
 names.remove("()")
 except ValueError:
 pass
 # convert file path to dotted path
 names[0] = names[0].replace(nodes.SEP, ".")
 names[0] = _py_ext_re.sub("", names[0])
 # put any params back
 names[-1] += possible_open_bracket + params
 return names

class LogXML(object):
 def __init__(
 self,
 logfile,
 prefix,
 suite_name="pytest",
 logging="no",
 report_duration="total",
 family="xunit1",
 log_passing_tests=True,
):
 logfile = os.path.expanduser(os.path.expandvars(logfile))
 self.logfile = os.path.normpath(os.path.abspath(logfile))
 self.prefix = prefix
 self.suite_name = suite_name
 self.logging = logging
 self.log_passing_tests = log_passing_tests
 self.report_duration = report_duration
 self.family = family
 self.stats = dict.fromkeys(["error", "passed", "failure", "skipped"], 0)
 self.node_reporters = {} # nodeid -> _NodeReporter
 self.node_reporters_ordered = []
 self.global_properties = []

 # List of reports that failed on call but teardown is pending.
 self.open_reports = []
 self.cnt_double_fail_tests = 0

 # Replaces convenience family with real family
 if self.family == "legacy":
 self.family = "xunit1"

 def finalize(self, report):
 nodeid = getattr(report, "nodeid", report)
 # local hack to handle xdist report order
 slavenode = getattr(report, "node", None)
 reporter = self.node_reporters.pop((nodeid, slavenode))
 if reporter is not None:
 reporter.finalize()

 def node_reporter(self, report):
 nodeid = getattr(report, "nodeid", report)
 # local hack to handle xdist report order
 slavenode = getattr(report, "node", None)

 key = nodeid, slavenode

 if key in self.node_reporters:
 # TODO: breasks for --dist=each
 return self.node_reporters[key]

 reporter = _NodeReporter(nodeid, self)

 self.node_reporters[key] = reporter
 self.node_reporters_ordered.append(reporter)

 return reporter

 def add_stats(self, key):
 if key in self.stats:
 self.stats[key] += 1

 def _opentestcase(self, report):
 reporter = self.node_reporter(report)
 reporter.record_testreport(report)
 return reporter

 def pytest_runtest_logreport(self, report):
 """handle a setup/call/teardown report, generating the appropriate
 xml tags as necessary.

 note: due to plugins like xdist, this hook may be called in interlaced
 order with reports from other nodes. for example:

 usual call order:
 -> setup node1
 -> call node1
 -> teardown node1
 -> setup node2
 -> call node2
 -> teardown node2

 possible call order in xdist:
 -> setup node1
 -> call node1
 -> setup node2
 -> call node2
 -> teardown node2
 -> teardown node1
 """
 close_report = None
 if report.passed:
 if report.when == "call": # ignore setup/teardown
 reporter = self._opentestcase(report)
 reporter.append_pass(report)
 elif report.failed:
 if report.when == "teardown":
 # The following vars are needed when xdist plugin is used
 report_wid = getattr(report, "worker_id", None)
 report_ii = getattr(report, "item_index", None)
 close_report = next(
 (
 rep
 for rep in self.open_reports
 if (
 rep.nodeid == report.nodeid
 and getattr(rep, "item_index", None) == report_ii
 and getattr(rep, "worker_id", None) == report_wid
)
),
 None,
)
 if close_report:
 # We need to open new testcase in case we have failure in
 # call and error in teardown in order to follow junit
 # schema
 self.finalize(close_report)
 self.cnt_double_fail_tests += 1
 reporter = self._opentestcase(report)
 if report.when == "call":
 reporter.append_failure(report)
 self.open_reports.append(report)
 if not self.log_passing_tests:
 reporter.write_captured_output(report)
 else:
 reporter.append_error(report)
 elif report.skipped:
 reporter = self._opentestcase(report)
 reporter.append_skipped(report)
 self.update_testcase_duration(report)
 if report.when == "teardown":
 reporter = self._opentestcase(report)
 reporter.write_captured_output(report)

 for propname, propvalue in report.user_properties:
 reporter.add_property(propname, propvalue)

 self.finalize(report)
 report_wid = getattr(report, "worker_id", None)
 report_ii = getattr(report, "item_index", None)
 close_report = next(
 (
 rep
 for rep in self.open_reports
 if (
 rep.nodeid == report.nodeid
 and getattr(rep, "item_index", None) == report_ii
 and getattr(rep, "worker_id", None) == report_wid
)
),
 None,
)
 if close_report:
 self.open_reports.remove(close_report)

 def update_testcase_duration(self, report):
 """accumulates total duration for nodeid from given report and updates
 the Junit.testcase with the new total if already created.
 """
 if self.report_duration == "total" or report.when == self.report_duration:
 reporter = self.node_reporter(report)
 reporter.duration += getattr(report, "duration", 0.0)

 def pytest_collectreport(self, report):
 if not report.passed:
 reporter = self._opentestcase(report)
 if report.failed:
 reporter.append_collect_error(report)
 else:
 reporter.append_collect_skipped(report)

 def pytest_internalerror(self, excrepr):
 reporter = self.node_reporter("internal")
 reporter.attrs.update(classname="pytest", name="internal")
 reporter._add_simple(Junit.error, "internal error", excrepr)

 def pytest_sessionstart(self):
 self.suite_start_time = time.time()

 def pytest_sessionfinish(self):
 dirname = os.path.dirname(os.path.abspath(self.logfile))
 if not os.path.isdir(dirname):
 os.makedirs(dirname)
 logfile = open(self.logfile, "w", encoding="utf-8")
 suite_stop_time = time.time()
 suite_time_delta = suite_stop_time - self.suite_start_time

 numtests = (
 self.stats["passed"]
 + self.stats["failure"]
 + self.stats["skipped"]
 + self.stats["error"]
 - self.cnt_double_fail_tests
)
 logfile.write('<?xml version="1.0" encoding="utf-8"?>')

 suite_node = Junit.testsuite(
 self._get_global_properties_node(),
 [x.to_xml() for x in self.node_reporters_ordered],
 name=self.suite_name,
 errors=self.stats["error"],
 failures=self.stats["failure"],
 skipped=self.stats["skipped"],
 tests=numtests,
 time="%.3f" % suite_time_delta,
 timestamp=datetime.fromtimestamp(self.suite_start_time).isoformat(),
 hostname=platform.node(),
)
 logfile.write(Junit.testsuites([suite_node]).unicode(indent=0))
 logfile.close()

 def pytest_terminal_summary(self, terminalreporter):
 terminalreporter.write_sep("-", "generated xml file: %s" % (self.logfile))

 def add_global_property(self, name, value):
 __tracebackhide__ = True
 _check_record_param_type("name", name)
 self.global_properties.append((name, bin_xml_escape(value)))

 def _get_global_properties_node(self):
 """Return a Junit node containing custom properties, if any.
 """
 if self.global_properties:
 return Junit.properties(
 [
 Junit.property(name=name, value=value)
 for name, value in self.global_properties
]
)
 return ""

 Source code for _pytest.logging

-*- coding: utf-8 -*-
""" Access and control log capturing. """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import re
from contextlib import contextmanager

import py
import six

import pytest
from _pytest.compat import dummy_context_manager
from _pytest.config import create_terminal_writer
from _pytest.pathlib import Path

DEFAULT_LOG_FORMAT = "%(levelname)-8s %(name)s:%(filename)s:%(lineno)d %(message)s"
DEFAULT_LOG_DATE_FORMAT = "%H:%M:%S"
_ANSI_ESCAPE_SEQ = re.compile(r"\x1b\[[\d;]+m")

def _remove_ansi_escape_sequences(text):
 return _ANSI_ESCAPE_SEQ.sub("", text)

class ColoredLevelFormatter(logging.Formatter):
 """
 Colorize the %(levelname)..s part of the log format passed to __init__.
 """

 LOGLEVEL_COLOROPTS = {
 logging.CRITICAL: {"red"},
 logging.ERROR: {"red", "bold"},
 logging.WARNING: {"yellow"},
 logging.WARN: {"yellow"},
 logging.INFO: {"green"},
 logging.DEBUG: {"purple"},
 logging.NOTSET: set(),
 }
 LEVELNAME_FMT_REGEX = re.compile(r"%\(levelname\)([+-]?\d*s)")

 def __init__(self, terminalwriter, *args, **kwargs):
 super(ColoredLevelFormatter, self).__init__(*args, **kwargs)
 if six.PY2:
 self._original_fmt = self._fmt
 else:
 self._original_fmt = self._style._fmt
 self._level_to_fmt_mapping = {}

 levelname_fmt_match = self.LEVELNAME_FMT_REGEX.search(self._fmt)
 if not levelname_fmt_match:
 return
 levelname_fmt = levelname_fmt_match.group()

 for level, color_opts in self.LOGLEVEL_COLOROPTS.items():
 formatted_levelname = levelname_fmt % {
 "levelname": logging.getLevelName(level)
 }

 # add ANSI escape sequences around the formatted levelname
 color_kwargs = {name: True for name in color_opts}
 colorized_formatted_levelname = terminalwriter.markup(
 formatted_levelname, **color_kwargs
)
 self._level_to_fmt_mapping[level] = self.LEVELNAME_FMT_REGEX.sub(
 colorized_formatted_levelname, self._fmt
)

 def format(self, record):
 fmt = self._level_to_fmt_mapping.get(record.levelno, self._original_fmt)
 if six.PY2:
 self._fmt = fmt
 else:
 self._style._fmt = fmt
 return super(ColoredLevelFormatter, self).format(record)

if not six.PY2:
 # Formatter classes don't support format styles in PY2

 class PercentStyleMultiline(logging.PercentStyle):
 """A logging style with special support for multiline messages.

 If the message of a record consists of multiple lines, this style
 formats the message as if each line were logged separately.
 """

 @staticmethod
 def _update_message(record_dict, message):
 tmp = record_dict.copy()
 tmp["message"] = message
 return tmp

 def format(self, record):
 if "\n" in record.message:
 lines = record.message.splitlines()
 formatted = self._fmt % self._update_message(record.__dict__, lines[0])
 # TODO optimize this by introducing an option that tells the
 # logging framework that the indentation doesn't
 # change. This allows to compute the indentation only once.
 indentation = _remove_ansi_escape_sequences(formatted).find(lines[0])
 lines[0] = formatted
 return ("\n" + " " * indentation).join(lines)
 else:
 return self._fmt % record.__dict__

def get_option_ini(config, *names):
 for name in names:
 ret = config.getoption(name) # 'default' arg won't work as expected
 if ret is None:
 ret = config.getini(name)
 if ret:
 return ret

def pytest_addoption(parser):
 """Add options to control log capturing."""
 group = parser.getgroup("logging")

 def add_option_ini(option, dest, default=None, type=None, **kwargs):
 parser.addini(
 dest, default=default, type=type, help="default value for " + option
)
 group.addoption(option, dest=dest, **kwargs)

 add_option_ini(
 "--no-print-logs",
 dest="log_print",
 action="store_const",
 const=False,
 default=True,
 type="bool",
 help="disable printing caught logs on failed tests.",
)
 add_option_ini(
 "--log-level",
 dest="log_level",
 default=None,
 help="logging level used by the logging module",
)
 add_option_ini(
 "--log-format",
 dest="log_format",
 default=DEFAULT_LOG_FORMAT,
 help="log format as used by the logging module.",
)
 add_option_ini(
 "--log-date-format",
 dest="log_date_format",
 default=DEFAULT_LOG_DATE_FORMAT,
 help="log date format as used by the logging module.",
)
 parser.addini(
 "log_cli",
 default=False,
 type="bool",
 help='enable log display during test run (also known as "live logging").',
)
 add_option_ini(
 "--log-cli-level", dest="log_cli_level", default=None, help="cli logging level."
)
 add_option_ini(
 "--log-cli-format",
 dest="log_cli_format",
 default=None,
 help="log format as used by the logging module.",
)
 add_option_ini(
 "--log-cli-date-format",
 dest="log_cli_date_format",
 default=None,
 help="log date format as used by the logging module.",
)
 add_option_ini(
 "--log-file",
 dest="log_file",
 default=None,
 help="path to a file when logging will be written to.",
)
 add_option_ini(
 "--log-file-level",
 dest="log_file_level",
 default=None,
 help="log file logging level.",
)
 add_option_ini(
 "--log-file-format",
 dest="log_file_format",
 default=DEFAULT_LOG_FORMAT,
 help="log format as used by the logging module.",
)
 add_option_ini(
 "--log-file-date-format",
 dest="log_file_date_format",
 default=DEFAULT_LOG_DATE_FORMAT,
 help="log date format as used by the logging module.",
)

@contextmanager
def catching_logs(handler, formatter=None, level=None):
 """Context manager that prepares the whole logging machinery properly."""
 root_logger = logging.getLogger()

 if formatter is not None:
 handler.setFormatter(formatter)
 if level is not None:
 handler.setLevel(level)

 # Adding the same handler twice would confuse logging system.
 # Just don't do that.
 add_new_handler = handler not in root_logger.handlers

 if add_new_handler:
 root_logger.addHandler(handler)
 if level is not None:
 orig_level = root_logger.level
 root_logger.setLevel(min(orig_level, level))
 try:
 yield handler
 finally:
 if level is not None:
 root_logger.setLevel(orig_level)
 if add_new_handler:
 root_logger.removeHandler(handler)

class LogCaptureHandler(logging.StreamHandler):
 """A logging handler that stores log records and the log text."""

 def __init__(self):
 """Creates a new log handler."""
 logging.StreamHandler.__init__(self, py.io.TextIO())
 self.records = []

 def emit(self, record):
 """Keep the log records in a list in addition to the log text."""
 self.records.append(record)
 logging.StreamHandler.emit(self, record)

 def reset(self):
 self.records = []
 self.stream = py.io.TextIO()

[docs]class LogCaptureFixture(object):
 """Provides access and control of log capturing."""

 def __init__(self, item):
 """Creates a new funcarg."""
 self._item = item
 # dict of log name -> log level
 self._initial_log_levels = {} # Dict[str, int]

 def _finalize(self):
 """Finalizes the fixture.

 This restores the log levels changed by :meth:`set_level`.
 """
 # restore log levels
 for logger_name, level in self._initial_log_levels.items():
 logger = logging.getLogger(logger_name)
 logger.setLevel(level)

 @property
 def handler(self):
 """
 :rtype: LogCaptureHandler
 """
 return self._item.catch_log_handler

[docs] def get_records(self, when):
 """
 Get the logging records for one of the possible test phases.

 :param str when:
 Which test phase to obtain the records from. Valid values are: "setup", "call" and "teardown".

 :rtype: List[logging.LogRecord]
 :return: the list of captured records at the given stage

 .. versionadded:: 3.4
 """
 handler = self._item.catch_log_handlers.get(when)
 if handler:
 return handler.records
 else:
 return []

 @property
 def text(self):
 """Returns the formatted log text."""
 return _remove_ansi_escape_sequences(self.handler.stream.getvalue())

 @property
 def records(self):
 """Returns the list of log records."""
 return self.handler.records

 @property
 def record_tuples(self):
 """Returns a list of a stripped down version of log records intended
 for use in assertion comparison.

 The format of the tuple is:

 (logger_name, log_level, message)
 """
 return [(r.name, r.levelno, r.getMessage()) for r in self.records]

 @property
 def messages(self):
 """Returns a list of format-interpolated log messages.

 Unlike 'records', which contains the format string and parameters for interpolation, log messages in this list
 are all interpolated.
 Unlike 'text', which contains the output from the handler, log messages in this list are unadorned with
 levels, timestamps, etc, making exact comparisons more reliable.

 Note that traceback or stack info (from :func:`logging.exception` or the `exc_info` or `stack_info` arguments
 to the logging functions) is not included, as this is added by the formatter in the handler.

 .. versionadded:: 3.7
 """
 return [r.getMessage() for r in self.records]

[docs] def clear(self):
 """Reset the list of log records and the captured log text."""
 self.handler.reset()

[docs] def set_level(self, level, logger=None):
 """Sets the level for capturing of logs. The level will be restored to its previous value at the end of
 the test.

 :param int level: the logger to level.
 :param str logger: the logger to update the level. If not given, the root logger level is updated.

 .. versionchanged:: 3.4
 The levels of the loggers changed by this function will be restored to their initial values at the
 end of the test.
 """
 logger_name = logger
 logger = logging.getLogger(logger_name)
 # save the original log-level to restore it during teardown
 self._initial_log_levels.setdefault(logger_name, logger.level)
 logger.setLevel(level)

[docs] @contextmanager
 def at_level(self, level, logger=None):
 """Context manager that sets the level for capturing of logs. After the end of the 'with' statement the
 level is restored to its original value.

 :param int level: the logger to level.
 :param str logger: the logger to update the level. If not given, the root logger level is updated.
 """
 logger = logging.getLogger(logger)
 orig_level = logger.level
 logger.setLevel(level)
 try:
 yield
 finally:
 logger.setLevel(orig_level)

[docs]@pytest.fixture
def caplog(request):
 """Access and control log capturing.

 Captured logs are available through the following properties/methods::

 * caplog.text -> string containing formatted log output
 * caplog.records -> list of logging.LogRecord instances
 * caplog.record_tuples -> list of (logger_name, level, message) tuples
 * caplog.clear() -> clear captured records and formatted log output string
 """
 result = LogCaptureFixture(request.node)
 yield result
 result._finalize()

def get_actual_log_level(config, *setting_names):
 """Return the actual logging level."""

 for setting_name in setting_names:
 log_level = config.getoption(setting_name)
 if log_level is None:
 log_level = config.getini(setting_name)
 if log_level:
 break
 else:
 return

 if isinstance(log_level, six.string_types):
 log_level = log_level.upper()
 try:
 return int(getattr(logging, log_level, log_level))
 except ValueError:
 # Python logging does not recognise this as a logging level
 raise pytest.UsageError(
 "'{}' is not recognized as a logging level name for "
 "'{}'. Please consider passing the "
 "logging level num instead.".format(log_level, setting_name)
)

run after terminalreporter/capturemanager are configured
@pytest.hookimpl(trylast=True)
def pytest_configure(config):
 config.pluginmanager.register(LoggingPlugin(config), "logging-plugin")

class LoggingPlugin(object):
 """Attaches to the logging module and captures log messages for each test.
 """

 def __init__(self, config):
 """Creates a new plugin to capture log messages.

 The formatter can be safely shared across all handlers so
 create a single one for the entire test session here.
 """
 self._config = config

 self.print_logs = get_option_ini(config, "log_print")
 self.formatter = self._create_formatter(
 get_option_ini(config, "log_format"),
 get_option_ini(config, "log_date_format"),
)
 self.log_level = get_actual_log_level(config, "log_level")

 self.log_file_level = get_actual_log_level(config, "log_file_level")
 self.log_file_format = get_option_ini(config, "log_file_format", "log_format")
 self.log_file_date_format = get_option_ini(
 config, "log_file_date_format", "log_date_format"
)
 self.log_file_formatter = logging.Formatter(
 self.log_file_format, datefmt=self.log_file_date_format
)

 log_file = get_option_ini(config, "log_file")
 if log_file:
 self.log_file_handler = logging.FileHandler(
 log_file, mode="w", encoding="UTF-8"
)
 self.log_file_handler.setFormatter(self.log_file_formatter)
 else:
 self.log_file_handler = None

 self.log_cli_handler = None

 self.live_logs_context = lambda: dummy_context_manager()
 # Note that the lambda for the live_logs_context is needed because
 # live_logs_context can otherwise not be entered multiple times due
 # to limitations of contextlib.contextmanager.

 if self._log_cli_enabled():
 self._setup_cli_logging()

 def _create_formatter(self, log_format, log_date_format):
 # color option doesn't exist if terminal plugin is disabled
 color = getattr(self._config.option, "color", "no")
 if color != "no" and ColoredLevelFormatter.LEVELNAME_FMT_REGEX.search(
 log_format
):
 formatter = ColoredLevelFormatter(
 create_terminal_writer(self._config), log_format, log_date_format
)
 else:
 formatter = logging.Formatter(log_format, log_date_format)

 if not six.PY2:
 formatter._style = PercentStyleMultiline(formatter._style._fmt)
 return formatter

 def _setup_cli_logging(self):
 config = self._config
 terminal_reporter = config.pluginmanager.get_plugin("terminalreporter")
 if terminal_reporter is None:
 # terminal reporter is disabled e.g. by pytest-xdist.
 return

 capture_manager = config.pluginmanager.get_plugin("capturemanager")
 # if capturemanager plugin is disabled, live logging still works.
 log_cli_handler = _LiveLoggingStreamHandler(terminal_reporter, capture_manager)

 log_cli_formatter = self._create_formatter(
 get_option_ini(config, "log_cli_format", "log_format"),
 get_option_ini(config, "log_cli_date_format", "log_date_format"),
)

 log_cli_level = get_actual_log_level(config, "log_cli_level", "log_level")
 self.log_cli_handler = log_cli_handler
 self.live_logs_context = lambda: catching_logs(
 log_cli_handler, formatter=log_cli_formatter, level=log_cli_level
)

 def set_log_path(self, fname):
 """Public method, which can set filename parameter for
 Logging.FileHandler(). Also creates parent directory if
 it does not exist.

 .. warning::
 Please considered as an experimental API.
 """
 fname = Path(fname)

 if not fname.is_absolute():
 fname = Path(self._config.rootdir, fname)

 if not fname.parent.exists():
 fname.parent.mkdir(exist_ok=True, parents=True)

 self.log_file_handler = logging.FileHandler(
 str(fname), mode="w", encoding="UTF-8"
)
 self.log_file_handler.setFormatter(self.log_file_formatter)

 def _log_cli_enabled(self):
 """Return True if log_cli should be considered enabled, either explicitly
 or because --log-cli-level was given in the command-line.
 """
 return self._config.getoption(
 "--log-cli-level"
) is not None or self._config.getini("log_cli")

 @pytest.hookimpl(hookwrapper=True, tryfirst=True)
 def pytest_collection(self):
 with self.live_logs_context():
 if self.log_cli_handler:
 self.log_cli_handler.set_when("collection")

 if self.log_file_handler is not None:
 with catching_logs(self.log_file_handler, level=self.log_file_level):
 yield
 else:
 yield

 @contextmanager
 def _runtest_for(self, item, when):
 with self._runtest_for_main(item, when):
 if self.log_file_handler is not None:
 with catching_logs(self.log_file_handler, level=self.log_file_level):
 yield
 else:
 yield

 @contextmanager
 def _runtest_for_main(self, item, when):
 """Implements the internals of pytest_runtest_xxx() hook."""
 with catching_logs(
 LogCaptureHandler(), formatter=self.formatter, level=self.log_level
) as log_handler:
 if self.log_cli_handler:
 self.log_cli_handler.set_when(when)

 if item is None:
 yield # run the test
 return

 if not hasattr(item, "catch_log_handlers"):
 item.catch_log_handlers = {}
 item.catch_log_handlers[when] = log_handler
 item.catch_log_handler = log_handler
 try:
 yield # run test
 finally:
 if when == "teardown":
 del item.catch_log_handler
 del item.catch_log_handlers

 if self.print_logs:
 # Add a captured log section to the report.
 log = log_handler.stream.getvalue().strip()
 item.add_report_section(when, "log", log)

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtest_setup(self, item):
 with self._runtest_for(item, "setup"):
 yield

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtest_call(self, item):
 with self._runtest_for(item, "call"):
 yield

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtest_teardown(self, item):
 with self._runtest_for(item, "teardown"):
 yield

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtest_logstart(self):
 if self.log_cli_handler:
 self.log_cli_handler.reset()
 with self._runtest_for(None, "start"):
 yield

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtest_logfinish(self):
 with self._runtest_for(None, "finish"):
 yield

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtest_logreport(self):
 with self._runtest_for(None, "logreport"):
 yield

 @pytest.hookimpl(hookwrapper=True, tryfirst=True)
 def pytest_sessionfinish(self):
 with self.live_logs_context():
 if self.log_cli_handler:
 self.log_cli_handler.set_when("sessionfinish")
 if self.log_file_handler is not None:
 try:
 with catching_logs(
 self.log_file_handler, level=self.log_file_level
):
 yield
 finally:
 # Close the FileHandler explicitly.
 # (logging.shutdown might have lost the weakref?!)
 self.log_file_handler.close()
 else:
 yield

 @pytest.hookimpl(hookwrapper=True, tryfirst=True)
 def pytest_sessionstart(self):
 with self.live_logs_context():
 if self.log_cli_handler:
 self.log_cli_handler.set_when("sessionstart")
 if self.log_file_handler is not None:
 with catching_logs(self.log_file_handler, level=self.log_file_level):
 yield
 else:
 yield

 @pytest.hookimpl(hookwrapper=True)
 def pytest_runtestloop(self, session):
 """Runs all collected test items."""

 if session.config.option.collectonly:
 yield
 return

 if self._log_cli_enabled() and self._config.getoption("verbose") < 1:
 # setting verbose flag is needed to avoid messy test progress output
 self._config.option.verbose = 1

 with self.live_logs_context():
 if self.log_file_handler is not None:
 with catching_logs(self.log_file_handler, level=self.log_file_level):
 yield # run all the tests
 else:
 yield # run all the tests

class _LiveLoggingStreamHandler(logging.StreamHandler):
 """
 Custom StreamHandler used by the live logging feature: it will write a newline before the first log message
 in each test.

 During live logging we must also explicitly disable stdout/stderr capturing otherwise it will get captured
 and won't appear in the terminal.
 """

 def __init__(self, terminal_reporter, capture_manager):
 """
 :param _pytest.terminal.TerminalReporter terminal_reporter:
 :param _pytest.capture.CaptureManager capture_manager:
 """
 logging.StreamHandler.__init__(self, stream=terminal_reporter)
 self.capture_manager = capture_manager
 self.reset()
 self.set_when(None)
 self._test_outcome_written = False

 def reset(self):
 """Reset the handler; should be called before the start of each test"""
 self._first_record_emitted = False

 def set_when(self, when):
 """Prepares for the given test phase (setup/call/teardown)"""
 self._when = when
 self._section_name_shown = False
 if when == "start":
 self._test_outcome_written = False

 def emit(self, record):
 ctx_manager = (
 self.capture_manager.global_and_fixture_disabled()
 if self.capture_manager
 else dummy_context_manager()
)
 with ctx_manager:
 if not self._first_record_emitted:
 self.stream.write("\n")
 self._first_record_emitted = True
 elif self._when in ("teardown", "finish"):
 if not self._test_outcome_written:
 self._test_outcome_written = True
 self.stream.write("\n")
 if not self._section_name_shown and self._when:
 self.stream.section("live log " + self._when, sep="-", bold=True)
 self._section_name_shown = True
 logging.StreamHandler.emit(self, record)

 Source code for _pytest.main

-*- coding: utf-8 -*-
""" core implementation of testing process: init, session, runtest loop. """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import contextlib
import fnmatch
import functools
import os
import pkgutil
import sys
import warnings

import attr
import py
import six

import _pytest._code
from _pytest import nodes
from _pytest.config import directory_arg
from _pytest.config import hookimpl
from _pytest.config import UsageError
from _pytest.deprecated import PYTEST_CONFIG_GLOBAL
from _pytest.outcomes import exit
from _pytest.runner import collect_one_node

exitcodes for the command line
EXIT_OK = 0
EXIT_TESTSFAILED = 1
EXIT_INTERRUPTED = 2
EXIT_INTERNALERROR = 3
EXIT_USAGEERROR = 4
EXIT_NOTESTSCOLLECTED = 5

def pytest_addoption(parser):
 parser.addini(
 "norecursedirs",
 "directory patterns to avoid for recursion",
 type="args",
 default=[".*", "build", "dist", "CVS", "_darcs", "{arch}", "*.egg", "venv"],
)
 parser.addini(
 "testpaths",
 "directories to search for tests when no files or directories are given in the "
 "command line.",
 type="args",
 default=[],
)
 group = parser.getgroup("general", "running and selection options")
 group._addoption(
 "-x",
 "--exitfirst",
 action="store_const",
 dest="maxfail",
 const=1,
 help="exit instantly on first error or failed test.",
),
 group._addoption(
 "--maxfail",
 metavar="num",
 action="store",
 type=int,
 dest="maxfail",
 default=0,
 help="exit after first num failures or errors.",
)
 group._addoption(
 "--strict-markers",
 "--strict",
 action="store_true",
 help="markers not registered in the `markers` section of the configuration file raise errors.",
)
 group._addoption(
 "-c",
 metavar="file",
 type=str,
 dest="inifilename",
 help="load configuration from `file` instead of trying to locate one of the implicit "
 "configuration files.",
)
 group._addoption(
 "--continue-on-collection-errors",
 action="store_true",
 default=False,
 dest="continue_on_collection_errors",
 help="Force test execution even if collection errors occur.",
)
 group._addoption(
 "--rootdir",
 action="store",
 dest="rootdir",
 help="Define root directory for tests. Can be relative path: 'root_dir', './root_dir', "
 "'root_dir/another_dir/'; absolute path: '/home/user/root_dir'; path with variables: "
 "'$HOME/root_dir'.",
)

 group = parser.getgroup("collect", "collection")
 group.addoption(
 "--collectonly",
 "--collect-only",
 action="store_true",
 help="only collect tests, don't execute them.",
),
 group.addoption(
 "--pyargs",
 action="store_true",
 help="try to interpret all arguments as python packages.",
)
 group.addoption(
 "--ignore",
 action="append",
 metavar="path",
 help="ignore path during collection (multi-allowed).",
)
 group.addoption(
 "--ignore-glob",
 action="append",
 metavar="path",
 help="ignore path pattern during collection (multi-allowed).",
)
 group.addoption(
 "--deselect",
 action="append",
 metavar="nodeid_prefix",
 help="deselect item during collection (multi-allowed).",
)
 # when changing this to --conf-cut-dir, config.py Conftest.setinitial
 # needs upgrading as well
 group.addoption(
 "--confcutdir",
 dest="confcutdir",
 default=None,
 metavar="dir",
 type=functools.partial(directory_arg, optname="--confcutdir"),
 help="only load conftest.py's relative to specified dir.",
)
 group.addoption(
 "--noconftest",
 action="store_true",
 dest="noconftest",
 default=False,
 help="Don't load any conftest.py files.",
)
 group.addoption(
 "--keepduplicates",
 "--keep-duplicates",
 action="store_true",
 dest="keepduplicates",
 default=False,
 help="Keep duplicate tests.",
)
 group.addoption(
 "--collect-in-virtualenv",
 action="store_true",
 dest="collect_in_virtualenv",
 default=False,
 help="Don't ignore tests in a local virtualenv directory",
)

 group = parser.getgroup("debugconfig", "test session debugging and configuration")
 group.addoption(
 "--basetemp",
 dest="basetemp",
 default=None,
 metavar="dir",
 help=(
 "base temporary directory for this test run."
 "(warning: this directory is removed if it exists)"
),
)

class _ConfigDeprecated(object):
 def __init__(self, config):
 self.__dict__["_config"] = config

 def __getattr__(self, attr):
 warnings.warn(PYTEST_CONFIG_GLOBAL, stacklevel=2)
 return getattr(self._config, attr)

 def __setattr__(self, attr, val):
 warnings.warn(PYTEST_CONFIG_GLOBAL, stacklevel=2)
 return setattr(self._config, attr, val)

 def __repr__(self):
 return "{}({!r})".format(type(self).__name__, self._config)

def pytest_configure(config):
 __import__("pytest").config = _ConfigDeprecated(config) # compatibility

def wrap_session(config, doit):
 """Skeleton command line program"""
 session = Session(config)
 session.exitstatus = EXIT_OK
 initstate = 0
 try:
 try:
 config._do_configure()
 initstate = 1
 config.hook.pytest_sessionstart(session=session)
 initstate = 2
 session.exitstatus = doit(config, session) or 0
 except UsageError:
 session.exitstatus = EXIT_USAGEERROR
 raise
 except Failed:
 session.exitstatus = EXIT_TESTSFAILED
 except (KeyboardInterrupt, exit.Exception):
 excinfo = _pytest._code.ExceptionInfo.from_current()
 exitstatus = EXIT_INTERRUPTED
 if isinstance(excinfo.value, exit.Exception):
 if excinfo.value.returncode is not None:
 exitstatus = excinfo.value.returncode
 if initstate < 2:
 sys.stderr.write(
 "{}: {}\n".format(excinfo.typename, excinfo.value.msg)
)
 config.hook.pytest_keyboard_interrupt(excinfo=excinfo)
 session.exitstatus = exitstatus
 except: # noqa
 excinfo = _pytest._code.ExceptionInfo.from_current()
 config.notify_exception(excinfo, config.option)
 session.exitstatus = EXIT_INTERNALERROR
 if excinfo.errisinstance(SystemExit):
 sys.stderr.write("mainloop: caught unexpected SystemExit!\n")

 finally:
 excinfo = None # Explicitly break reference cycle.
 session.startdir.chdir()
 if initstate >= 2:
 config.hook.pytest_sessionfinish(
 session=session, exitstatus=session.exitstatus
)
 config._ensure_unconfigure()
 return session.exitstatus

def pytest_cmdline_main(config):
 return wrap_session(config, _main)

def _main(config, session):
 """ default command line protocol for initialization, session,
 running tests and reporting. """
 config.hook.pytest_collection(session=session)
 config.hook.pytest_runtestloop(session=session)

 if session.testsfailed:
 return EXIT_TESTSFAILED
 elif session.testscollected == 0:
 return EXIT_NOTESTSCOLLECTED

def pytest_collection(session):
 return session.perform_collect()

def pytest_runtestloop(session):
 if session.testsfailed and not session.config.option.continue_on_collection_errors:
 raise session.Interrupted("%d errors during collection" % session.testsfailed)

 if session.config.option.collectonly:
 return True

 for i, item in enumerate(session.items):
 nextitem = session.items[i + 1] if i + 1 < len(session.items) else None
 item.config.hook.pytest_runtest_protocol(item=item, nextitem=nextitem)
 if session.shouldfail:
 raise session.Failed(session.shouldfail)
 if session.shouldstop:
 raise session.Interrupted(session.shouldstop)
 return True

def _in_venv(path):
 """Attempts to detect if ``path`` is the root of a Virtual Environment by
 checking for the existence of the appropriate activate script"""
 bindir = path.join("Scripts" if sys.platform.startswith("win") else "bin")
 if not bindir.isdir():
 return False
 activates = (
 "activate",
 "activate.csh",
 "activate.fish",
 "Activate",
 "Activate.bat",
 "Activate.ps1",
)
 return any([fname.basename in activates for fname in bindir.listdir()])

def pytest_ignore_collect(path, config):
 ignore_paths = config._getconftest_pathlist("collect_ignore", path=path.dirpath())
 ignore_paths = ignore_paths or []
 excludeopt = config.getoption("ignore")
 if excludeopt:
 ignore_paths.extend([py.path.local(x) for x in excludeopt])

 if py.path.local(path) in ignore_paths:
 return True

 ignore_globs = config._getconftest_pathlist(
 "collect_ignore_glob", path=path.dirpath()
)
 ignore_globs = ignore_globs or []
 excludeglobopt = config.getoption("ignore_glob")
 if excludeglobopt:
 ignore_globs.extend([py.path.local(x) for x in excludeglobopt])

 if any(
 fnmatch.fnmatch(six.text_type(path), six.text_type(glob))
 for glob in ignore_globs
):
 return True

 allow_in_venv = config.getoption("collect_in_virtualenv")
 if not allow_in_venv and _in_venv(path):
 return True

 return False

def pytest_collection_modifyitems(items, config):
 deselect_prefixes = tuple(config.getoption("deselect") or [])
 if not deselect_prefixes:
 return

 remaining = []
 deselected = []
 for colitem in items:
 if colitem.nodeid.startswith(deselect_prefixes):
 deselected.append(colitem)
 else:
 remaining.append(colitem)

 if deselected:
 config.hook.pytest_deselected(items=deselected)
 items[:] = remaining

@contextlib.contextmanager
def _patched_find_module():
 """Patch bug in pkgutil.ImpImporter.find_module

 When using pkgutil.find_loader on python<3.4 it removes symlinks
 from the path due to a call to os.path.realpath. This is not consistent
 with actually doing the import (in these versions, pkgutil and __import__
 did not share the same underlying code). This can break conftest
 discovery for pytest where symlinks are involved.

 The only supported python<3.4 by pytest is python 2.7.
 """
 if six.PY2: # python 3.4+ uses importlib instead

 def find_module_patched(self, fullname, path=None):
 # Note: we ignore 'path' argument since it is only used via meta_path
 subname = fullname.split(".")[-1]
 if subname != fullname and self.path is None:
 return None
 if self.path is None:
 path = None
 else:
 # original: path = [os.path.realpath(self.path)]
 path = [self.path]
 try:
 file, filename, etc = pkgutil.imp.find_module(subname, path)
 except ImportError:
 return None
 return pkgutil.ImpLoader(fullname, file, filename, etc)

 old_find_module = pkgutil.ImpImporter.find_module
 pkgutil.ImpImporter.find_module = find_module_patched
 try:
 yield
 finally:
 pkgutil.ImpImporter.find_module = old_find_module
 else:
 yield

class FSHookProxy(object):
 def __init__(self, fspath, pm, remove_mods):
 self.fspath = fspath
 self.pm = pm
 self.remove_mods = remove_mods

 def __getattr__(self, name):
 x = self.pm.subset_hook_caller(name, remove_plugins=self.remove_mods)
 self.__dict__[name] = x
 return x

class NoMatch(Exception):
 """ raised if matching cannot locate a matching names. """

class Interrupted(KeyboardInterrupt):
 """ signals an interrupted test run. """

 __module__ = "builtins" # for py3

class Failed(Exception):
 """ signals a stop as failed test run. """

@attr.s
class _bestrelpath_cache(dict):
 path = attr.ib()

 def __missing__(self, path):
 r = self.path.bestrelpath(path)
 self[path] = r
 return r

[docs]class Session(nodes.FSCollector):
 Interrupted = Interrupted
 Failed = Failed

 def __init__(self, config):
 nodes.FSCollector.__init__(
 self, config.rootdir, parent=None, config=config, session=self, nodeid=""
)
 self.testsfailed = 0
 self.testscollected = 0
 self.shouldstop = False
 self.shouldfail = False
 self.trace = config.trace.root.get("collection")
 self._norecursepatterns = config.getini("norecursedirs")
 self.startdir = config.invocation_dir
 self._initialpaths = frozenset()
 # Keep track of any collected nodes in here, so we don't duplicate fixtures
 self._node_cache = {}
 self._bestrelpathcache = _bestrelpath_cache(config.rootdir)
 # Dirnames of pkgs with dunder-init files.
 self._pkg_roots = {}

 self.config.pluginmanager.register(self, name="session")

 def __repr__(self):
 return "<%s %s exitstatus=%r testsfailed=%d testscollected=%d>" % (
 self.__class__.__name__,
 self.name,
 getattr(self, "exitstatus", "<UNSET>"),
 self.testsfailed,
 self.testscollected,
)

 def _node_location_to_relpath(self, node_path):
 # bestrelpath is a quite slow function
 return self._bestrelpathcache[node_path]

 @hookimpl(tryfirst=True)
 def pytest_collectstart(self):
 if self.shouldfail:
 raise self.Failed(self.shouldfail)
 if self.shouldstop:
 raise self.Interrupted(self.shouldstop)

 @hookimpl(tryfirst=True)
 def pytest_runtest_logreport(self, report):
 if report.failed and not hasattr(report, "wasxfail"):
 self.testsfailed += 1
 maxfail = self.config.getvalue("maxfail")
 if maxfail and self.testsfailed >= maxfail:
 self.shouldfail = "stopping after %d failures" % (self.testsfailed)

 pytest_collectreport = pytest_runtest_logreport

 def isinitpath(self, path):
 return path in self._initialpaths

 def gethookproxy(self, fspath):
 # check if we have the common case of running
 # hooks with all conftest.py files
 pm = self.config.pluginmanager
 my_conftestmodules = pm._getconftestmodules(fspath)
 remove_mods = pm._conftest_plugins.difference(my_conftestmodules)
 if remove_mods:
 # one or more conftests are not in use at this fspath
 proxy = FSHookProxy(fspath, pm, remove_mods)
 else:
 # all plugis are active for this fspath
 proxy = self.config.hook
 return proxy

 def perform_collect(self, args=None, genitems=True):
 hook = self.config.hook
 try:
 items = self._perform_collect(args, genitems)
 self.config.pluginmanager.check_pending()
 hook.pytest_collection_modifyitems(
 session=self, config=self.config, items=items
)
 finally:
 hook.pytest_collection_finish(session=self)
 self.testscollected = len(items)
 return items

 def _perform_collect(self, args, genitems):
 if args is None:
 args = self.config.args
 self.trace("perform_collect", self, args)
 self.trace.root.indent += 1
 self._notfound = []
 initialpaths = []
 self._initialparts = []
 self.items = items = []
 for arg in args:
 parts = self._parsearg(arg)
 self._initialparts.append(parts)
 initialpaths.append(parts[0])
 self._initialpaths = frozenset(initialpaths)
 rep = collect_one_node(self)
 self.ihook.pytest_collectreport(report=rep)
 self.trace.root.indent -= 1
 if self._notfound:
 errors = []
 for arg, exc in self._notfound:
 line = "(no name %r in any of %r)" % (arg, exc.args[0])
 errors.append("not found: %s\n%s" % (arg, line))
 # XXX: test this
 raise UsageError(*errors)
 if not genitems:
 return rep.result
 else:
 if rep.passed:
 for node in rep.result:
 self.items.extend(self.genitems(node))
 return items

[docs] def collect(self):
 for initialpart in self._initialparts:
 arg = "::".join(map(str, initialpart))
 self.trace("processing argument", arg)
 self.trace.root.indent += 1
 try:
 for x in self._collect(arg):
 yield x
 except NoMatch:
 # we are inside a make_report hook so
 # we cannot directly pass through the exception
 self._notfound.append((arg, sys.exc_info()[1]))

 self.trace.root.indent -= 1

 def _collect(self, arg):
 from _pytest.python import Package

 names = self._parsearg(arg)
 argpath = names.pop(0)

 # Start with a Session root, and delve to argpath item (dir or file)
 # and stack all Packages found on the way.
 # No point in finding packages when collecting doctests
 if not self.config.getoption("doctestmodules", False):
 pm = self.config.pluginmanager
 for parent in reversed(argpath.parts()):
 if pm._confcutdir and pm._confcutdir.relto(parent):
 break

 if parent.isdir():
 pkginit = parent.join("__init__.py")
 if pkginit.isfile():
 if pkginit not in self._node_cache:
 col = self._collectfile(pkginit, handle_dupes=False)
 if col:
 if isinstance(col[0], Package):
 self._pkg_roots[parent] = col[0]
 # always store a list in the cache, matchnodes expects it
 self._node_cache[col[0].fspath] = [col[0]]

 # If it's a directory argument, recurse and look for any Subpackages.
 # Let the Package collector deal with subnodes, don't collect here.
 if argpath.check(dir=1):
 assert not names, "invalid arg %r" % (arg,)

 seen_dirs = set()
 for path in argpath.visit(
 fil=self._visit_filter, rec=self._recurse, bf=True, sort=True
):
 dirpath = path.dirpath()
 if dirpath not in seen_dirs:
 # Collect packages first.
 seen_dirs.add(dirpath)
 pkginit = dirpath.join("__init__.py")
 if pkginit.exists():
 for x in self._collectfile(pkginit):
 yield x
 if isinstance(x, Package):
 self._pkg_roots[dirpath] = x
 if dirpath in self._pkg_roots:
 # Do not collect packages here.
 continue

 for x in self._collectfile(path):
 key = (type(x), x.fspath)
 if key in self._node_cache:
 yield self._node_cache[key]
 else:
 self._node_cache[key] = x
 yield x
 else:
 assert argpath.check(file=1)

 if argpath in self._node_cache:
 col = self._node_cache[argpath]
 else:
 collect_root = self._pkg_roots.get(argpath.dirname, self)
 col = collect_root._collectfile(argpath, handle_dupes=False)
 if col:
 self._node_cache[argpath] = col
 m = self.matchnodes(col, names)
 # If __init__.py was the only file requested, then the matched node will be
 # the corresponding Package, and the first yielded item will be the __init__
 # Module itself, so just use that. If this special case isn't taken, then all
 # the files in the package will be yielded.
 if argpath.basename == "__init__.py":
 try:
 yield next(m[0].collect())
 except StopIteration:
 # The package collects nothing with only an __init__.py
 # file in it, which gets ignored by the default
 # "python_files" option.
 pass
 return
 for y in m:
 yield y

 def _collectfile(self, path, handle_dupes=True):
 assert path.isfile(), "%r is not a file (isdir=%r, exists=%r, islink=%r)" % (
 path,
 path.isdir(),
 path.exists(),
 path.islink(),
)
 ihook = self.gethookproxy(path)
 if not self.isinitpath(path):
 if ihook.pytest_ignore_collect(path=path, config=self.config):
 return ()

 if handle_dupes:
 keepduplicates = self.config.getoption("keepduplicates")
 if not keepduplicates:
 duplicate_paths = self.config.pluginmanager._duplicatepaths
 if path in duplicate_paths:
 return ()
 else:
 duplicate_paths.add(path)

 return ihook.pytest_collect_file(path=path, parent=self)

 def _recurse(self, dirpath):
 if dirpath.basename == "__pycache__":
 return False
 ihook = self.gethookproxy(dirpath.dirpath())
 if ihook.pytest_ignore_collect(path=dirpath, config=self.config):
 return False
 for pat in self._norecursepatterns:
 if dirpath.check(fnmatch=pat):
 return False
 ihook = self.gethookproxy(dirpath)
 ihook.pytest_collect_directory(path=dirpath, parent=self)
 return True

 if six.PY2:

 @staticmethod
 def _visit_filter(f):
 return f.check(file=1) and not f.strpath.endswith("*.pyc")

 else:

 @staticmethod
 def _visit_filter(f):
 return f.check(file=1)

 def _tryconvertpyarg(self, x):
 """Convert a dotted module name to path."""
 try:
 with _patched_find_module():
 loader = pkgutil.find_loader(x)
 except ImportError:
 return x
 if loader is None:
 return x
 # This method is sometimes invoked when AssertionRewritingHook, which
 # does not define a get_filename method, is already in place:
 try:
 with _patched_find_module():
 path = loader.get_filename(x)
 except AttributeError:
 # Retrieve path from AssertionRewritingHook:
 path = loader.modules[x][0].co_filename
 if loader.is_package(x):
 path = os.path.dirname(path)
 return path

 def _parsearg(self, arg):
 """ return (fspath, names) tuple after checking the file exists. """
 parts = str(arg).split("::")
 if self.config.option.pyargs:
 parts[0] = self._tryconvertpyarg(parts[0])
 relpath = parts[0].replace("/", os.sep)
 path = self.config.invocation_dir.join(relpath, abs=True)
 if not path.check():
 if self.config.option.pyargs:
 raise UsageError(
 "file or package not found: " + arg + " (missing __init__.py?)"
)
 raise UsageError("file not found: " + arg)
 parts[0] = path.realpath()
 return parts

 def matchnodes(self, matching, names):
 self.trace("matchnodes", matching, names)
 self.trace.root.indent += 1
 nodes = self._matchnodes(matching, names)
 num = len(nodes)
 self.trace("matchnodes finished -> ", num, "nodes")
 self.trace.root.indent -= 1
 if num == 0:
 raise NoMatch(matching, names[:1])
 return nodes

 def _matchnodes(self, matching, names):
 if not matching or not names:
 return matching
 name = names[0]
 assert name
 nextnames = names[1:]
 resultnodes = []
 for node in matching:
 if isinstance(node, nodes.Item):
 if not names:
 resultnodes.append(node)
 continue
 assert isinstance(node, nodes.Collector)
 key = (type(node), node.nodeid)
 if key in self._node_cache:
 rep = self._node_cache[key]
 else:
 rep = collect_one_node(node)
 self._node_cache[key] = rep
 if rep.passed:
 has_matched = False
 for x in rep.result:
 # TODO: remove parametrized workaround once collection structure contains parametrization
 if x.name == name or x.name.split("[")[0] == name:
 resultnodes.extend(self.matchnodes([x], nextnames))
 has_matched = True
 # XXX accept IDs that don't have "()" for class instances
 if not has_matched and len(rep.result) == 1 and x.name == "()":
 nextnames.insert(0, name)
 resultnodes.extend(self.matchnodes([x], nextnames))
 else:
 # report collection failures here to avoid failing to run some test
 # specified in the command line because the module could not be
 # imported (#134)
 node.ihook.pytest_collectreport(report=rep)
 return resultnodes

 def genitems(self, node):
 self.trace("genitems", node)
 if isinstance(node, nodes.Item):
 node.ihook.pytest_itemcollected(item=node)
 yield node
 else:
 assert isinstance(node, nodes.Collector)
 rep = collect_one_node(node)
 if rep.passed:
 for subnode in rep.result:
 for x in self.genitems(subnode):
 yield x
 node.ihook.pytest_collectreport(report=rep)

 Source code for _pytest.mark

-*- coding: utf-8 -*-
""" generic mechanism for marking and selecting python functions. """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from .legacy import matchkeyword
from .legacy import matchmark
from .structures import EMPTY_PARAMETERSET_OPTION
from .structures import get_empty_parameterset_mark
from .structures import Mark
from .structures import MARK_GEN
from .structures import MarkDecorator
from .structures import MarkGenerator
from .structures import ParameterSet
from _pytest.config import UsageError

__all__ = ["Mark", "MarkDecorator", "MarkGenerator", "get_empty_parameterset_mark"]

[docs]def param(*values, **kw):
 """Specify a parameter in `pytest.mark.parametrize`_ calls or
 :ref:`parametrized fixtures <fixture-parametrize-marks>`.

 .. code-block:: python

 @pytest.mark.parametrize("test_input,expected", [
 ("3+5", 8),
 pytest.param("6*9", 42, marks=pytest.mark.xfail),
])
 def test_eval(test_input, expected):
 assert eval(test_input) == expected

 :param values: variable args of the values of the parameter set, in order.
 :keyword marks: a single mark or a list of marks to be applied to this parameter set.
 :keyword str id: the id to attribute to this parameter set.
 """
 return ParameterSet.param(*values, **kw)

def pytest_addoption(parser):
 group = parser.getgroup("general")
 group._addoption(
 "-k",
 action="store",
 dest="keyword",
 default="",
 metavar="EXPRESSION",
 help="only run tests which match the given substring expression. "
 "An expression is a python evaluatable expression "
 "where all names are substring-matched against test names "
 "and their parent classes. Example: -k 'test_method or test_"
 "other' matches all test functions and classes whose name "
 "contains 'test_method' or 'test_other', while -k 'not test_method' "
 "matches those that don't contain 'test_method' in their names. "
 "-k 'not test_method and not test_other' will eliminate the matches. "
 "Additionally keywords are matched to classes and functions "
 "containing extra names in their 'extra_keyword_matches' set, "
 "as well as functions which have names assigned directly to them.",
)

 group._addoption(
 "-m",
 action="store",
 dest="markexpr",
 default="",
 metavar="MARKEXPR",
 help="only run tests matching given mark expression. "
 "example: -m 'mark1 and not mark2'.",
)

 group.addoption(
 "--markers",
 action="store_true",
 help="show markers (builtin, plugin and per-project ones).",
)

 parser.addini("markers", "markers for test functions", "linelist")
 parser.addini(EMPTY_PARAMETERSET_OPTION, "default marker for empty parametersets")

def pytest_cmdline_main(config):
 import _pytest.config

 if config.option.markers:
 config._do_configure()
 tw = _pytest.config.create_terminal_writer(config)
 for line in config.getini("markers"):
 parts = line.split(":", 1)
 name = parts[0]
 rest = parts[1] if len(parts) == 2 else ""
 tw.write("@pytest.mark.%s:" % name, bold=True)
 tw.line(rest)
 tw.line()
 config._ensure_unconfigure()
 return 0

pytest_cmdline_main.tryfirst = True

def deselect_by_keyword(items, config):
 keywordexpr = config.option.keyword.lstrip()
 if not keywordexpr:
 return

 if keywordexpr.startswith("-"):
 keywordexpr = "not " + keywordexpr[1:]
 selectuntil = False
 if keywordexpr[-1:] == ":":
 selectuntil = True
 keywordexpr = keywordexpr[:-1]

 remaining = []
 deselected = []
 for colitem in items:
 if keywordexpr and not matchkeyword(colitem, keywordexpr):
 deselected.append(colitem)
 else:
 if selectuntil:
 keywordexpr = None
 remaining.append(colitem)

 if deselected:
 config.hook.pytest_deselected(items=deselected)
 items[:] = remaining

def deselect_by_mark(items, config):
 matchexpr = config.option.markexpr
 if not matchexpr:
 return

 remaining = []
 deselected = []
 for item in items:
 if matchmark(item, matchexpr):
 remaining.append(item)
 else:
 deselected.append(item)

 if deselected:
 config.hook.pytest_deselected(items=deselected)
 items[:] = remaining

def pytest_collection_modifyitems(items, config):
 deselect_by_keyword(items, config)
 deselect_by_mark(items, config)

def pytest_configure(config):
 config._old_mark_config = MARK_GEN._config
 MARK_GEN._config = config

 empty_parameterset = config.getini(EMPTY_PARAMETERSET_OPTION)

 if empty_parameterset not in ("skip", "xfail", "fail_at_collect", None, ""):
 raise UsageError(
 "{!s} must be one of skip, xfail or fail_at_collect"
 " but it is {!r}".format(EMPTY_PARAMETERSET_OPTION, empty_parameterset)
)

def pytest_unconfigure(config):
 MARK_GEN._config = getattr(config, "_old_mark_config", None)

 Source code for _pytest.monkeypatch

-*- coding: utf-8 -*-
""" monkeypatching and mocking functionality. """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import re
import sys
import warnings
from contextlib import contextmanager

import six

import pytest
from _pytest.fixtures import fixture
from _pytest.pathlib import Path

RE_IMPORT_ERROR_NAME = re.compile(r"^No module named (.*)$")

[docs]@fixture
def monkeypatch():
 """The returned ``monkeypatch`` fixture provides these
 helper methods to modify objects, dictionaries or os.environ::

 monkeypatch.setattr(obj, name, value, raising=True)
 monkeypatch.delattr(obj, name, raising=True)
 monkeypatch.setitem(mapping, name, value)
 monkeypatch.delitem(obj, name, raising=True)
 monkeypatch.setenv(name, value, prepend=False)
 monkeypatch.delenv(name, raising=True)
 monkeypatch.syspath_prepend(path)
 monkeypatch.chdir(path)

 All modifications will be undone after the requesting
 test function or fixture has finished. The ``raising``
 parameter determines if a KeyError or AttributeError
 will be raised if the set/deletion operation has no target.
 """
 mpatch = MonkeyPatch()
 yield mpatch
 mpatch.undo()

def resolve(name):
 # simplified from zope.dottedname
 parts = name.split(".")

 used = parts.pop(0)
 found = __import__(used)
 for part in parts:
 used += "." + part
 try:
 found = getattr(found, part)
 except AttributeError:
 pass
 else:
 continue
 # we use explicit un-nesting of the handling block in order
 # to avoid nested exceptions on python 3
 try:
 __import__(used)
 except ImportError as ex:
 # str is used for py2 vs py3
 expected = str(ex).split()[-1]
 if expected == used:
 raise
 else:
 raise ImportError("import error in %s: %s" % (used, ex))
 found = annotated_getattr(found, part, used)
 return found

def annotated_getattr(obj, name, ann):
 try:
 obj = getattr(obj, name)
 except AttributeError:
 raise AttributeError(
 "%r object at %s has no attribute %r" % (type(obj).__name__, ann, name)
)
 return obj

def derive_importpath(import_path, raising):
 if not isinstance(import_path, six.string_types) or "." not in import_path:
 raise TypeError("must be absolute import path string, not %r" % (import_path,))
 module, attr = import_path.rsplit(".", 1)
 target = resolve(module)
 if raising:
 annotated_getattr(target, attr, ann=module)
 return attr, target

class Notset(object):
 def __repr__(self):
 return "<notset>"

notset = Notset()

[docs]class MonkeyPatch(object):
 """ Object returned by the ``monkeypatch`` fixture keeping a record of setattr/item/env/syspath changes.
 """

 def __init__(self):
 self._setattr = []
 self._setitem = []
 self._cwd = None
 self._savesyspath = None

[docs] @contextmanager
 def context(self):
 """
 Context manager that returns a new :class:`MonkeyPatch` object which
 undoes any patching done inside the ``with`` block upon exit:

 .. code-block:: python

 import functools
 def test_partial(monkeypatch):
 with monkeypatch.context() as m:
 m.setattr(functools, "partial", 3)

 Useful in situations where it is desired to undo some patches before the test ends,
 such as mocking ``stdlib`` functions that might break pytest itself if mocked (for examples
 of this see `#3290 <https://github.com/pytest-dev/pytest/issues/3290>`_.
 """
 m = MonkeyPatch()
 try:
 yield m
 finally:
 m.undo()

[docs] def setattr(self, target, name, value=notset, raising=True):
 """ Set attribute value on target, memorizing the old value.
 By default raise AttributeError if the attribute did not exist.

 For convenience you can specify a string as ``target`` which
 will be interpreted as a dotted import path, with the last part
 being the attribute name. Example:
 ``monkeypatch.setattr("os.getcwd", lambda: "/")``
 would set the ``getcwd`` function of the ``os`` module.

 The ``raising`` value determines if the setattr should fail
 if the attribute is not already present (defaults to True
 which means it will raise).
 """
 __tracebackhide__ = True
 import inspect

 if value is notset:
 if not isinstance(target, six.string_types):
 raise TypeError(
 "use setattr(target, name, value) or "
 "setattr(target, value) with target being a dotted "
 "import string"
)
 value = name
 name, target = derive_importpath(target, raising)

 oldval = getattr(target, name, notset)
 if raising and oldval is notset:
 raise AttributeError("%r has no attribute %r" % (target, name))

 # avoid class descriptors like staticmethod/classmethod
 if inspect.isclass(target):
 oldval = target.__dict__.get(name, notset)
 self._setattr.append((target, name, oldval))
 setattr(target, name, value)

[docs] def delattr(self, target, name=notset, raising=True):
 """ Delete attribute ``name`` from ``target``, by default raise
 AttributeError it the attribute did not previously exist.

 If no ``name`` is specified and ``target`` is a string
 it will be interpreted as a dotted import path with the
 last part being the attribute name.

 If ``raising`` is set to False, no exception will be raised if the
 attribute is missing.
 """
 __tracebackhide__ = True
 import inspect

 if name is notset:
 if not isinstance(target, six.string_types):
 raise TypeError(
 "use delattr(target, name) or "
 "delattr(target) with target being a dotted "
 "import string"
)
 name, target = derive_importpath(target, raising)

 if not hasattr(target, name):
 if raising:
 raise AttributeError(name)
 else:
 oldval = getattr(target, name, notset)
 # Avoid class descriptors like staticmethod/classmethod.
 if inspect.isclass(target):
 oldval = target.__dict__.get(name, notset)
 self._setattr.append((target, name, oldval))
 delattr(target, name)

[docs] def setitem(self, dic, name, value):
 """ Set dictionary entry ``name`` to value. """
 self._setitem.append((dic, name, dic.get(name, notset)))
 dic[name] = value

[docs] def delitem(self, dic, name, raising=True):
 """ Delete ``name`` from dict. Raise KeyError if it doesn't exist.

 If ``raising`` is set to False, no exception will be raised if the
 key is missing.
 """
 if name not in dic:
 if raising:
 raise KeyError(name)
 else:
 self._setitem.append((dic, name, dic.get(name, notset)))
 del dic[name]

 def _warn_if_env_name_is_not_str(self, name):
 """On Python 2, warn if the given environment variable name is not a native str (#4056)"""
 if six.PY2 and not isinstance(name, str):
 warnings.warn(
 pytest.PytestWarning(
 "Environment variable name {!r} should be str".format(name)
)
)

[docs] def setenv(self, name, value, prepend=None):
 """ Set environment variable ``name`` to ``value``. If ``prepend``
 is a character, read the current environment variable value
 and prepend the ``value`` adjoined with the ``prepend`` character."""
 if not isinstance(value, str):
 warnings.warn(
 pytest.PytestWarning(
 "Value of environment variable {name} type should be str, but got "
 "{value!r} (type: {type}); converted to str implicitly".format(
 name=name, value=value, type=type(value).__name__
)
),
 stacklevel=2,
)
 value = str(value)
 if prepend and name in os.environ:
 value = value + prepend + os.environ[name]
 self._warn_if_env_name_is_not_str(name)
 self.setitem(os.environ, name, value)

[docs] def delenv(self, name, raising=True):
 """ Delete ``name`` from the environment. Raise KeyError if it does
 not exist.

 If ``raising`` is set to False, no exception will be raised if the
 environment variable is missing.
 """
 self._warn_if_env_name_is_not_str(name)
 self.delitem(os.environ, name, raising=raising)

[docs] def syspath_prepend(self, path):
 """ Prepend ``path`` to ``sys.path`` list of import locations. """
 from pkg_resources import fixup_namespace_packages

 if self._savesyspath is None:
 self._savesyspath = sys.path[:]
 sys.path.insert(0, str(path))

 # https://github.com/pypa/setuptools/blob/d8b901bc/docs/pkg_resources.txt#L162-L171
 fixup_namespace_packages(str(path))

 # A call to syspathinsert() usually means that the caller wants to
 # import some dynamically created files, thus with python3 we
 # invalidate its import caches.
 # This is especially important when any namespace package is in used,
 # since then the mtime based FileFinder cache (that gets created in
 # this case already) gets not invalidated when writing the new files
 # quickly afterwards.
 if sys.version_info >= (3, 3):
 from importlib import invalidate_caches

 invalidate_caches()

[docs] def chdir(self, path):
 """ Change the current working directory to the specified path.
 Path can be a string or a py.path.local object.
 """
 if self._cwd is None:
 self._cwd = os.getcwd()
 if hasattr(path, "chdir"):
 path.chdir()
 elif isinstance(path, Path):
 # modern python uses the fspath protocol here LEGACY
 os.chdir(str(path))
 else:
 os.chdir(path)

[docs] def undo(self):
 """ Undo previous changes. This call consumes the
 undo stack. Calling it a second time has no effect unless
 you do more monkeypatching after the undo call.

 There is generally no need to call `undo()`, since it is
 called automatically during tear-down.

 Note that the same `monkeypatch` fixture is used across a
 single test function invocation. If `monkeypatch` is used both by
 the test function itself and one of the test fixtures,
 calling `undo()` will undo all of the changes made in
 both functions.
 """
 for obj, name, value in reversed(self._setattr):
 if value is not notset:
 setattr(obj, name, value)
 else:
 delattr(obj, name)
 self._setattr[:] = []
 for dictionary, name, value in reversed(self._setitem):
 if value is notset:
 try:
 del dictionary[name]
 except KeyError:
 pass # was already deleted, so we have the desired state
 else:
 dictionary[name] = value
 self._setitem[:] = []
 if self._savesyspath is not None:
 sys.path[:] = self._savesyspath
 self._savesyspath = None

 if self._cwd is not None:
 os.chdir(self._cwd)
 self._cwd = None

 Source code for _pytest.nodes

-*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import warnings

import py
import six

import _pytest._code
from _pytest.compat import getfslineno
from _pytest.mark.structures import NodeKeywords
from _pytest.outcomes import fail

SEP = "/"

tracebackcutdir = py.path.local(_pytest.__file__).dirpath()

def _splitnode(nodeid):
 """Split a nodeid into constituent 'parts'.

 Node IDs are strings, and can be things like:
 ''
 'testing/code'
 'testing/code/test_excinfo.py'
 'testing/code/test_excinfo.py::TestFormattedExcinfo'

 Return values are lists e.g.
 []
 ['testing', 'code']
 ['testing', 'code', 'test_excinfo.py']
 ['testing', 'code', 'test_excinfo.py', 'TestFormattedExcinfo', '()']
 """
 if nodeid == "":
 # If there is no root node at all, return an empty list so the caller's logic can remain sane
 return []
 parts = nodeid.split(SEP)
 # Replace single last element 'test_foo.py::Bar' with multiple elements 'test_foo.py', 'Bar'
 parts[-1:] = parts[-1].split("::")
 return parts

def ischildnode(baseid, nodeid):
 """Return True if the nodeid is a child node of the baseid.

 E.g. 'foo/bar::Baz' is a child of 'foo', 'foo/bar' and 'foo/bar::Baz', but not of 'foo/blorp'
 """
 base_parts = _splitnode(baseid)
 node_parts = _splitnode(nodeid)
 if len(node_parts) < len(base_parts):
 return False
 return node_parts[: len(base_parts)] == base_parts

[docs]class Node(object):
 """ base class for Collector and Item the test collection tree.
 Collector subclasses have children, Items are terminal nodes."""

 def __init__(
 self, name, parent=None, config=None, session=None, fspath=None, nodeid=None
):
 #: a unique name within the scope of the parent node
 self.name = name

 #: the parent collector node.
 self.parent = parent

 #: the pytest config object
 self.config = config or parent.config

 #: the session this node is part of
 self.session = session or parent.session

 #: filesystem path where this node was collected from (can be None)
 self.fspath = fspath or getattr(parent, "fspath", None)

 #: keywords/markers collected from all scopes
 self.keywords = NodeKeywords(self)

 #: the marker objects belonging to this node
 self.own_markers = []

 #: allow adding of extra keywords to use for matching
 self.extra_keyword_matches = set()

 # used for storing artificial fixturedefs for direct parametrization
 self._name2pseudofixturedef = {}

 if nodeid is not None:
 assert "::()" not in nodeid
 self._nodeid = nodeid
 else:
 self._nodeid = self.parent.nodeid
 if self.name != "()":
 self._nodeid += "::" + self.name

 @property
 def ihook(self):
 """ fspath sensitive hook proxy used to call pytest hooks"""
 return self.session.gethookproxy(self.fspath)

 def __repr__(self):
 return "<%s %s>" % (self.__class__.__name__, getattr(self, "name", None))

[docs] def warn(self, warning):
 """Issue a warning for this item.

 Warnings will be displayed after the test session, unless explicitly suppressed

 :param Warning warning: the warning instance to issue. Must be a subclass of PytestWarning.

 :raise ValueError: if ``warning`` instance is not a subclass of PytestWarning.

 Example usage:

 .. code-block:: python

 node.warn(PytestWarning("some message"))

 """
 from _pytest.warning_types import PytestWarning

 if not isinstance(warning, PytestWarning):
 raise ValueError(
 "warning must be an instance of PytestWarning or subclass, got {!r}".format(
 warning
)
)
 path, lineno = get_fslocation_from_item(self)
 warnings.warn_explicit(
 warning,
 category=None,
 filename=str(path),
 lineno=lineno + 1 if lineno is not None else None,
)

 # methods for ordering nodes
 @property
 def nodeid(self):
 """ a ::-separated string denoting its collection tree address. """
 return self._nodeid

 def __hash__(self):
 return hash(self.nodeid)

 def setup(self):
 pass

 def teardown(self):
 pass

[docs] def listchain(self):
 """ return list of all parent collectors up to self,
 starting from root of collection tree. """
 chain = []
 item = self
 while item is not None:
 chain.append(item)
 item = item.parent
 chain.reverse()
 return chain

[docs] def add_marker(self, marker, append=True):
 """dynamically add a marker object to the node.

 :type marker: ``str`` or ``pytest.mark.*`` object
 :param marker:
 ``append=True`` whether to append the marker,
 if ``False`` insert at position ``0``.
 """
 from _pytest.mark import MarkDecorator, MARK_GEN

 if isinstance(marker, six.string_types):
 marker = getattr(MARK_GEN, marker)
 elif not isinstance(marker, MarkDecorator):
 raise ValueError("is not a string or pytest.mark.* Marker")
 self.keywords[marker.name] = marker
 if append:
 self.own_markers.append(marker.mark)
 else:
 self.own_markers.insert(0, marker.mark)

[docs] def iter_markers(self, name=None):
 """
 :param name: if given, filter the results by the name attribute

 iterate over all markers of the node
 """
 return (x[1] for x in self.iter_markers_with_node(name=name))

[docs] def iter_markers_with_node(self, name=None):
 """
 :param name: if given, filter the results by the name attribute

 iterate over all markers of the node
 returns sequence of tuples (node, mark)
 """
 for node in reversed(self.listchain()):
 for mark in node.own_markers:
 if name is None or getattr(mark, "name", None) == name:
 yield node, mark

[docs] def get_closest_marker(self, name, default=None):
 """return the first marker matching the name, from closest (for example function) to farther level (for example
 module level).

 :param default: fallback return value of no marker was found
 :param name: name to filter by
 """
 return next(self.iter_markers(name=name), default)

[docs] def listextrakeywords(self):
 """ Return a set of all extra keywords in self and any parents."""
 extra_keywords = set()
 for item in self.listchain():
 extra_keywords.update(item.extra_keyword_matches)
 return extra_keywords

 def listnames(self):
 return [x.name for x in self.listchain()]

[docs] def addfinalizer(self, fin):
 """ register a function to be called when this node is finalized.

 This method can only be called when this node is active
 in a setup chain, for example during self.setup().
 """
 self.session._setupstate.addfinalizer(fin, self)

[docs] def getparent(self, cls):
 """ get the next parent node (including ourself)
 which is an instance of the given class"""
 current = self
 while current and not isinstance(current, cls):
 current = current.parent
 return current

 def _prunetraceback(self, excinfo):
 pass

 def _repr_failure_py(self, excinfo, style=None):
 if excinfo.errisinstance(fail.Exception):
 if not excinfo.value.pytrace:
 return six.text_type(excinfo.value)
 fm = self.session._fixturemanager
 if excinfo.errisinstance(fm.FixtureLookupError):
 return excinfo.value.formatrepr()
 tbfilter = True
 if self.config.getoption("fulltrace", False):
 style = "long"
 else:
 tb = _pytest._code.Traceback([excinfo.traceback[-1]])
 self._prunetraceback(excinfo)
 if len(excinfo.traceback) == 0:
 excinfo.traceback = tb
 tbfilter = False # prunetraceback already does it
 if style == "auto":
 style = "long"
 # XXX should excinfo.getrepr record all data and toterminal() process it?
 if style is None:
 if self.config.getoption("tbstyle", "auto") == "short":
 style = "short"
 else:
 style = "long"

 if self.config.getoption("verbose", 0) > 1:
 truncate_locals = False
 else:
 truncate_locals = True

 try:
 os.getcwd()
 abspath = False
 except OSError:
 abspath = True

 return excinfo.getrepr(
 funcargs=True,
 abspath=abspath,
 showlocals=self.config.getoption("showlocals", False),
 style=style,
 tbfilter=tbfilter,
 truncate_locals=truncate_locals,
)

 repr_failure = _repr_failure_py

def get_fslocation_from_item(item):
 """Tries to extract the actual location from an item, depending on available attributes:

 * "fslocation": a pair (path, lineno)
 * "obj": a Python object that the item wraps.
 * "fspath": just a path

 :rtype: a tuple of (str|LocalPath, int) with filename and line number.
 """
 result = getattr(item, "location", None)
 if result is not None:
 return result[:2]
 obj = getattr(item, "obj", None)
 if obj is not None:
 return getfslineno(obj)
 return getattr(item, "fspath", "unknown location"), -1

[docs]class Collector(Node):
 """ Collector instances create children through collect()
 and thus iteratively build a tree.
 """

[docs] class CollectError(Exception):
 """ an error during collection, contains a custom message. """

[docs] def collect(self):
 """ returns a list of children (items and collectors)
 for this collection node.
 """
 raise NotImplementedError("abstract")

[docs] def repr_failure(self, excinfo):
 """ represent a collection failure. """
 if excinfo.errisinstance(self.CollectError):
 exc = excinfo.value
 return str(exc.args[0])

 # Respect explicit tbstyle option, but default to "short"
 # (None._repr_failure_py defaults to "long" without "fulltrace" option).
 tbstyle = self.config.getoption("tbstyle", "auto")
 if tbstyle == "auto":
 tbstyle = "short"

 return self._repr_failure_py(excinfo, style=tbstyle)

 def _prunetraceback(self, excinfo):
 if hasattr(self, "fspath"):
 traceback = excinfo.traceback
 ntraceback = traceback.cut(path=self.fspath)
 if ntraceback == traceback:
 ntraceback = ntraceback.cut(excludepath=tracebackcutdir)
 excinfo.traceback = ntraceback.filter()

def _check_initialpaths_for_relpath(session, fspath):
 for initial_path in session._initialpaths:
 if fspath.common(initial_path) == initial_path:
 return fspath.relto(initial_path)

[docs]class FSCollector(Collector):
 def __init__(self, fspath, parent=None, config=None, session=None, nodeid=None):
 fspath = py.path.local(fspath) # xxx only for test_resultlog.py?
 name = fspath.basename
 if parent is not None:
 rel = fspath.relto(parent.fspath)
 if rel:
 name = rel
 name = name.replace(os.sep, SEP)
 self.fspath = fspath

 session = session or parent.session

 if nodeid is None:
 nodeid = self.fspath.relto(session.config.rootdir)

 if not nodeid:
 nodeid = _check_initialpaths_for_relpath(session, fspath)
 if nodeid and os.sep != SEP:
 nodeid = nodeid.replace(os.sep, SEP)

 super(FSCollector, self).__init__(
 name, parent, config, session, nodeid=nodeid, fspath=fspath
)

class File(FSCollector):
 """ base class for collecting tests from a file. """

[docs]class Item(Node):
 """ a basic test invocation item. Note that for a single function
 there might be multiple test invocation items.
 """

 nextitem = None

 def __init__(self, name, parent=None, config=None, session=None, nodeid=None):
 super(Item, self).__init__(name, parent, config, session, nodeid=nodeid)
 self._report_sections = []

 #: user properties is a list of tuples (name, value) that holds user
 #: defined properties for this test.
 self.user_properties = []

[docs] def add_report_section(self, when, key, content):
 """
 Adds a new report section, similar to what's done internally to add stdout and
 stderr captured output::

 item.add_report_section("call", "stdout", "report section contents")

 :param str when:
 One of the possible capture states, ``"setup"``, ``"call"``, ``"teardown"``.
 :param str key:
 Name of the section, can be customized at will. Pytest uses ``"stdout"`` and
 ``"stderr"`` internally.

 :param str content:
 The full contents as a string.
 """
 if content:
 self._report_sections.append((when, key, content))

 def reportinfo(self):
 return self.fspath, None, ""

 @property
 def location(self):
 try:
 return self._location
 except AttributeError:
 location = self.reportinfo()
 fspath = self.session._node_location_to_relpath(location[0])
 location = (fspath, location[1], str(location[2]))
 self._location = location
 return location

 Source code for _pytest.outcomes

-*- coding: utf-8 -*-
"""
exception classes and constants handling test outcomes
as well as functions creating them
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys

from packaging.version import Version

class OutcomeException(BaseException):
 """ OutcomeException and its subclass instances indicate and
 contain info about test and collection outcomes.
 """

 def __init__(self, msg=None, pytrace=True):
 BaseException.__init__(self, msg)
 self.msg = msg
 self.pytrace = pytrace

 def __repr__(self):
 if self.msg:
 val = self.msg
 if isinstance(val, bytes):
 val = val.decode("UTF-8", errors="replace")
 return val
 return "<%s instance>" % (self.__class__.__name__,)

 __str__ = __repr__

TEST_OUTCOME = (OutcomeException, Exception)

class Skipped(OutcomeException):
 # XXX hackish: on 3k we fake to live in the builtins
 # in order to have Skipped exception printing shorter/nicer
 __module__ = "builtins"

 def __init__(self, msg=None, pytrace=True, allow_module_level=False):
 OutcomeException.__init__(self, msg=msg, pytrace=pytrace)
 self.allow_module_level = allow_module_level

class Failed(OutcomeException):
 """ raised from an explicit call to pytest.fail() """

 __module__ = "builtins"

class Exit(Exception):
 """ raised for immediate program exits (no tracebacks/summaries)"""

 def __init__(self, msg="unknown reason", returncode=None):
 self.msg = msg
 self.returncode = returncode
 super(Exit, self).__init__(msg)

exposed helper methods

[docs]def exit(msg, returncode=None):
 """
 Exit testing process.

 :param str msg: message to display upon exit.
 :param int returncode: return code to be used when exiting pytest.
 """
 __tracebackhide__ = True
 raise Exit(msg, returncode)

exit.Exception = Exit

[docs]def skip(msg="", **kwargs):
 """
 Skip an executing test with the given message.

 This function should be called only during testing (setup, call or teardown) or
 during collection by using the ``allow_module_level`` flag. This function can
 be called in doctests as well.

 :kwarg bool allow_module_level: allows this function to be called at
 module level, skipping the rest of the module. Default to False.

 .. note::
 It is better to use the :ref:`pytest.mark.skipif ref` marker when possible to declare a test to be
 skipped under certain conditions like mismatching platforms or
 dependencies.
 Similarly, use the ``# doctest: +SKIP`` directive (see `doctest.SKIP
 <https://docs.python.org/3/library/doctest.html#doctest.SKIP>`_)
 to skip a doctest statically.
 """
 __tracebackhide__ = True
 allow_module_level = kwargs.pop("allow_module_level", False)
 if kwargs:
 raise TypeError("unexpected keyword arguments: {}".format(sorted(kwargs)))
 raise Skipped(msg=msg, allow_module_level=allow_module_level)

skip.Exception = Skipped

[docs]def fail(msg="", pytrace=True):
 """
 Explicitly fail an executing test with the given message.

 :param str msg: the message to show the user as reason for the failure.
 :param bool pytrace: if false the msg represents the full failure information and no
 python traceback will be reported.
 """
 __tracebackhide__ = True
 raise Failed(msg=msg, pytrace=pytrace)

fail.Exception = Failed

class XFailed(fail.Exception):
 """ raised from an explicit call to pytest.xfail() """

[docs]def xfail(reason=""):
 """
 Imperatively xfail an executing test or setup functions with the given reason.

 This function should be called only during testing (setup, call or teardown).

 .. note::
 It is better to use the :ref:`pytest.mark.xfail ref` marker when possible to declare a test to be
 xfailed under certain conditions like known bugs or missing features.
 """
 __tracebackhide__ = True
 raise XFailed(reason)

xfail.Exception = XFailed

[docs]def importorskip(modname, minversion=None, reason=None):
 """Imports and returns the requested module ``modname``, or skip the current test
 if the module cannot be imported.

 :param str modname: the name of the module to import
 :param str minversion: if given, the imported module ``__version__`` attribute must be
 at least this minimal version, otherwise the test is still skipped.
 :param str reason: if given, this reason is shown as the message when the module
 cannot be imported.
 """
 import warnings

 __tracebackhide__ = True
 compile(modname, "", "eval") # to catch syntaxerrors
 import_exc = None

 with warnings.catch_warnings():
 # make sure to ignore ImportWarnings that might happen because
 # of existing directories with the same name we're trying to
 # import but without a __init__.py file
 warnings.simplefilter("ignore")
 try:
 __import__(modname)
 except ImportError as exc:
 # Do not raise chained exception here(#1485)
 import_exc = exc
 if import_exc:
 if reason is None:
 reason = "could not import %r: %s" % (modname, import_exc)
 raise Skipped(reason, allow_module_level=True)
 mod = sys.modules[modname]
 if minversion is None:
 return mod
 verattr = getattr(mod, "__version__", None)
 if minversion is not None:
 if verattr is None or Version(verattr) < Version(minversion):
 raise Skipped(
 "module %r has __version__ %r, required is: %r"
 % (modname, verattr, minversion),
 allow_module_level=True,
)
 return mod

 Source code for _pytest.pytester

-*- coding: utf-8 -*-
"""(disabled by default) support for testing pytest and pytest plugins."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import codecs
import gc
import os
import platform
import re
import subprocess
import sys
import time
import traceback
from fnmatch import fnmatch
from weakref import WeakKeyDictionary

import py
import six

import pytest
from _pytest._code import Source
from _pytest._io.saferepr import saferepr
from _pytest.assertion.rewrite import AssertionRewritingHook
from _pytest.capture import MultiCapture
from _pytest.capture import SysCapture
from _pytest.compat import safe_str
from _pytest.compat import Sequence
from _pytest.main import EXIT_INTERRUPTED
from _pytest.main import EXIT_OK
from _pytest.main import Session
from _pytest.monkeypatch import MonkeyPatch
from _pytest.pathlib import Path

IGNORE_PAM = [# filenames added when obtaining details about the current user
 u"/var/lib/sss/mc/passwd"
]

def pytest_addoption(parser):
 parser.addoption(
 "--lsof",
 action="store_true",
 dest="lsof",
 default=False,
 help="run FD checks if lsof is available",
)

 parser.addoption(
 "--runpytest",
 default="inprocess",
 dest="runpytest",
 choices=("inprocess", "subprocess"),
 help=(
 "run pytest sub runs in tests using an 'inprocess' "
 "or 'subprocess' (python -m main) method"
),
)

 parser.addini(
 "pytester_example_dir", help="directory to take the pytester example files from"
)

def pytest_configure(config):
 if config.getvalue("lsof"):
 checker = LsofFdLeakChecker()
 if checker.matching_platform():
 config.pluginmanager.register(checker)

 config.addinivalue_line(
 "markers",
 "pytester_example_path(*path_segments): join the given path "
 "segments to `pytester_example_dir` for this test.",
)

def raise_on_kwargs(kwargs):
 __tracebackhide__ = True
 if kwargs: # pragma: no branch
 raise TypeError(
 "Unexpected keyword arguments: {}".format(", ".join(sorted(kwargs)))
)

class LsofFdLeakChecker(object):
 def get_open_files(self):
 out = self._exec_lsof()
 open_files = self._parse_lsof_output(out)
 return open_files

 def _exec_lsof(self):
 pid = os.getpid()
 # py3: use subprocess.DEVNULL directly.
 with open(os.devnull, "wb") as devnull:
 return subprocess.check_output(
 ("lsof", "-Ffn0", "-p", str(pid)), stderr=devnull
).decode()

 def _parse_lsof_output(self, out):
 def isopen(line):
 return line.startswith("f") and (
 "deleted" not in line
 and "mem" not in line
 and "txt" not in line
 and "cwd" not in line
)

 open_files = []

 for line in out.split("\n"):
 if isopen(line):
 fields = line.split("\0")
 fd = fields[0][1:]
 filename = fields[1][1:]
 if filename in IGNORE_PAM:
 continue
 if filename.startswith("/"):
 open_files.append((fd, filename))

 return open_files

 def matching_platform(self):
 try:
 subprocess.check_output(("lsof", "-v"))
 except (OSError, subprocess.CalledProcessError):
 return False
 else:
 return True

 @pytest.hookimpl(hookwrapper=True, tryfirst=True)
 def pytest_runtest_protocol(self, item):
 lines1 = self.get_open_files()
 yield
 if hasattr(sys, "pypy_version_info"):
 gc.collect()
 lines2 = self.get_open_files()

 new_fds = {t[0] for t in lines2} - {t[0] for t in lines1}
 leaked_files = [t for t in lines2 if t[0] in new_fds]
 if leaked_files:
 error = []
 error.append("***** %s FD leakage detected" % len(leaked_files))
 error.extend([str(f) for f in leaked_files])
 error.append("*** Before:")
 error.extend([str(f) for f in lines1])
 error.append("*** After:")
 error.extend([str(f) for f in lines2])
 error.append(error[0])
 error.append("*** function %s:%s: %s " % item.location)
 error.append("See issue #2366")
 item.warn(pytest.PytestWarning("\n".join(error)))

used at least by pytest-xdist plugin

@pytest.fixture
def _pytest(request):
 """Return a helper which offers a gethookrecorder(hook) method which
 returns a HookRecorder instance which helps to make assertions about called
 hooks.

 """
 return PytestArg(request)

class PytestArg(object):
 def __init__(self, request):
 self.request = request

 def gethookrecorder(self, hook):
 hookrecorder = HookRecorder(hook._pm)
 self.request.addfinalizer(hookrecorder.finish_recording)
 return hookrecorder

def get_public_names(values):
 """Only return names from iterator values without a leading underscore."""
 return [x for x in values if x[0] != "_"]

class ParsedCall(object):
 def __init__(self, name, kwargs):
 self.__dict__.update(kwargs)
 self._name = name

 def __repr__(self):
 d = self.__dict__.copy()
 del d["_name"]
 return "<ParsedCall %r(**%r)>" % (self._name, d)

class HookRecorder(object):
 """Record all hooks called in a plugin manager.

 This wraps all the hook calls in the plugin manager, recording each call
 before propagating the normal calls.

 """

 def __init__(self, pluginmanager):
 self._pluginmanager = pluginmanager
 self.calls = []

 def before(hook_name, hook_impls, kwargs):
 self.calls.append(ParsedCall(hook_name, kwargs))

 def after(outcome, hook_name, hook_impls, kwargs):
 pass

 self._undo_wrapping = pluginmanager.add_hookcall_monitoring(before, after)

 def finish_recording(self):
 self._undo_wrapping()

 def getcalls(self, names):
 if isinstance(names, str):
 names = names.split()
 return [call for call in self.calls if call._name in names]

 def assert_contains(self, entries):
 __tracebackhide__ = True
 i = 0
 entries = list(entries)
 backlocals = sys._getframe(1).f_locals
 while entries:
 name, check = entries.pop(0)
 for ind, call in enumerate(self.calls[i:]):
 if call._name == name:
 print("NAMEMATCH", name, call)
 if eval(check, backlocals, call.__dict__):
 print("CHECKERMATCH", repr(check), "->", call)
 else:
 print("NOCHECKERMATCH", repr(check), "-", call)
 continue
 i += ind + 1
 break
 print("NONAMEMATCH", name, "with", call)
 else:
 pytest.fail("could not find %r check %r" % (name, check))

 def popcall(self, name):
 __tracebackhide__ = True
 for i, call in enumerate(self.calls):
 if call._name == name:
 del self.calls[i]
 return call
 lines = ["could not find call %r, in:" % (name,)]
 lines.extend([" %s" % x for x in self.calls])
 pytest.fail("\n".join(lines))

 def getcall(self, name):
 values = self.getcalls(name)
 assert len(values) == 1, (name, values)
 return values[0]

 # functionality for test reports

 def getreports(self, names="pytest_runtest_logreport pytest_collectreport"):
 return [x.report for x in self.getcalls(names)]

 def matchreport(
 self,
 inamepart="",
 names="pytest_runtest_logreport pytest_collectreport",
 when=None,
):
 """return a testreport whose dotted import path matches"""
 values = []
 for rep in self.getreports(names=names):
 if not when and rep.when != "call" and rep.passed:
 # setup/teardown passing reports - let's ignore those
 continue
 if when and rep.when != when:
 continue
 if not inamepart or inamepart in rep.nodeid.split("::"):
 values.append(rep)
 if not values:
 raise ValueError(
 "could not find test report matching %r: "
 "no test reports at all!" % (inamepart,)
)
 if len(values) > 1:
 raise ValueError(
 "found 2 or more testreports matching %r: %s" % (inamepart, values)
)
 return values[0]

 def getfailures(self, names="pytest_runtest_logreport pytest_collectreport"):
 return [rep for rep in self.getreports(names) if rep.failed]

 def getfailedcollections(self):
 return self.getfailures("pytest_collectreport")

 def listoutcomes(self):
 passed = []
 skipped = []
 failed = []
 for rep in self.getreports("pytest_collectreport pytest_runtest_logreport"):
 if rep.passed:
 if rep.when == "call":
 passed.append(rep)
 elif rep.skipped:
 skipped.append(rep)
 else:
 assert rep.failed, "Unexpected outcome: {!r}".format(rep)
 failed.append(rep)
 return passed, skipped, failed

 def countoutcomes(self):
 return [len(x) for x in self.listoutcomes()]

 def assertoutcome(self, passed=0, skipped=0, failed=0):
 realpassed, realskipped, realfailed = self.listoutcomes()
 assert passed == len(realpassed)
 assert skipped == len(realskipped)
 assert failed == len(realfailed)

 def clear(self):
 self.calls[:] = []

@pytest.fixture
def linecomp(request):
 return LineComp()

@pytest.fixture(name="LineMatcher")
def LineMatcher_fixture(request):
 return LineMatcher

@pytest.fixture
def testdir(request, tmpdir_factory):
 return Testdir(request, tmpdir_factory)

@pytest.fixture
def _sys_snapshot():
 snappaths = SysPathsSnapshot()
 snapmods = SysModulesSnapshot()
 yield
 snapmods.restore()
 snappaths.restore()

@pytest.fixture
def _config_for_test():
 from _pytest.config import get_config

 config = get_config()
 yield config
 config._ensure_unconfigure() # cleanup, e.g. capman closing tmpfiles.

rex_outcome = re.compile(r"(\d+) ([\w-]+)")

[docs]class RunResult(object):
 """The result of running a command.

 Attributes:

 :ret: the return value
 :outlines: list of lines captured from stdout
 :errlines: list of lines captures from stderr
 :stdout: :py:class:`LineMatcher` of stdout, use ``stdout.str()`` to
 reconstruct stdout or the commonly used ``stdout.fnmatch_lines()``
 method
 :stderr: :py:class:`LineMatcher` of stderr
 :duration: duration in seconds

 """

 def __init__(self, ret, outlines, errlines, duration):
 self.ret = ret
 self.outlines = outlines
 self.errlines = errlines
 self.stdout = LineMatcher(outlines)
 self.stderr = LineMatcher(errlines)
 self.duration = duration

 def __repr__(self):
 return (
 "<RunResult ret=%r len(stdout.lines)=%d len(stderr.lines)=%d duration=%.2fs>"
 % (self.ret, len(self.stdout.lines), len(self.stderr.lines), self.duration)
)

[docs] def parseoutcomes(self):
 """Return a dictionary of outcomestring->num from parsing the terminal
 output that the test process produced.

 """
 for line in reversed(self.outlines):
 if "seconds" in line:
 outcomes = rex_outcome.findall(line)
 if outcomes:
 d = {}
 for num, cat in outcomes:
 d[cat] = int(num)
 return d
 raise ValueError("Pytest terminal report not found")

[docs] def assert_outcomes(
 self, passed=0, skipped=0, failed=0, error=0, xpassed=0, xfailed=0
):
 """Assert that the specified outcomes appear with the respective
 numbers (0 means it didn't occur) in the text output from a test run.

 """
 d = self.parseoutcomes()
 obtained = {
 "passed": d.get("passed", 0),
 "skipped": d.get("skipped", 0),
 "failed": d.get("failed", 0),
 "error": d.get("error", 0),
 "xpassed": d.get("xpassed", 0),
 "xfailed": d.get("xfailed", 0),
 }
 expected = {
 "passed": passed,
 "skipped": skipped,
 "failed": failed,
 "error": error,
 "xpassed": xpassed,
 "xfailed": xfailed,
 }
 assert obtained == expected

class CwdSnapshot(object):
 def __init__(self):
 self.__saved = os.getcwd()

 def restore(self):
 os.chdir(self.__saved)

class SysModulesSnapshot(object):
 def __init__(self, preserve=None):
 self.__preserve = preserve
 self.__saved = dict(sys.modules)

 def restore(self):
 if self.__preserve:
 self.__saved.update(
 (k, m) for k, m in sys.modules.items() if self.__preserve(k)
)
 sys.modules.clear()
 sys.modules.update(self.__saved)

class SysPathsSnapshot(object):
 def __init__(self):
 self.__saved = list(sys.path), list(sys.meta_path)

 def restore(self):
 sys.path[:], sys.meta_path[:] = self.__saved

[docs]class Testdir(object):
 """Temporary test directory with tools to test/run pytest itself.

 This is based on the ``tmpdir`` fixture but provides a number of methods
 which aid with testing pytest itself. Unless :py:meth:`chdir` is used all
 methods will use :py:attr:`tmpdir` as their current working directory.

 Attributes:

 :tmpdir: The :py:class:`py.path.local` instance of the temporary directory.

 :plugins: A list of plugins to use with :py:meth:`parseconfig` and
 :py:meth:`runpytest`. Initially this is an empty list but plugins can
 be added to the list. The type of items to add to the list depends on
 the method using them so refer to them for details.

 """

 CLOSE_STDIN = object

[docs] class TimeoutExpired(Exception):
 pass

 def __init__(self, request, tmpdir_factory):
 self.request = request
 self._mod_collections = WeakKeyDictionary()
 name = request.function.__name__
 self.tmpdir = tmpdir_factory.mktemp(name, numbered=True)
 self.test_tmproot = tmpdir_factory.mktemp("tmp-" + name, numbered=True)
 self.plugins = []
 self._cwd_snapshot = CwdSnapshot()
 self._sys_path_snapshot = SysPathsSnapshot()
 self._sys_modules_snapshot = self.__take_sys_modules_snapshot()
 self.chdir()
 self.request.addfinalizer(self.finalize)
 method = self.request.config.getoption("--runpytest")
 if method == "inprocess":
 self._runpytest_method = self.runpytest_inprocess
 elif method == "subprocess":
 self._runpytest_method = self.runpytest_subprocess

 mp = self.monkeypatch = MonkeyPatch()
 mp.setenv("PYTEST_DEBUG_TEMPROOT", str(self.test_tmproot))
 # Ensure no unexpected caching via tox.
 mp.delenv("TOX_ENV_DIR", raising=False)
 # Discard outer pytest options.
 mp.delenv("PYTEST_ADDOPTS", raising=False)

 # Environment (updates) for inner runs.
 tmphome = str(self.tmpdir)
 self._env_run_update = {"HOME": tmphome, "USERPROFILE": tmphome}

 def __repr__(self):
 return "<Testdir %r>" % (self.tmpdir,)

 def __str__(self):
 return str(self.tmpdir)

[docs] def finalize(self):
 """Clean up global state artifacts.

 Some methods modify the global interpreter state and this tries to
 clean this up. It does not remove the temporary directory however so
 it can be looked at after the test run has finished.

 """
 self._sys_modules_snapshot.restore()
 self._sys_path_snapshot.restore()
 self._cwd_snapshot.restore()
 self.monkeypatch.undo()

 def __take_sys_modules_snapshot(self):
 # some zope modules used by twisted-related tests keep internal state
 # and can't be deleted; we had some trouble in the past with
 # `zope.interface` for example
 def preserve_module(name):
 return name.startswith("zope")

 return SysModulesSnapshot(preserve=preserve_module)

[docs] def make_hook_recorder(self, pluginmanager):
 """Create a new :py:class:`HookRecorder` for a PluginManager."""
 pluginmanager.reprec = reprec = HookRecorder(pluginmanager)
 self.request.addfinalizer(reprec.finish_recording)
 return reprec

[docs] def chdir(self):
 """Cd into the temporary directory.

 This is done automatically upon instantiation.

 """
 self.tmpdir.chdir()

 def _makefile(self, ext, args, kwargs, encoding="utf-8"):
 items = list(kwargs.items())

 def to_text(s):
 return s.decode(encoding) if isinstance(s, bytes) else six.text_type(s)

 if args:
 source = u"\n".join(to_text(x) for x in args)
 basename = self.request.function.__name__
 items.insert(0, (basename, source))

 ret = None
 for basename, value in items:
 p = self.tmpdir.join(basename).new(ext=ext)
 p.dirpath().ensure_dir()
 source = Source(value)
 source = u"\n".join(to_text(line) for line in source.lines)
 p.write(source.strip().encode(encoding), "wb")
 if ret is None:
 ret = p
 return ret

[docs] def makefile(self, ext, *args, **kwargs):
 r"""Create new file(s) in the testdir.

 :param str ext: The extension the file(s) should use, including the dot, e.g. `.py`.
 :param list[str] args: All args will be treated as strings and joined using newlines.
 The result will be written as contents to the file. The name of the
 file will be based on the test function requesting this fixture.
 :param kwargs: Each keyword is the name of a file, while the value of it will
 be written as contents of the file.

 Examples:

 .. code-block:: python

 testdir.makefile(".txt", "line1", "line2")

 testdir.makefile(".ini", pytest="[pytest]\naddopts=-rs\n")

 """
 return self._makefile(ext, args, kwargs)

[docs] def makeconftest(self, source):
 """Write a contest.py file with 'source' as contents."""
 return self.makepyfile(conftest=source)

[docs] def makeini(self, source):
 """Write a tox.ini file with 'source' as contents."""
 return self.makefile(".ini", tox=source)

[docs] def getinicfg(self, source):
 """Return the pytest section from the tox.ini config file."""
 p = self.makeini(source)
 return py.iniconfig.IniConfig(p)["pytest"]

[docs] def makepyfile(self, *args, **kwargs):
 """Shortcut for .makefile() with a .py extension."""
 return self._makefile(".py", args, kwargs)

[docs] def maketxtfile(self, *args, **kwargs):
 """Shortcut for .makefile() with a .txt extension."""
 return self._makefile(".txt", args, kwargs)

[docs] def syspathinsert(self, path=None):
 """Prepend a directory to sys.path, defaults to :py:attr:`tmpdir`.

 This is undone automatically when this object dies at the end of each
 test.
 """
 if path is None:
 path = self.tmpdir

 self.monkeypatch.syspath_prepend(str(path))

[docs] def mkdir(self, name):
 """Create a new (sub)directory."""
 return self.tmpdir.mkdir(name)

[docs] def mkpydir(self, name):
 """Create a new python package.

 This creates a (sub)directory with an empty ``__init__.py`` file so it
 gets recognised as a python package.

 """
 p = self.mkdir(name)
 p.ensure("__init__.py")
 return p

 def copy_example(self, name=None):
 import warnings
 from _pytest.warning_types import PYTESTER_COPY_EXAMPLE

 warnings.warn(PYTESTER_COPY_EXAMPLE, stacklevel=2)
 example_dir = self.request.config.getini("pytester_example_dir")
 if example_dir is None:
 raise ValueError("pytester_example_dir is unset, can't copy examples")
 example_dir = self.request.config.rootdir.join(example_dir)

 for extra_element in self.request.node.iter_markers("pytester_example_path"):
 assert extra_element.args
 example_dir = example_dir.join(*extra_element.args)

 if name is None:
 func_name = self.request.function.__name__
 maybe_dir = example_dir / func_name
 maybe_file = example_dir / (func_name + ".py")

 if maybe_dir.isdir():
 example_path = maybe_dir
 elif maybe_file.isfile():
 example_path = maybe_file
 else:
 raise LookupError(
 "{} cant be found as module or package in {}".format(
 func_name, example_dir.bestrelpath(self.request.config.rootdir)
)
)
 else:
 example_path = example_dir.join(name)

 if example_path.isdir() and not example_path.join("__init__.py").isfile():
 example_path.copy(self.tmpdir)
 return self.tmpdir
 elif example_path.isfile():
 result = self.tmpdir.join(example_path.basename)
 example_path.copy(result)
 return result
 else:
 raise LookupError(
 'example "{}" is not found as a file or directory'.format(example_path)
)

 Session = Session

[docs] def getnode(self, config, arg):
 """Return the collection node of a file.

 :param config: :py:class:`_pytest.config.Config` instance, see
 :py:meth:`parseconfig` and :py:meth:`parseconfigure` to create the
 configuration

 :param arg: a :py:class:`py.path.local` instance of the file

 """
 session = Session(config)
 assert "::" not in str(arg)
 p = py.path.local(arg)
 config.hook.pytest_sessionstart(session=session)
 res = session.perform_collect([str(p)], genitems=False)[0]
 config.hook.pytest_sessionfinish(session=session, exitstatus=EXIT_OK)
 return res

[docs] def getpathnode(self, path):
 """Return the collection node of a file.

 This is like :py:meth:`getnode` but uses :py:meth:`parseconfigure` to
 create the (configured) pytest Config instance.

 :param path: a :py:class:`py.path.local` instance of the file

 """
 config = self.parseconfigure(path)
 session = Session(config)
 x = session.fspath.bestrelpath(path)
 config.hook.pytest_sessionstart(session=session)
 res = session.perform_collect([x], genitems=False)[0]
 config.hook.pytest_sessionfinish(session=session, exitstatus=EXIT_OK)
 return res

[docs] def genitems(self, colitems):
 """Generate all test items from a collection node.

 This recurses into the collection node and returns a list of all the
 test items contained within.

 """
 session = colitems[0].session
 result = []
 for colitem in colitems:
 result.extend(session.genitems(colitem))
 return result

[docs] def runitem(self, source):
 """Run the "test_func" Item.

 The calling test instance (class containing the test method) must
 provide a ``.getrunner()`` method which should return a runner which
 can run the test protocol for a single item, e.g.
 :py:func:`_pytest.runner.runtestprotocol`.

 """
 # used from runner functional tests
 item = self.getitem(source)
 # the test class where we are called from wants to provide the runner
 testclassinstance = self.request.instance
 runner = testclassinstance.getrunner()
 return runner(item)

[docs] def inline_runsource(self, source, *cmdlineargs):
 """Run a test module in process using ``pytest.main()``.

 This run writes "source" into a temporary file and runs
 ``pytest.main()`` on it, returning a :py:class:`HookRecorder` instance
 for the result.

 :param source: the source code of the test module

 :param cmdlineargs: any extra command line arguments to use

 :return: :py:class:`HookRecorder` instance of the result

 """
 p = self.makepyfile(source)
 values = list(cmdlineargs) + [p]
 return self.inline_run(*values)

[docs] def inline_genitems(self, *args):
 """Run ``pytest.main(['--collectonly'])`` in-process.

 Runs the :py:func:`pytest.main` function to run all of pytest inside
 the test process itself like :py:meth:`inline_run`, but returns a
 tuple of the collected items and a :py:class:`HookRecorder` instance.

 """
 rec = self.inline_run("--collect-only", *args)
 items = [x.item for x in rec.getcalls("pytest_itemcollected")]
 return items, rec

[docs] def inline_run(self, *args, **kwargs):
 """Run ``pytest.main()`` in-process, returning a HookRecorder.

 Runs the :py:func:`pytest.main` function to run all of pytest inside
 the test process itself. This means it can return a
 :py:class:`HookRecorder` instance which gives more detailed results
 from that run than can be done by matching stdout/stderr from
 :py:meth:`runpytest`.

 :param args: command line arguments to pass to :py:func:`pytest.main`

 :param plugins: (keyword-only) extra plugin instances the
 ``pytest.main()`` instance should use

 :return: a :py:class:`HookRecorder` instance
 """
 plugins = kwargs.pop("plugins", [])
 no_reraise_ctrlc = kwargs.pop("no_reraise_ctrlc", None)
 raise_on_kwargs(kwargs)

 finalizers = []
 try:
 # Do not load user config (during runs only).
 mp_run = MonkeyPatch()
 for k, v in self._env_run_update.items():
 mp_run.setenv(k, v)
 finalizers.append(mp_run.undo)

 # When running pytest inline any plugins active in the main test
 # process are already imported. So this disables the warning which
 # will trigger to say they can no longer be rewritten, which is
 # fine as they have already been rewritten.
 orig_warn = AssertionRewritingHook._warn_already_imported

 def revert_warn_already_imported():
 AssertionRewritingHook._warn_already_imported = orig_warn

 finalizers.append(revert_warn_already_imported)
 AssertionRewritingHook._warn_already_imported = lambda *a: None

 # Any sys.module or sys.path changes done while running pytest
 # inline should be reverted after the test run completes to avoid
 # clashing with later inline tests run within the same pytest test,
 # e.g. just because they use matching test module names.
 finalizers.append(self.__take_sys_modules_snapshot().restore)
 finalizers.append(SysPathsSnapshot().restore)

 # Important note:
 # - our tests should not leave any other references/registrations
 # laying around other than possibly loaded test modules
 # referenced from sys.modules, as nothing will clean those up
 # automatically

 rec = []

 class Collect(object):
 def pytest_configure(x, config):
 rec.append(self.make_hook_recorder(config.pluginmanager))

 plugins.append(Collect())
 ret = pytest.main(list(args), plugins=plugins)
 if len(rec) == 1:
 reprec = rec.pop()
 else:

 class reprec(object):
 pass

 reprec.ret = ret

 # typically we reraise keyboard interrupts from the child run
 # because it's our user requesting interruption of the testing
 if ret == EXIT_INTERRUPTED and not no_reraise_ctrlc:
 calls = reprec.getcalls("pytest_keyboard_interrupt")
 if calls and calls[-1].excinfo.type == KeyboardInterrupt:
 raise KeyboardInterrupt()
 return reprec
 finally:
 for finalizer in finalizers:
 finalizer()

[docs] def runpytest_inprocess(self, *args, **kwargs):
 """Return result of running pytest in-process, providing a similar
 interface to what self.runpytest() provides.
 """
 syspathinsert = kwargs.pop("syspathinsert", False)

 if syspathinsert:
 self.syspathinsert()
 now = time.time()
 capture = MultiCapture(Capture=SysCapture)
 capture.start_capturing()
 try:
 try:
 reprec = self.inline_run(*args, **kwargs)
 except SystemExit as e:

 class reprec(object):
 ret = e.args[0]

 except Exception:
 traceback.print_exc()

 class reprec(object):
 ret = 3

 finally:
 out, err = capture.readouterr()
 capture.stop_capturing()
 sys.stdout.write(out)
 sys.stderr.write(err)

 res = RunResult(reprec.ret, out.split("\n"), err.split("\n"), time.time() - now)
 res.reprec = reprec
 return res

[docs] def runpytest(self, *args, **kwargs):
 """Run pytest inline or in a subprocess, depending on the command line
 option "--runpytest" and return a :py:class:`RunResult`.

 """
 args = self._ensure_basetemp(args)
 return self._runpytest_method(*args, **kwargs)

 def _ensure_basetemp(self, args):
 args = list(args)
 for x in args:
 if safe_str(x).startswith("--basetemp"):
 break
 else:
 args.append("--basetemp=%s" % self.tmpdir.dirpath("basetemp"))
 return args

[docs] def parseconfig(self, *args):
 """Return a new pytest Config instance from given commandline args.

 This invokes the pytest bootstrapping code in _pytest.config to create
 a new :py:class:`_pytest.core.PluginManager` and call the
 pytest_cmdline_parse hook to create a new
 :py:class:`_pytest.config.Config` instance.

 If :py:attr:`plugins` has been populated they should be plugin modules
 to be registered with the PluginManager.

 """
 args = self._ensure_basetemp(args)

 import _pytest.config

 config = _pytest.config._prepareconfig(args, self.plugins)
 # we don't know what the test will do with this half-setup config
 # object and thus we make sure it gets unconfigured properly in any
 # case (otherwise capturing could still be active, for example)
 self.request.addfinalizer(config._ensure_unconfigure)
 return config

[docs] def parseconfigure(self, *args):
 """Return a new pytest configured Config instance.

 This returns a new :py:class:`_pytest.config.Config` instance like
 :py:meth:`parseconfig`, but also calls the pytest_configure hook.

 """
 config = self.parseconfig(*args)
 config._do_configure()
 self.request.addfinalizer(config._ensure_unconfigure)
 return config

[docs] def getitem(self, source, funcname="test_func"):
 """Return the test item for a test function.

 This writes the source to a python file and runs pytest's collection on
 the resulting module, returning the test item for the requested
 function name.

 :param source: the module source

 :param funcname: the name of the test function for which to return a
 test item

 """
 items = self.getitems(source)
 for item in items:
 if item.name == funcname:
 return item
 assert 0, "%r item not found in module:\n%s\nitems: %s" % (
 funcname,
 source,
 items,
)

[docs] def getitems(self, source):
 """Return all test items collected from the module.

 This writes the source to a python file and runs pytest's collection on
 the resulting module, returning all test items contained within.

 """
 modcol = self.getmodulecol(source)
 return self.genitems([modcol])

[docs] def getmodulecol(self, source, configargs=(), withinit=False):
 """Return the module collection node for ``source``.

 This writes ``source`` to a file using :py:meth:`makepyfile` and then
 runs the pytest collection on it, returning the collection node for the
 test module.

 :param source: the source code of the module to collect

 :param configargs: any extra arguments to pass to
 :py:meth:`parseconfigure`

 :param withinit: whether to also write an ``__init__.py`` file to the
 same directory to ensure it is a package

 """
 if isinstance(source, Path):
 path = self.tmpdir.join(str(source))
 assert not withinit, "not supported for paths"
 else:
 kw = {self.request.function.__name__: Source(source).strip()}
 path = self.makepyfile(**kw)
 if withinit:
 self.makepyfile(__init__="#")
 self.config = config = self.parseconfigure(path, *configargs)
 return self.getnode(config, path)

[docs] def collect_by_name(self, modcol, name):
 """Return the collection node for name from the module collection.

 This will search a module collection node for a collection node
 matching the given name.

 :param modcol: a module collection node; see :py:meth:`getmodulecol`

 :param name: the name of the node to return

 """
 if modcol not in self._mod_collections:
 self._mod_collections[modcol] = list(modcol.collect())
 for colitem in self._mod_collections[modcol]:
 if colitem.name == name:
 return colitem

[docs] def popen(
 self,
 cmdargs,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 stdin=CLOSE_STDIN,
 **kw
):
 """Invoke subprocess.Popen.

 This calls subprocess.Popen making sure the current working directory
 is in the PYTHONPATH.

 You probably want to use :py:meth:`run` instead.

 """
 env = os.environ.copy()
 env["PYTHONPATH"] = os.pathsep.join(
 filter(None, [os.getcwd(), env.get("PYTHONPATH", "")])
)
 env.update(self._env_run_update)
 kw["env"] = env

 if stdin is Testdir.CLOSE_STDIN:
 kw["stdin"] = subprocess.PIPE
 elif isinstance(stdin, bytes):
 kw["stdin"] = subprocess.PIPE
 else:
 kw["stdin"] = stdin

 popen = subprocess.Popen(cmdargs, stdout=stdout, stderr=stderr, **kw)
 if stdin is Testdir.CLOSE_STDIN:
 popen.stdin.close()
 elif isinstance(stdin, bytes):
 popen.stdin.write(stdin)

 return popen

[docs] def run(self, *cmdargs, **kwargs):
 """Run a command with arguments.

 Run a process using subprocess.Popen saving the stdout and stderr.

 :param args: the sequence of arguments to pass to `subprocess.Popen()`
 :param timeout: the period in seconds after which to timeout and raise
 :py:class:`Testdir.TimeoutExpired`
 :param stdin: optional standard input. Bytes are being send, closing
 the pipe, otherwise it is passed through to ``popen``.
 Defaults to ``CLOSE_STDIN``, which translates to using a pipe
 (``subprocess.PIPE``) that gets closed.

 Returns a :py:class:`RunResult`.

 """
 __tracebackhide__ = True

 timeout = kwargs.pop("timeout", None)
 stdin = kwargs.pop("stdin", Testdir.CLOSE_STDIN)
 raise_on_kwargs(kwargs)

 cmdargs = [
 str(arg) if isinstance(arg, py.path.local) else arg for arg in cmdargs
]
 p1 = self.tmpdir.join("stdout")
 p2 = self.tmpdir.join("stderr")
 print("running:", *cmdargs)
 print(" in:", py.path.local())
 f1 = codecs.open(str(p1), "w", encoding="utf8")
 f2 = codecs.open(str(p2), "w", encoding="utf8")
 try:
 now = time.time()
 popen = self.popen(
 cmdargs,
 stdin=stdin,
 stdout=f1,
 stderr=f2,
 close_fds=(sys.platform != "win32"),
)
 if isinstance(stdin, bytes):
 popen.stdin.close()

 def handle_timeout():
 __tracebackhide__ = True

 timeout_message = (
 "{seconds} second timeout expired running:"
 " {command}".format(seconds=timeout, command=cmdargs)
)

 popen.kill()
 popen.wait()
 raise self.TimeoutExpired(timeout_message)

 if timeout is None:
 ret = popen.wait()
 elif not six.PY2:
 try:
 ret = popen.wait(timeout)
 except subprocess.TimeoutExpired:
 handle_timeout()
 else:
 end = time.time() + timeout

 resolution = min(0.1, timeout / 10)

 while True:
 ret = popen.poll()
 if ret is not None:
 break

 if time.time() > end:
 handle_timeout()

 time.sleep(resolution)
 finally:
 f1.close()
 f2.close()
 f1 = codecs.open(str(p1), "r", encoding="utf8")
 f2 = codecs.open(str(p2), "r", encoding="utf8")
 try:
 out = f1.read().splitlines()
 err = f2.read().splitlines()
 finally:
 f1.close()
 f2.close()
 self._dump_lines(out, sys.stdout)
 self._dump_lines(err, sys.stderr)
 return RunResult(ret, out, err, time.time() - now)

 def _dump_lines(self, lines, fp):
 try:
 for line in lines:
 print(line, file=fp)
 except UnicodeEncodeError:
 print("couldn't print to %s because of encoding" % (fp,))

 def _getpytestargs(self):
 return sys.executable, "-mpytest"

[docs] def runpython(self, script):
 """Run a python script using sys.executable as interpreter.

 Returns a :py:class:`RunResult`.

 """
 return self.run(sys.executable, script)

[docs] def runpython_c(self, command):
 """Run python -c "command", return a :py:class:`RunResult`."""
 return self.run(sys.executable, "-c", command)

[docs] def runpytest_subprocess(self, *args, **kwargs):
 """Run pytest as a subprocess with given arguments.

 Any plugins added to the :py:attr:`plugins` list will be added using the
 ``-p`` command line option. Additionally ``--basetemp`` is used to put
 any temporary files and directories in a numbered directory prefixed
 with "runpytest-" to not conflict with the normal numbered pytest
 location for temporary files and directories.

 :param args: the sequence of arguments to pass to the pytest subprocess
 :param timeout: the period in seconds after which to timeout and raise
 :py:class:`Testdir.TimeoutExpired`

 Returns a :py:class:`RunResult`.
 """
 __tracebackhide__ = True
 timeout = kwargs.pop("timeout", None)
 raise_on_kwargs(kwargs)

 p = py.path.local.make_numbered_dir(
 prefix="runpytest-", keep=None, rootdir=self.tmpdir
)
 args = ("--basetemp=%s" % p,) + args
 plugins = [x for x in self.plugins if isinstance(x, str)]
 if plugins:
 args = ("-p", plugins[0]) + args
 args = self._getpytestargs() + args
 return self.run(*args, timeout=timeout)

[docs] def spawn_pytest(self, string, expect_timeout=10.0):
 """Run pytest using pexpect.

 This makes sure to use the right pytest and sets up the temporary
 directory locations.

 The pexpect child is returned.

 """
 basetemp = self.tmpdir.mkdir("temp-pexpect")
 invoke = " ".join(map(str, self._getpytestargs()))
 cmd = "%s --basetemp=%s %s" % (invoke, basetemp, string)
 return self.spawn(cmd, expect_timeout=expect_timeout)

[docs] def spawn(self, cmd, expect_timeout=10.0):
 """Run a command using pexpect.

 The pexpect child is returned.

 """
 pexpect = pytest.importorskip("pexpect", "3.0")
 if hasattr(sys, "pypy_version_info") and "64" in platform.machine():
 pytest.skip("pypy-64 bit not supported")
 if sys.platform.startswith("freebsd"):
 pytest.xfail("pexpect does not work reliably on freebsd")
 logfile = self.tmpdir.join("spawn.out").open("wb")

 # Do not load user config.
 env = os.environ.copy()
 env.update(self._env_run_update)

 child = pexpect.spawn(cmd, logfile=logfile, env=env)
 self.request.addfinalizer(logfile.close)
 child.timeout = expect_timeout
 return child

def getdecoded(out):
 try:
 return out.decode("utf-8")
 except UnicodeDecodeError:
 return "INTERNAL not-utf8-decodeable, truncated string:\n%s" % (saferepr(out),)

class LineComp(object):
 def __init__(self):
 self.stringio = py.io.TextIO()

 def assert_contains_lines(self, lines2):
 """Assert that lines2 are contained (linearly) in lines1.

 Return a list of extralines found.

 """
 __tracebackhide__ = True
 val = self.stringio.getvalue()
 self.stringio.truncate(0)
 self.stringio.seek(0)
 lines1 = val.split("\n")
 return LineMatcher(lines1).fnmatch_lines(lines2)

[docs]class LineMatcher(object):
 """Flexible matching of text.

 This is a convenience class to test large texts like the output of
 commands.

 The constructor takes a list of lines without their trailing newlines, i.e.
 ``text.splitlines()``.

 """

 def __init__(self, lines):
 self.lines = lines
 self._log_output = []

[docs] def str(self):
 """Return the entire original text."""
 return "\n".join(self.lines)

 def _getlines(self, lines2):
 if isinstance(lines2, str):
 lines2 = Source(lines2)
 if isinstance(lines2, Source):
 lines2 = lines2.strip().lines
 return lines2

[docs] def fnmatch_lines_random(self, lines2):
 """Check lines exist in the output using in any order.

 Lines are checked using ``fnmatch.fnmatch``. The argument is a list of
 lines which have to occur in the output, in any order.

 """
 self._match_lines_random(lines2, fnmatch)

[docs] def re_match_lines_random(self, lines2):
 """Check lines exist in the output using ``re.match``, in any order.

 The argument is a list of lines which have to occur in the output, in
 any order.

 """
 self._match_lines_random(lines2, lambda name, pat: re.match(pat, name))

 def _match_lines_random(self, lines2, match_func):
 """Check lines exist in the output.

 The argument is a list of lines which have to occur in the output, in
 any order. Each line can contain glob whildcards.

 """
 lines2 = self._getlines(lines2)
 for line in lines2:
 for x in self.lines:
 if line == x or match_func(x, line):
 self._log("matched: ", repr(line))
 break
 else:
 self._log("line %r not found in output" % line)
 raise ValueError(self._log_text)

[docs] def get_lines_after(self, fnline):
 """Return all lines following the given line in the text.

 The given line can contain glob wildcards.

 """
 for i, line in enumerate(self.lines):
 if fnline == line or fnmatch(line, fnline):
 return self.lines[i + 1 :]
 raise ValueError("line %r not found in output" % fnline)

 def _log(self, *args):
 self._log_output.append(" ".join(str(x) for x in args))

 @property
 def _log_text(self):
 return "\n".join(self._log_output)

[docs] def fnmatch_lines(self, lines2):
 """Search captured text for matching lines using ``fnmatch.fnmatch``.

 The argument is a list of lines which have to match and can use glob
 wildcards. If they do not match a pytest.fail() is called. The
 matches and non-matches are also printed on stdout.

 """
 __tracebackhide__ = True
 self._match_lines(lines2, fnmatch, "fnmatch")

[docs] def re_match_lines(self, lines2):
 """Search captured text for matching lines using ``re.match``.

 The argument is a list of lines which have to match using ``re.match``.
 If they do not match a pytest.fail() is called.

 The matches and non-matches are also printed on stdout.

 """
 __tracebackhide__ = True
 self._match_lines(lines2, lambda name, pat: re.match(pat, name), "re.match")

 def _match_lines(self, lines2, match_func, match_nickname):
 """Underlying implementation of ``fnmatch_lines`` and ``re_match_lines``.

 :param list[str] lines2: list of string patterns to match. The actual
 format depends on ``match_func``
 :param match_func: a callable ``match_func(line, pattern)`` where line
 is the captured line from stdout/stderr and pattern is the matching
 pattern
 :param str match_nickname: the nickname for the match function that
 will be logged to stdout when a match occurs

 """
 assert isinstance(lines2, Sequence)
 lines2 = self._getlines(lines2)
 lines1 = self.lines[:]
 nextline = None
 extralines = []
 __tracebackhide__ = True
 for line in lines2:
 nomatchprinted = False
 while lines1:
 nextline = lines1.pop(0)
 if line == nextline:
 self._log("exact match:", repr(line))
 break
 elif match_func(nextline, line):
 self._log("%s:" % match_nickname, repr(line))
 self._log(" with:", repr(nextline))
 break
 else:
 if not nomatchprinted:
 self._log("nomatch:", repr(line))
 nomatchprinted = True
 self._log(" and:", repr(nextline))
 extralines.append(nextline)
 else:
 self._log("remains unmatched: %r" % (line,))
 pytest.fail(self._log_text)

 Source code for _pytest.python

-*- coding: utf-8 -*-
""" Python test discovery, setup and run of test functions. """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import fnmatch
import inspect
import os
import sys
import warnings
from functools import partial
from textwrap import dedent

import py
import six

import _pytest
from _pytest import deprecated
from _pytest import fixtures
from _pytest import nodes
from _pytest._code import filter_traceback
from _pytest.compat import ascii_escaped
from _pytest.compat import enum
from _pytest.compat import get_default_arg_names
from _pytest.compat import get_real_func
from _pytest.compat import getfslineno
from _pytest.compat import getimfunc
from _pytest.compat import getlocation
from _pytest.compat import is_generator
from _pytest.compat import isclass
from _pytest.compat import isfunction
from _pytest.compat import NOTSET
from _pytest.compat import REGEX_TYPE
from _pytest.compat import safe_getattr
from _pytest.compat import safe_isclass
from _pytest.compat import safe_str
from _pytest.compat import STRING_TYPES
from _pytest.config import hookimpl
from _pytest.main import FSHookProxy
from _pytest.mark import MARK_GEN
from _pytest.mark.structures import get_unpacked_marks
from _pytest.mark.structures import normalize_mark_list
from _pytest.outcomes import fail
from _pytest.outcomes import skip
from _pytest.pathlib import parts
from _pytest.warning_types import PytestCollectionWarning
from _pytest.warning_types import PytestUnhandledCoroutineWarning

def pyobj_property(name):
 def get(self):
 node = self.getparent(getattr(__import__("pytest"), name))
 if node is not None:
 return node.obj

 doc = "python %s object this node was collected from (can be None)." % (
 name.lower(),
)
 return property(get, None, None, doc)

def pytest_addoption(parser):
 group = parser.getgroup("general")
 group.addoption(
 "--fixtures",
 "--funcargs",
 action="store_true",
 dest="showfixtures",
 default=False,
 help="show available fixtures, sorted by plugin appearance "
 "(fixtures with leading '_' are only shown with '-v')",
)
 group.addoption(
 "--fixtures-per-test",
 action="store_true",
 dest="show_fixtures_per_test",
 default=False,
 help="show fixtures per test",
)
 parser.addini(
 "python_files",
 type="args",
 # NOTE: default is also used in AssertionRewritingHook.
 default=["test_*.py", "*_test.py"],
 help="glob-style file patterns for Python test module discovery",
)
 parser.addini(
 "python_classes",
 type="args",
 default=["Test"],
 help="prefixes or glob names for Python test class discovery",
)
 parser.addini(
 "python_functions",
 type="args",
 default=["test"],
 help="prefixes or glob names for Python test function and method discovery",
)
 parser.addini(
 "disable_test_id_escaping_and_forfeit_all_rights_to_community_support",
 type="bool",
 default=False,
 help="disable string escape non-ascii characters, might cause unwanted "
 "side effects(use at your own risk)",
)

 group.addoption(
 "--import-mode",
 default="prepend",
 choices=["prepend", "append"],
 dest="importmode",
 help="prepend/append to sys.path when importing test modules, "
 "default is to prepend.",
)

def pytest_cmdline_main(config):
 if config.option.showfixtures:
 showfixtures(config)
 return 0
 if config.option.show_fixtures_per_test:
 show_fixtures_per_test(config)
 return 0

def pytest_generate_tests(metafunc):
 # those alternative spellings are common - raise a specific error to alert
 # the user
 alt_spellings = ["parameterize", "parametrise", "parameterise"]
 for mark_name in alt_spellings:
 if metafunc.definition.get_closest_marker(mark_name):
 msg = "{0} has '{1}' mark, spelling should be 'parametrize'"
 fail(msg.format(metafunc.function.__name__, mark_name), pytrace=False)
 for marker in metafunc.definition.iter_markers(name="parametrize"):
 metafunc.parametrize(*marker.args, **marker.kwargs)

def pytest_configure(config):
 config.addinivalue_line(
 "markers",
 "parametrize(argnames, argvalues): call a test function multiple "
 "times passing in different arguments in turn. argvalues generally "
 "needs to be a list of values if argnames specifies only one name "
 "or a list of tuples of values if argnames specifies multiple names. "
 "Example: @parametrize('arg1', [1,2]) would lead to two calls of the "
 "decorated test function, one with arg1=1 and another with arg1=2."
 "see https://docs.pytest.org/en/latest/parametrize.html for more info "
 "and examples.",
)
 config.addinivalue_line(
 "markers",
 "usefixtures(fixturename1, fixturename2, ...): mark tests as needing "
 "all of the specified fixtures. see "
 "https://docs.pytest.org/en/latest/fixture.html#usefixtures ",
)

@hookimpl(trylast=True)
def pytest_pyfunc_call(pyfuncitem):
 testfunction = pyfuncitem.obj
 iscoroutinefunction = getattr(inspect, "iscoroutinefunction", None)
 if iscoroutinefunction is not None and iscoroutinefunction(testfunction):
 msg = "Coroutine functions are not natively supported and have been skipped.\n"
 msg += "You need to install a suitable plugin for your async framework, for example:\n"
 msg += " - pytest-asyncio\n"
 msg += " - pytest-trio\n"
 msg += " - pytest-tornasync"
 warnings.warn(PytestUnhandledCoroutineWarning(msg.format(pyfuncitem.nodeid)))
 skip(msg="coroutine function and no async plugin installed (see warnings)")
 funcargs = pyfuncitem.funcargs
 testargs = {arg: funcargs[arg] for arg in pyfuncitem._fixtureinfo.argnames}
 testfunction(**testargs)
 return True

def pytest_collect_file(path, parent):
 ext = path.ext
 if ext == ".py":
 if not parent.session.isinitpath(path):
 if not path_matches_patterns(
 path, parent.config.getini("python_files") + ["__init__.py"]
):
 return
 ihook = parent.session.gethookproxy(path)
 return ihook.pytest_pycollect_makemodule(path=path, parent=parent)

def path_matches_patterns(path, patterns):
 """Returns True if the given py.path.local matches one of the patterns in the list of globs given"""
 return any(path.fnmatch(pattern) for pattern in patterns)

def pytest_pycollect_makemodule(path, parent):
 if path.basename == "__init__.py":
 return Package(path, parent)
 return Module(path, parent)

@hookimpl(hookwrapper=True)
def pytest_pycollect_makeitem(collector, name, obj):
 outcome = yield
 res = outcome.get_result()
 if res is not None:
 return
 # nothing was collected elsewhere, let's do it here
 if safe_isclass(obj):
 if collector.istestclass(obj, name):
 outcome.force_result(Class(name, parent=collector))
 elif collector.istestfunction(obj, name):
 # mock seems to store unbound methods (issue473), normalize it
 obj = getattr(obj, "__func__", obj)
 # We need to try and unwrap the function if it's a functools.partial
 # or a funtools.wrapped.
 # We musn't if it's been wrapped with mock.patch (python 2 only)
 if not (isfunction(obj) or isfunction(get_real_func(obj))):
 filename, lineno = getfslineno(obj)
 warnings.warn_explicit(
 message=PytestCollectionWarning(
 "cannot collect %r because it is not a function." % name
),
 category=None,
 filename=str(filename),
 lineno=lineno + 1,
)
 elif getattr(obj, "__test__", True):
 if is_generator(obj):
 res = Function(name, parent=collector)
 reason = deprecated.YIELD_TESTS.format(name=name)
 res.add_marker(MARK_GEN.xfail(run=False, reason=reason))
 res.warn(PytestCollectionWarning(reason))
 else:
 res = list(collector._genfunctions(name, obj))
 outcome.force_result(res)

def pytest_make_parametrize_id(config, val, argname=None):
 return None

class PyobjContext(object):
 module = pyobj_property("Module")
 cls = pyobj_property("Class")
 instance = pyobj_property("Instance")

class PyobjMixin(PyobjContext):
 _ALLOW_MARKERS = True

 def __init__(self, *k, **kw):
 super(PyobjMixin, self).__init__(*k, **kw)

 @property
 def obj(self):
 """Underlying Python object."""
 obj = getattr(self, "_obj", None)
 if obj is None:
 self._obj = obj = self._getobj()
 # XXX evil hack
 # used to avoid Instance collector marker duplication
 if self._ALLOW_MARKERS:
 self.own_markers.extend(get_unpacked_marks(self.obj))
 return obj

 @obj.setter
 def obj(self, value):
 self._obj = value

 def _getobj(self):
 """Gets the underlying Python object. May be overwritten by subclasses."""
 return getattr(self.parent.obj, self.name)

 def getmodpath(self, stopatmodule=True, includemodule=False):
 """ return python path relative to the containing module. """
 chain = self.listchain()
 chain.reverse()
 parts = []
 for node in chain:
 if isinstance(node, Instance):
 continue
 name = node.name
 if isinstance(node, Module):
 name = os.path.splitext(name)[0]
 if stopatmodule:
 if includemodule:
 parts.append(name)
 break
 parts.append(name)
 parts.reverse()
 s = ".".join(parts)
 return s.replace(".[", "[")

 def reportinfo(self):
 # XXX caching?
 obj = self.obj
 compat_co_firstlineno = getattr(obj, "compat_co_firstlineno", None)
 if isinstance(compat_co_firstlineno, int):
 # nose compatibility
 fspath = sys.modules[obj.__module__].__file__
 if fspath.endswith(".pyc"):
 fspath = fspath[:-1]
 lineno = compat_co_firstlineno
 else:
 fspath, lineno = getfslineno(obj)
 modpath = self.getmodpath()
 assert isinstance(lineno, int)
 return fspath, lineno, modpath

class PyCollector(PyobjMixin, nodes.Collector):
 def funcnamefilter(self, name):
 return self._matches_prefix_or_glob_option("python_functions", name)

 def isnosetest(self, obj):
 """ Look for the __test__ attribute, which is applied by the
 @nose.tools.istest decorator
 """
 # We explicitly check for "is True" here to not mistakenly treat
 # classes with a custom __getattr__ returning something truthy (like a
 # function) as test classes.
 return safe_getattr(obj, "__test__", False) is True

 def classnamefilter(self, name):
 return self._matches_prefix_or_glob_option("python_classes", name)

 def istestfunction(self, obj, name):
 if self.funcnamefilter(name) or self.isnosetest(obj):
 if isinstance(obj, staticmethod):
 # static methods need to be unwrapped
 obj = safe_getattr(obj, "__func__", False)
 return (
 safe_getattr(obj, "__call__", False)
 and fixtures.getfixturemarker(obj) is None
)
 else:
 return False

 def istestclass(self, obj, name):
 return self.classnamefilter(name) or self.isnosetest(obj)

 def _matches_prefix_or_glob_option(self, option_name, name):
 """
 checks if the given name matches the prefix or glob-pattern defined
 in ini configuration.
 """
 for option in self.config.getini(option_name):
 if name.startswith(option):
 return True
 # check that name looks like a glob-string before calling fnmatch
 # because this is called for every name in each collected module,
 # and fnmatch is somewhat expensive to call
 elif ("*" in option or "?" in option or "[" in option) and fnmatch.fnmatch(
 name, option
):
 return True
 return False

 def collect(self):
 if not getattr(self.obj, "__test__", True):
 return []

 # NB. we avoid random getattrs and peek in the __dict__ instead
 # (XXX originally introduced from a PyPy need, still true?)
 dicts = [getattr(self.obj, "__dict__", {})]
 for basecls in inspect.getmro(self.obj.__class__):
 dicts.append(basecls.__dict__)
 seen = {}
 values = []
 for dic in dicts:
 for name, obj in list(dic.items()):
 if name in seen:
 continue
 seen[name] = True
 res = self._makeitem(name, obj)
 if res is None:
 continue
 if not isinstance(res, list):
 res = [res]
 values.extend(res)
 values.sort(key=lambda item: item.reportinfo()[:2])
 return values

 def _makeitem(self, name, obj):
 # assert self.ihook.fspath == self.fspath, self
 return self.ihook.pytest_pycollect_makeitem(collector=self, name=name, obj=obj)

 def _genfunctions(self, name, funcobj):
 module = self.getparent(Module).obj
 clscol = self.getparent(Class)
 cls = clscol and clscol.obj or None
 fm = self.session._fixturemanager

 definition = FunctionDefinition(name=name, parent=self, callobj=funcobj)
 fixtureinfo = fm.getfixtureinfo(definition, funcobj, cls)

 metafunc = Metafunc(
 definition, fixtureinfo, self.config, cls=cls, module=module
)
 methods = []
 if hasattr(module, "pytest_generate_tests"):
 methods.append(module.pytest_generate_tests)
 if hasattr(cls, "pytest_generate_tests"):
 methods.append(cls().pytest_generate_tests)
 if methods:
 self.ihook.pytest_generate_tests.call_extra(
 methods, dict(metafunc=metafunc)
)
 else:
 self.ihook.pytest_generate_tests(metafunc=metafunc)

 if not metafunc._calls:
 yield Function(name, parent=self, fixtureinfo=fixtureinfo)
 else:
 # add funcargs() as fixturedefs to fixtureinfo.arg2fixturedefs
 fixtures.add_funcarg_pseudo_fixture_def(self, metafunc, fm)

 # add_funcarg_pseudo_fixture_def may have shadowed some fixtures
 # with direct parametrization, so make sure we update what the
 # function really needs.
 fixtureinfo.prune_dependency_tree()

 for callspec in metafunc._calls:
 subname = "%s[%s]" % (name, callspec.id)
 yield Function(
 name=subname,
 parent=self,
 callspec=callspec,
 callobj=funcobj,
 fixtureinfo=fixtureinfo,
 keywords={callspec.id: True},
 originalname=name,
)

[docs]class Module(nodes.File, PyCollector):
 """ Collector for test classes and functions. """

 def _getobj(self):
 return self._importtestmodule()

[docs] def collect(self):
 self._inject_setup_module_fixture()
 self._inject_setup_function_fixture()
 self.session._fixturemanager.parsefactories(self)
 return super(Module, self).collect()

 def _inject_setup_module_fixture(self):
 """Injects a hidden autouse, module scoped fixture into the collected module object
 that invokes setUpModule/tearDownModule if either or both are available.

 Using a fixture to invoke this methods ensures we play nicely and unsurprisingly with
 other fixtures (#517).
 """
 setup_module = _get_non_fixture_func(self.obj, "setUpModule")
 if setup_module is None:
 setup_module = _get_non_fixture_func(self.obj, "setup_module")

 teardown_module = _get_non_fixture_func(self.obj, "tearDownModule")
 if teardown_module is None:
 teardown_module = _get_non_fixture_func(self.obj, "teardown_module")

 if setup_module is None and teardown_module is None:
 return

 @fixtures.fixture(autouse=True, scope="module")
 def xunit_setup_module_fixture(request):
 if setup_module is not None:
 _call_with_optional_argument(setup_module, request.module)
 yield
 if teardown_module is not None:
 _call_with_optional_argument(teardown_module, request.module)

 self.obj.__pytest_setup_module = xunit_setup_module_fixture

 def _inject_setup_function_fixture(self):
 """Injects a hidden autouse, function scoped fixture into the collected module object
 that invokes setup_function/teardown_function if either or both are available.

 Using a fixture to invoke this methods ensures we play nicely and unsurprisingly with
 other fixtures (#517).
 """
 setup_function = _get_non_fixture_func(self.obj, "setup_function")
 teardown_function = _get_non_fixture_func(self.obj, "teardown_function")
 if setup_function is None and teardown_function is None:
 return

 @fixtures.fixture(autouse=True, scope="function")
 def xunit_setup_function_fixture(request):
 if request.instance is not None:
 # in this case we are bound to an instance, so we need to let
 # setup_method handle this
 yield
 return
 if setup_function is not None:
 _call_with_optional_argument(setup_function, request.function)
 yield
 if teardown_function is not None:
 _call_with_optional_argument(teardown_function, request.function)

 self.obj.__pytest_setup_function = xunit_setup_function_fixture

 def _importtestmodule(self):
 # we assume we are only called once per module
 importmode = self.config.getoption("--import-mode")
 try:
 mod = self.fspath.pyimport(ensuresyspath=importmode)
 except SyntaxError:
 raise self.CollectError(
 _pytest._code.ExceptionInfo.from_current().getrepr(style="short")
)
 except self.fspath.ImportMismatchError:
 e = sys.exc_info()[1]
 raise self.CollectError(
 "import file mismatch:\n"
 "imported module %r has this __file__ attribute:\n"
 " %s\n"
 "which is not the same as the test file we want to collect:\n"
 " %s\n"
 "HINT: remove __pycache__ / .pyc files and/or use a "
 "unique basename for your test file modules" % e.args
)
 except ImportError:
 from _pytest._code.code import ExceptionInfo

 exc_info = ExceptionInfo.from_current()
 if self.config.getoption("verbose") < 2:
 exc_info.traceback = exc_info.traceback.filter(filter_traceback)
 exc_repr = (
 exc_info.getrepr(style="short")
 if exc_info.traceback
 else exc_info.exconly()
)
 formatted_tb = safe_str(exc_repr)
 raise self.CollectError(
 "ImportError while importing test module '{fspath}'.\n"
 "Hint: make sure your test modules/packages have valid Python names.\n"
 "Traceback:\n"
 "{traceback}".format(fspath=self.fspath, traceback=formatted_tb)
)
 except _pytest.runner.Skipped as e:
 if e.allow_module_level:
 raise
 raise self.CollectError(
 "Using pytest.skip outside of a test is not allowed. "
 "To decorate a test function, use the @pytest.mark.skip "
 "or @pytest.mark.skipif decorators instead, and to skip a "
 "module use `pytestmark = pytest.mark.{skip,skipif}."
)
 self.config.pluginmanager.consider_module(mod)
 return mod

class Package(Module):
 def __init__(self, fspath, parent=None, config=None, session=None, nodeid=None):
 session = parent.session
 nodes.FSCollector.__init__(
 self, fspath, parent=parent, config=config, session=session, nodeid=nodeid
)
 self.name = fspath.dirname
 self.trace = session.trace
 self._norecursepatterns = session._norecursepatterns
 self.fspath = fspath

 def setup(self):
 # not using fixtures to call setup_module here because autouse fixtures
 # from packages are not called automatically (#4085)
 setup_module = _get_non_fixture_func(self.obj, "setUpModule")
 if setup_module is None:
 setup_module = _get_non_fixture_func(self.obj, "setup_module")
 if setup_module is not None:
 _call_with_optional_argument(setup_module, self.obj)

 teardown_module = _get_non_fixture_func(self.obj, "tearDownModule")
 if teardown_module is None:
 teardown_module = _get_non_fixture_func(self.obj, "teardown_module")
 if teardown_module is not None:
 func = partial(_call_with_optional_argument, teardown_module, self.obj)
 self.addfinalizer(func)

 def _recurse(self, dirpath):
 if dirpath.basename == "__pycache__":
 return False
 ihook = self.gethookproxy(dirpath.dirpath())
 if ihook.pytest_ignore_collect(path=dirpath, config=self.config):
 return
 for pat in self._norecursepatterns:
 if dirpath.check(fnmatch=pat):
 return False
 ihook = self.gethookproxy(dirpath)
 ihook.pytest_collect_directory(path=dirpath, parent=self)
 return True

 def gethookproxy(self, fspath):
 # check if we have the common case of running
 # hooks with all conftest.py filesall conftest.py
 pm = self.config.pluginmanager
 my_conftestmodules = pm._getconftestmodules(fspath)
 remove_mods = pm._conftest_plugins.difference(my_conftestmodules)
 if remove_mods:
 # one or more conftests are not in use at this fspath
 proxy = FSHookProxy(fspath, pm, remove_mods)
 else:
 # all plugis are active for this fspath
 proxy = self.config.hook
 return proxy

 def _collectfile(self, path, handle_dupes=True):
 assert path.isfile(), "%r is not a file (isdir=%r, exists=%r, islink=%r)" % (
 path,
 path.isdir(),
 path.exists(),
 path.islink(),
)
 ihook = self.gethookproxy(path)
 if not self.isinitpath(path):
 if ihook.pytest_ignore_collect(path=path, config=self.config):
 return ()

 if handle_dupes:
 keepduplicates = self.config.getoption("keepduplicates")
 if not keepduplicates:
 duplicate_paths = self.config.pluginmanager._duplicatepaths
 if path in duplicate_paths:
 return ()
 else:
 duplicate_paths.add(path)

 if self.fspath == path: # __init__.py
 return [self]

 return ihook.pytest_collect_file(path=path, parent=self)

 def isinitpath(self, path):
 return path in self.session._initialpaths

 def collect(self):
 this_path = self.fspath.dirpath()
 init_module = this_path.join("__init__.py")
 if init_module.check(file=1) and path_matches_patterns(
 init_module, self.config.getini("python_files")
):
 yield Module(init_module, self)
 pkg_prefixes = set()
 for path in this_path.visit(rec=self._recurse, bf=True, sort=True):
 # We will visit our own __init__.py file, in which case we skip it.
 is_file = path.isfile()
 if is_file:
 if path.basename == "__init__.py" and path.dirpath() == this_path:
 continue

 parts_ = parts(path.strpath)
 if any(
 pkg_prefix in parts_ and pkg_prefix.join("__init__.py") != path
 for pkg_prefix in pkg_prefixes
):
 continue

 if is_file:
 for x in self._collectfile(path):
 yield x
 elif not path.isdir():
 # Broken symlink or invalid/missing file.
 continue
 elif path.join("__init__.py").check(file=1):
 pkg_prefixes.add(path)

def _get_xunit_setup_teardown(holder, attr_name, param_obj=None):
 """
 Return a callable to perform xunit-style setup or teardown if
 the function exists in the ``holder`` object.
 The ``param_obj`` parameter is the parameter which will be passed to the function
 when the callable is called without arguments, defaults to the ``holder`` object.
 Return ``None`` if a suitable callable is not found.
 """
 # TODO: only needed because of Package!
 param_obj = param_obj if param_obj is not None else holder
 result = _get_non_fixture_func(holder, attr_name)
 if result is not None:
 arg_count = result.__code__.co_argcount
 if inspect.ismethod(result):
 arg_count -= 1
 if arg_count:
 return lambda: result(param_obj)
 else:
 return result

def _call_with_optional_argument(func, arg):
 """Call the given function with the given argument if func accepts one argument, otherwise
 calls func without arguments"""
 arg_count = func.__code__.co_argcount
 if inspect.ismethod(func):
 arg_count -= 1
 if arg_count:
 func(arg)
 else:
 func()

def _get_non_fixture_func(obj, name):
 """Return the attribute from the given object to be used as a setup/teardown
 xunit-style function, but only if not marked as a fixture to
 avoid calling it twice.
 """
 meth = getattr(obj, name, None)
 if fixtures.getfixturemarker(meth) is None:
 return meth

[docs]class Class(PyCollector):
 """ Collector for test methods. """

[docs] def collect(self):
 if not safe_getattr(self.obj, "__test__", True):
 return []
 if hasinit(self.obj):
 self.warn(
 PytestCollectionWarning(
 "cannot collect test class %r because it has a "
 "__init__ constructor (from: %s)"
 % (self.obj.__name__, self.parent.nodeid)
)
)
 return []
 elif hasnew(self.obj):
 self.warn(
 PytestCollectionWarning(
 "cannot collect test class %r because it has a "
 "__new__ constructor (from: %s)"
 % (self.obj.__name__, self.parent.nodeid)
)
)
 return []

 self._inject_setup_class_fixture()
 self._inject_setup_method_fixture()

 return [Instance(name="()", parent=self)]

 def _inject_setup_class_fixture(self):
 """Injects a hidden autouse, class scoped fixture into the collected class object
 that invokes setup_class/teardown_class if either or both are available.

 Using a fixture to invoke this methods ensures we play nicely and unsurprisingly with
 other fixtures (#517).
 """
 setup_class = _get_non_fixture_func(self.obj, "setup_class")
 teardown_class = getattr(self.obj, "teardown_class", None)
 if setup_class is None and teardown_class is None:
 return

 @fixtures.fixture(autouse=True, scope="class")
 def xunit_setup_class_fixture(cls):
 if setup_class is not None:
 func = getimfunc(setup_class)
 _call_with_optional_argument(func, self.obj)
 yield
 if teardown_class is not None:
 func = getimfunc(teardown_class)
 _call_with_optional_argument(func, self.obj)

 self.obj.__pytest_setup_class = xunit_setup_class_fixture

 def _inject_setup_method_fixture(self):
 """Injects a hidden autouse, function scoped fixture into the collected class object
 that invokes setup_method/teardown_method if either or both are available.

 Using a fixture to invoke this methods ensures we play nicely and unsurprisingly with
 other fixtures (#517).
 """
 setup_method = _get_non_fixture_func(self.obj, "setup_method")
 teardown_method = getattr(self.obj, "teardown_method", None)
 if setup_method is None and teardown_method is None:
 return

 @fixtures.fixture(autouse=True, scope="function")
 def xunit_setup_method_fixture(self, request):
 method = request.function
 if setup_method is not None:
 func = getattr(self, "setup_method")
 _call_with_optional_argument(func, method)
 yield
 if teardown_method is not None:
 func = getattr(self, "teardown_method")
 _call_with_optional_argument(func, method)

 self.obj.__pytest_setup_method = xunit_setup_method_fixture

class Instance(PyCollector):
 _ALLOW_MARKERS = False # hack, destroy later
 # instances share the object with their parents in a way
 # that duplicates markers instances if not taken out
 # can be removed at node structure reorganization time

 def _getobj(self):
 return self.parent.obj()

 def collect(self):
 self.session._fixturemanager.parsefactories(self)
 return super(Instance, self).collect()

 def newinstance(self):
 self.obj = self._getobj()
 return self.obj

class FunctionMixin(PyobjMixin):
 """ mixin for the code common to Function and Generator.
 """

 def setup(self):
 """ perform setup for this test function. """
 if isinstance(self.parent, Instance):
 self.parent.newinstance()
 self.obj = self._getobj()

 def _prunetraceback(self, excinfo):
 if hasattr(self, "_obj") and not self.config.getoption("fulltrace", False):
 code = _pytest._code.Code(get_real_func(self.obj))
 path, firstlineno = code.path, code.firstlineno
 traceback = excinfo.traceback
 ntraceback = traceback.cut(path=path, firstlineno=firstlineno)
 if ntraceback == traceback:
 ntraceback = ntraceback.cut(path=path)
 if ntraceback == traceback:
 ntraceback = ntraceback.filter(filter_traceback)
 if not ntraceback:
 ntraceback = traceback

 excinfo.traceback = ntraceback.filter()
 # issue364: mark all but first and last frames to
 # only show a single-line message for each frame
 if self.config.getoption("tbstyle", "auto") == "auto":
 if len(excinfo.traceback) > 2:
 for entry in excinfo.traceback[1:-1]:
 entry.set_repr_style("short")

 def repr_failure(self, excinfo, outerr=None):
 assert outerr is None, "XXX outerr usage is deprecated"
 style = self.config.getoption("tbstyle", "auto")
 if style == "auto":
 style = "long"
 return self._repr_failure_py(excinfo, style=style)

def hasinit(obj):
 init = getattr(obj, "__init__", None)
 if init:
 return init != object.__init__

def hasnew(obj):
 new = getattr(obj, "__new__", None)
 if new:
 return new != object.__new__

class CallSpec2(object):
 def __init__(self, metafunc):
 self.metafunc = metafunc
 self.funcargs = {}
 self._idlist = []
 self.params = {}
 self._globalid = NOTSET
 self._globalparam = NOTSET
 self._arg2scopenum = {} # used for sorting parametrized resources
 self.marks = []
 self.indices = {}

 def copy(self):
 cs = CallSpec2(self.metafunc)
 cs.funcargs.update(self.funcargs)
 cs.params.update(self.params)
 cs.marks.extend(self.marks)
 cs.indices.update(self.indices)
 cs._arg2scopenum.update(self._arg2scopenum)
 cs._idlist = list(self._idlist)
 cs._globalid = self._globalid
 cs._globalparam = self._globalparam
 return cs

 def _checkargnotcontained(self, arg):
 if arg in self.params or arg in self.funcargs:
 raise ValueError("duplicate %r" % (arg,))

 def getparam(self, name):
 try:
 return self.params[name]
 except KeyError:
 if self._globalparam is NOTSET:
 raise ValueError(name)
 return self._globalparam

 @property
 def id(self):
 return "-".join(map(str, filter(None, self._idlist)))

 def setmulti2(self, valtypes, argnames, valset, id, marks, scopenum, param_index):
 for arg, val in zip(argnames, valset):
 self._checkargnotcontained(arg)
 valtype_for_arg = valtypes[arg]
 getattr(self, valtype_for_arg)[arg] = val
 self.indices[arg] = param_index
 self._arg2scopenum[arg] = scopenum
 self._idlist.append(id)
 self.marks.extend(normalize_mark_list(marks))

 def setall(self, funcargs, id, param):
 for x in funcargs:
 self._checkargnotcontained(x)
 self.funcargs.update(funcargs)
 if id is not NOTSET:
 self._idlist.append(id)
 if param is not NOTSET:
 assert self._globalparam is NOTSET
 self._globalparam = param
 for arg in funcargs:
 self._arg2scopenum[arg] = fixtures.scopenum_function

[docs]class Metafunc(fixtures.FuncargnamesCompatAttr):
 """
 Metafunc objects are passed to the :func:`pytest_generate_tests <_pytest.hookspec.pytest_generate_tests>` hook.
 They help to inspect a test function and to generate tests according to
 test configuration or values specified in the class or module where a
 test function is defined.
 """

 def __init__(self, definition, fixtureinfo, config, cls=None, module=None):
 assert (
 isinstance(definition, FunctionDefinition)
 or type(definition).__name__ == "DefinitionMock"
)
 self.definition = definition

 #: access to the :class:`_pytest.config.Config` object for the test session
 self.config = config

 #: the module object where the test function is defined in.
 self.module = module

 #: underlying python test function
 self.function = definition.obj

 #: set of fixture names required by the test function
 self.fixturenames = fixtureinfo.names_closure

 #: class object where the test function is defined in or ``None``.
 self.cls = cls

 self._calls = []
 self._ids = set()
 self._arg2fixturedefs = fixtureinfo.name2fixturedefs

[docs] def parametrize(self, argnames, argvalues, indirect=False, ids=None, scope=None):
 """ Add new invocations to the underlying test function using the list
 of argvalues for the given argnames. Parametrization is performed
 during the collection phase. If you need to setup expensive resources
 see about setting indirect to do it rather at test setup time.

 :arg argnames: a comma-separated string denoting one or more argument
 names, or a list/tuple of argument strings.

 :arg argvalues: The list of argvalues determines how often a
 test is invoked with different argument values. If only one
 argname was specified argvalues is a list of values. If N
 argnames were specified, argvalues must be a list of N-tuples,
 where each tuple-element specifies a value for its respective
 argname.

 :arg indirect: The list of argnames or boolean. A list of arguments'
 names (subset of argnames). If True the list contains all names from
 the argnames. Each argvalue corresponding to an argname in this list will
 be passed as request.param to its respective argname fixture
 function so that it can perform more expensive setups during the
 setup phase of a test rather than at collection time.

 :arg ids: list of string ids, or a callable.
 If strings, each is corresponding to the argvalues so that they are
 part of the test id. If None is given as id of specific test, the
 automatically generated id for that argument will be used.
 If callable, it should take one argument (a single argvalue) and return
 a string or return None. If None, the automatically generated id for that
 argument will be used.
 If no ids are provided they will be generated automatically from
 the argvalues.

 :arg scope: if specified it denotes the scope of the parameters.
 The scope is used for grouping tests by parameter instances.
 It will also override any fixture-function defined scope, allowing
 to set a dynamic scope using test context or configuration.
 """
 from _pytest.fixtures import scope2index
 from _pytest.mark import ParameterSet

 argnames, parameters = ParameterSet._for_parametrize(
 argnames,
 argvalues,
 self.function,
 self.config,
 function_definition=self.definition,
)
 del argvalues

 if scope is None:
 scope = _find_parametrized_scope(argnames, self._arg2fixturedefs, indirect)

 self._validate_if_using_arg_names(argnames, indirect)

 arg_values_types = self._resolve_arg_value_types(argnames, indirect)

 ids = self._resolve_arg_ids(argnames, ids, parameters, item=self.definition)

 scopenum = scope2index(
 scope, descr="parametrize() call in {}".format(self.function.__name__)
)

 # create the new calls: if we are parametrize() multiple times (by applying the decorator
 # more than once) then we accumulate those calls generating the cartesian product
 # of all calls
 newcalls = []
 for callspec in self._calls or [CallSpec2(self)]:
 for param_index, (param_id, param_set) in enumerate(zip(ids, parameters)):
 newcallspec = callspec.copy()
 newcallspec.setmulti2(
 arg_values_types,
 argnames,
 param_set.values,
 param_id,
 param_set.marks,
 scopenum,
 param_index,
)
 newcalls.append(newcallspec)
 self._calls = newcalls

 def _resolve_arg_ids(self, argnames, ids, parameters, item):
 """Resolves the actual ids for the given argnames, based on the ``ids`` parameter given
 to ``parametrize``.

 :param List[str] argnames: list of argument names passed to ``parametrize()``.
 :param ids: the ids parameter of the parametrized call (see docs).
 :param List[ParameterSet] parameters: the list of parameter values, same size as ``argnames``.
 :param Item item: the item that generated this parametrized call.
 :rtype: List[str]
 :return: the list of ids for each argname given
 """
 from _pytest._io.saferepr import saferepr

 idfn = None
 if callable(ids):
 idfn = ids
 ids = None
 if ids:
 func_name = self.function.__name__
 if len(ids) != len(parameters):
 msg = "In {}: {} parameter sets specified, with different number of ids: {}"
 fail(msg.format(func_name, len(parameters), len(ids)), pytrace=False)
 for id_value in ids:
 if id_value is not None and not isinstance(id_value, six.string_types):
 msg = "In {}: ids must be list of strings, found: {} (type: {!r})"
 fail(
 msg.format(func_name, saferepr(id_value), type(id_value)),
 pytrace=False,
)
 ids = idmaker(argnames, parameters, idfn, ids, self.config, item=item)
 return ids

 def _resolve_arg_value_types(self, argnames, indirect):
 """Resolves if each parametrized argument must be considered a parameter to a fixture or a "funcarg"
 to the function, based on the ``indirect`` parameter of the parametrized() call.

 :param List[str] argnames: list of argument names passed to ``parametrize()``.
 :param indirect: same ``indirect`` parameter of ``parametrize()``.
 :rtype: Dict[str, str]
 A dict mapping each arg name to either:
 * "params" if the argname should be the parameter of a fixture of the same name.
 * "funcargs" if the argname should be a parameter to the parametrized test function.
 """
 valtypes = {}
 if indirect is True:
 valtypes = dict.fromkeys(argnames, "params")
 elif indirect is False:
 valtypes = dict.fromkeys(argnames, "funcargs")
 elif isinstance(indirect, (tuple, list)):
 valtypes = dict.fromkeys(argnames, "funcargs")
 for arg in indirect:
 if arg not in argnames:
 fail(
 "In {}: indirect fixture '{}' doesn't exist".format(
 self.function.__name__, arg
),
 pytrace=False,
)
 valtypes[arg] = "params"
 return valtypes

 def _validate_if_using_arg_names(self, argnames, indirect):
 """
 Check if all argnames are being used, by default values, or directly/indirectly.

 :param List[str] argnames: list of argument names passed to ``parametrize()``.
 :param indirect: same ``indirect`` parameter of ``parametrize()``.
 :raise ValueError: if validation fails.
 """
 default_arg_names = set(get_default_arg_names(self.function))
 func_name = self.function.__name__
 for arg in argnames:
 if arg not in self.fixturenames:
 if arg in default_arg_names:
 fail(
 "In {}: function already takes an argument '{}' with a default value".format(
 func_name, arg
),
 pytrace=False,
)
 else:
 if isinstance(indirect, (tuple, list)):
 name = "fixture" if arg in indirect else "argument"
 else:
 name = "fixture" if indirect else "argument"
 fail(
 "In {}: function uses no {} '{}'".format(func_name, name, arg),
 pytrace=False,
)

def _find_parametrized_scope(argnames, arg2fixturedefs, indirect):
 """Find the most appropriate scope for a parametrized call based on its arguments.

 When there's at least one direct argument, always use "function" scope.

 When a test function is parametrized and all its arguments are indirect
 (e.g. fixtures), return the most narrow scope based on the fixtures used.

 Related to issue #1832, based on code posted by @Kingdread.
 """
 from _pytest.fixtures import scopes

 if isinstance(indirect, (list, tuple)):
 all_arguments_are_fixtures = len(indirect) == len(argnames)
 else:
 all_arguments_are_fixtures = bool(indirect)

 if all_arguments_are_fixtures:
 fixturedefs = arg2fixturedefs or {}
 used_scopes = [
 fixturedef[0].scope
 for name, fixturedef in fixturedefs.items()
 if name in argnames
]
 if used_scopes:
 # Takes the most narrow scope from used fixtures
 for scope in reversed(scopes):
 if scope in used_scopes:
 return scope

 return "function"

def _ascii_escaped_by_config(val, config):
 if config is None:
 escape_option = False
 else:
 escape_option = config.getini(
 "disable_test_id_escaping_and_forfeit_all_rights_to_community_support"
)
 return val if escape_option else ascii_escaped(val)

def _idval(val, argname, idx, idfn, item, config):
 if idfn:
 try:
 generated_id = idfn(val)
 if generated_id is not None:
 val = generated_id
 except Exception as e:
 # See issue https://github.com/pytest-dev/pytest/issues/2169
 msg = "{}: error raised while trying to determine id of parameter '{}' at position {}\n"
 msg = msg.format(item.nodeid, argname, idx)
 # we only append the exception type and message because on Python 2 reraise does nothing
 msg += " {}: {}\n".format(type(e).__name__, e)
 six.raise_from(ValueError(msg), e)
 elif config:
 hook_id = config.hook.pytest_make_parametrize_id(
 config=config, val=val, argname=argname
)
 if hook_id:
 return hook_id

 if isinstance(val, STRING_TYPES):
 return _ascii_escaped_by_config(val, config)
 elif val is None or isinstance(val, (float, int, bool)):
 return str(val)
 elif isinstance(val, REGEX_TYPE):
 return ascii_escaped(val.pattern)
 elif enum is not None and isinstance(val, enum.Enum):
 return str(val)
 elif (isclass(val) or isfunction(val)) and hasattr(val, "__name__"):
 return val.__name__
 return str(argname) + str(idx)

def _idvalset(idx, parameterset, argnames, idfn, ids, item, config):
 if parameterset.id is not None:
 return parameterset.id
 if ids is None or (idx >= len(ids) or ids[idx] is None):
 this_id = [
 _idval(val, argname, idx, idfn, item=item, config=config)
 for val, argname in zip(parameterset.values, argnames)
]
 return "-".join(this_id)
 else:
 return _ascii_escaped_by_config(ids[idx], config)

def idmaker(argnames, parametersets, idfn=None, ids=None, config=None, item=None):
 ids = [
 _idvalset(valindex, parameterset, argnames, idfn, ids, config=config, item=item)
 for valindex, parameterset in enumerate(parametersets)
]
 if len(set(ids)) != len(ids):
 # The ids are not unique
 duplicates = [testid for testid in ids if ids.count(testid) > 1]
 counters = collections.defaultdict(lambda: 0)
 for index, testid in enumerate(ids):
 if testid in duplicates:
 ids[index] = testid + str(counters[testid])
 counters[testid] += 1
 return ids

def show_fixtures_per_test(config):
 from _pytest.main import wrap_session

 return wrap_session(config, _show_fixtures_per_test)

def _show_fixtures_per_test(config, session):
 import _pytest.config

 session.perform_collect()
 curdir = py.path.local()
 tw = _pytest.config.create_terminal_writer(config)
 verbose = config.getvalue("verbose")

 def get_best_relpath(func):
 loc = getlocation(func, curdir)
 return curdir.bestrelpath(loc)

 def write_fixture(fixture_def):
 argname = fixture_def.argname
 if verbose <= 0 and argname.startswith("_"):
 return
 if verbose > 0:
 bestrel = get_best_relpath(fixture_def.func)
 funcargspec = "{} -- {}".format(argname, bestrel)
 else:
 funcargspec = argname
 tw.line(funcargspec, green=True)
 fixture_doc = fixture_def.func.__doc__
 if fixture_doc:
 write_docstring(tw, fixture_doc)
 else:
 tw.line(" no docstring available", red=True)

 def write_item(item):
 try:
 info = item._fixtureinfo
 except AttributeError:
 # doctests items have no _fixtureinfo attribute
 return
 if not info.name2fixturedefs:
 # this test item does not use any fixtures
 return
 tw.line()
 tw.sep("-", "fixtures used by {}".format(item.name))
 tw.sep("-", "({})".format(get_best_relpath(item.function)))
 # dict key not used in loop but needed for sorting
 for _, fixturedefs in sorted(info.name2fixturedefs.items()):
 assert fixturedefs is not None
 if not fixturedefs:
 continue
 # last item is expected to be the one used by the test item
 write_fixture(fixturedefs[-1])

 for session_item in session.items:
 write_item(session_item)

def showfixtures(config):
 from _pytest.main import wrap_session

 return wrap_session(config, _showfixtures_main)

def _showfixtures_main(config, session):
 import _pytest.config

 session.perform_collect()
 curdir = py.path.local()
 tw = _pytest.config.create_terminal_writer(config)
 verbose = config.getvalue("verbose")

 fm = session._fixturemanager

 available = []
 seen = set()

 for argname, fixturedefs in fm._arg2fixturedefs.items():
 assert fixturedefs is not None
 if not fixturedefs:
 continue
 for fixturedef in fixturedefs:
 loc = getlocation(fixturedef.func, curdir)
 if (fixturedef.argname, loc) in seen:
 continue
 seen.add((fixturedef.argname, loc))
 available.append(
 (
 len(fixturedef.baseid),
 fixturedef.func.__module__,
 curdir.bestrelpath(loc),
 fixturedef.argname,
 fixturedef,
)
)

 available.sort()
 currentmodule = None
 for baseid, module, bestrel, argname, fixturedef in available:
 if currentmodule != module:
 if not module.startswith("_pytest."):
 tw.line()
 tw.sep("-", "fixtures defined from %s" % (module,))
 currentmodule = module
 if verbose <= 0 and argname[0] == "_":
 continue
 tw.write(argname, green=True)
 if fixturedef.scope != "function":
 tw.write(" [%s scope]" % fixturedef.scope, cyan=True)
 if verbose > 0:
 tw.write(" -- %s" % bestrel, yellow=True)
 tw.write("\n")
 loc = getlocation(fixturedef.func, curdir)
 doc = fixturedef.func.__doc__ or ""
 if doc:
 write_docstring(tw, doc)
 else:
 tw.line(" %s: no docstring available" % (loc,), red=True)
 tw.line()

def write_docstring(tw, doc, indent=" "):
 doc = doc.rstrip()
 if "\n" in doc:
 firstline, rest = doc.split("\n", 1)
 else:
 firstline, rest = doc, ""

 if firstline.strip():
 tw.line(indent + firstline.strip())

 if rest:
 for line in dedent(rest).split("\n"):
 tw.write(indent + line + "\n")

[docs]class Function(FunctionMixin, nodes.Item, fixtures.FuncargnamesCompatAttr):
 """ a Function Item is responsible for setting up and executing a
 Python test function.
 """

 # disable since functions handle it themselves
 _ALLOW_MARKERS = False

 def __init__(
 self,
 name,
 parent,
 args=None,
 config=None,
 callspec=None,
 callobj=NOTSET,
 keywords=None,
 session=None,
 fixtureinfo=None,
 originalname=None,
):
 super(Function, self).__init__(name, parent, config=config, session=session)
 self._args = args
 if callobj is not NOTSET:
 self.obj = callobj

 self.keywords.update(self.obj.__dict__)
 self.own_markers.extend(get_unpacked_marks(self.obj))
 if callspec:
 self.callspec = callspec
 # this is total hostile and a mess
 # keywords are broken by design by now
 # this will be redeemed later
 for mark in callspec.marks:
 # feel free to cry, this was broken for years before
 # and keywords cant fix it per design
 self.keywords[mark.name] = mark
 self.own_markers.extend(normalize_mark_list(callspec.marks))
 if keywords:
 self.keywords.update(keywords)

 # todo: this is a hell of a hack
 # https://github.com/pytest-dev/pytest/issues/4569

 self.keywords.update(
 dict.fromkeys(
 [
 mark.name
 for mark in self.iter_markers()
 if mark.name not in self.keywords
],
 True,
)
)

 if fixtureinfo is None:
 fixtureinfo = self.session._fixturemanager.getfixtureinfo(
 self, self.obj, self.cls, funcargs=True
)
 self._fixtureinfo = fixtureinfo
 self.fixturenames = fixtureinfo.names_closure
 self._initrequest()

 #: original function name, without any decorations (for example
 #: parametrization adds a ``"[...]"`` suffix to function names).
 #:
 #: .. versionadded:: 3.0
 self.originalname = originalname

 def _initrequest(self):
 self.funcargs = {}
 self._request = fixtures.FixtureRequest(self)

 @property
 def function(self):
 "underlying python 'function' object"
 return getimfunc(self.obj)

 def _getobj(self):
 name = self.name
 i = name.find("[") # parametrization
 if i != -1:
 name = name[:i]
 return getattr(self.parent.obj, name)

 @property
 def _pyfuncitem(self):
 "(compatonly) for code expecting pytest-2.2 style request objects"
 return self

[docs] def runtest(self):
 """ execute the underlying test function. """
 self.ihook.pytest_pyfunc_call(pyfuncitem=self)

[docs] def setup(self):
 super(Function, self).setup()
 fixtures.fillfixtures(self)

class FunctionDefinition(Function):
 """
 internal hack until we get actual definition nodes instead of the
 crappy metafunc hack
 """

 def runtest(self):
 raise RuntimeError("function definitions are not supposed to be used")

 setup = runtest

 Source code for _pytest.python_api

-*- coding: utf-8 -*-
from __future__ import absolute_import

import math
import pprint
import sys
import warnings
from decimal import Decimal
from numbers import Number

from more_itertools.more import always_iterable
from six.moves import filterfalse
from six.moves import zip

import _pytest._code
from _pytest import deprecated
from _pytest.compat import isclass
from _pytest.compat import Iterable
from _pytest.compat import Mapping
from _pytest.compat import Sized
from _pytest.compat import STRING_TYPES
from _pytest.outcomes import fail

BASE_TYPE = (type, STRING_TYPES)

def _cmp_raises_type_error(self, other):
 """__cmp__ implementation which raises TypeError. Used
 by Approx base classes to implement only == and != and raise a
 TypeError for other comparisons.

 Needed in Python 2 only, Python 3 all it takes is not implementing the
 other operators at all.
 """
 __tracebackhide__ = True
 raise TypeError(
 "Comparison operators other than == and != not supported by approx objects"
)

def _non_numeric_type_error(value, at):
 at_str = " at {}".format(at) if at else ""
 return TypeError(
 "cannot make approximate comparisons to non-numeric values: {!r} {}".format(
 value, at_str
)
)

builtin pytest.approx helper

class ApproxBase(object):
 """
 Provide shared utilities for making approximate comparisons between numbers
 or sequences of numbers.
 """

 # Tell numpy to use our `__eq__` operator instead of its.
 __array_ufunc__ = None
 __array_priority__ = 100

 def __init__(self, expected, rel=None, abs=None, nan_ok=False):
 __tracebackhide__ = True
 self.expected = expected
 self.abs = abs
 self.rel = rel
 self.nan_ok = nan_ok
 self._check_type()

 def __repr__(self):
 raise NotImplementedError

 def __eq__(self, actual):
 return all(
 a == self._approx_scalar(x) for a, x in self._yield_comparisons(actual)
)

 __hash__ = None

 def __ne__(self, actual):
 return not (actual == self)

 if sys.version_info[0] == 2:
 __cmp__ = _cmp_raises_type_error

 def _approx_scalar(self, x):
 return ApproxScalar(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok)

 def _yield_comparisons(self, actual):
 """
 Yield all the pairs of numbers to be compared. This is used to
 implement the `__eq__` method.
 """
 raise NotImplementedError

 def _check_type(self):
 """
 Raise a TypeError if the expected value is not a valid type.
 """
 # This is only a concern if the expected value is a sequence. In every
 # other case, the approx() function ensures that the expected value has
 # a numeric type. For this reason, the default is to do nothing. The
 # classes that deal with sequences should reimplement this method to
 # raise if there are any non-numeric elements in the sequence.
 pass

def _recursive_list_map(f, x):
 if isinstance(x, list):
 return list(_recursive_list_map(f, xi) for xi in x)
 else:
 return f(x)

class ApproxNumpy(ApproxBase):
 """
 Perform approximate comparisons where the expected value is numpy array.
 """

 def __repr__(self):
 list_scalars = _recursive_list_map(self._approx_scalar, self.expected.tolist())
 return "approx({!r})".format(list_scalars)

 if sys.version_info[0] == 2:
 __cmp__ = _cmp_raises_type_error

 def __eq__(self, actual):
 import numpy as np

 # self.expected is supposed to always be an array here

 if not np.isscalar(actual):
 try:
 actual = np.asarray(actual)
 except: # noqa
 raise TypeError("cannot compare '{}' to numpy.ndarray".format(actual))

 if not np.isscalar(actual) and actual.shape != self.expected.shape:
 return False

 return ApproxBase.__eq__(self, actual)

 def _yield_comparisons(self, actual):
 import numpy as np

 # `actual` can either be a numpy array or a scalar, it is treated in
 # `__eq__` before being passed to `ApproxBase.__eq__`, which is the
 # only method that calls this one.

 if np.isscalar(actual):
 for i in np.ndindex(self.expected.shape):
 yield actual, self.expected[i].item()
 else:
 for i in np.ndindex(self.expected.shape):
 yield actual[i].item(), self.expected[i].item()

class ApproxMapping(ApproxBase):
 """
 Perform approximate comparisons where the expected value is a mapping with
 numeric values (the keys can be anything).
 """

 def __repr__(self):
 return "approx({!r})".format(
 {k: self._approx_scalar(v) for k, v in self.expected.items()}
)

 def __eq__(self, actual):
 if set(actual.keys()) != set(self.expected.keys()):
 return False

 return ApproxBase.__eq__(self, actual)

 def _yield_comparisons(self, actual):
 for k in self.expected.keys():
 yield actual[k], self.expected[k]

 def _check_type(self):
 __tracebackhide__ = True
 for key, value in self.expected.items():
 if isinstance(value, type(self.expected)):
 msg = "pytest.approx() does not support nested dictionaries: key={!r} value={!r}\n full mapping={}"
 raise TypeError(msg.format(key, value, pprint.pformat(self.expected)))
 elif not isinstance(value, Number):
 raise _non_numeric_type_error(self.expected, at="key={!r}".format(key))

class ApproxSequencelike(ApproxBase):
 """
 Perform approximate comparisons where the expected value is a sequence of
 numbers.
 """

 def __repr__(self):
 seq_type = type(self.expected)
 if seq_type not in (tuple, list, set):
 seq_type = list
 return "approx({!r})".format(
 seq_type(self._approx_scalar(x) for x in self.expected)
)

 def __eq__(self, actual):
 if len(actual) != len(self.expected):
 return False
 return ApproxBase.__eq__(self, actual)

 def _yield_comparisons(self, actual):
 return zip(actual, self.expected)

 def _check_type(self):
 __tracebackhide__ = True
 for index, x in enumerate(self.expected):
 if isinstance(x, type(self.expected)):
 msg = "pytest.approx() does not support nested data structures: {!r} at index {}\n full sequence: {}"
 raise TypeError(msg.format(x, index, pprint.pformat(self.expected)))
 elif not isinstance(x, Number):
 raise _non_numeric_type_error(
 self.expected, at="index {}".format(index)
)

class ApproxScalar(ApproxBase):
 """
 Perform approximate comparisons where the expected value is a single number.
 """

 DEFAULT_ABSOLUTE_TOLERANCE = 1e-12
 DEFAULT_RELATIVE_TOLERANCE = 1e-6

 def __repr__(self):
 """
 Return a string communicating both the expected value and the tolerance
 for the comparison being made, e.g. '1.0 +- 1e-6'. Use the unicode
 plus/minus symbol if this is python3 (it's too hard to get right for
 python2).
 """
 if isinstance(self.expected, complex):
 return str(self.expected)

 # Infinities aren't compared using tolerances, so don't show a
 # tolerance.
 if math.isinf(self.expected):
 return str(self.expected)

 # If a sensible tolerance can't be calculated, self.tolerance will
 # raise a ValueError. In this case, display '???'.
 try:
 vetted_tolerance = "{:.1e}".format(self.tolerance)
 except ValueError:
 vetted_tolerance = "???"

 if sys.version_info[0] == 2:
 return "{} +- {}".format(self.expected, vetted_tolerance)
 else:
 return u"{} \u00b1 {}".format(self.expected, vetted_tolerance)

 def __eq__(self, actual):
 """
 Return true if the given value is equal to the expected value within
 the pre-specified tolerance.
 """
 if _is_numpy_array(actual):
 # Call ``__eq__()`` manually to prevent infinite-recursion with
 # numpy<1.13. See #3748.
 return all(self.__eq__(a) for a in actual.flat)

 # Short-circuit exact equality.
 if actual == self.expected:
 return True

 # Allow the user to control whether NaNs are considered equal to each
 # other or not. The abs() calls are for compatibility with complex
 # numbers.
 if math.isnan(abs(self.expected)):
 return self.nan_ok and math.isnan(abs(actual))

 # Infinity shouldn't be approximately equal to anything but itself, but
 # if there's a relative tolerance, it will be infinite and infinity
 # will seem approximately equal to everything. The equal-to-itself
 # case would have been short circuited above, so here we can just
 # return false if the expected value is infinite. The abs() call is
 # for compatibility with complex numbers.
 if math.isinf(abs(self.expected)):
 return False

 # Return true if the two numbers are within the tolerance.
 return abs(self.expected - actual) <= self.tolerance

 __hash__ = None

 @property
 def tolerance(self):
 """
 Return the tolerance for the comparison. This could be either an
 absolute tolerance or a relative tolerance, depending on what the user
 specified or which would be larger.
 """

 def set_default(x, default):
 return x if x is not None else default

 # Figure out what the absolute tolerance should be. ``self.abs`` is
 # either None or a value specified by the user.
 absolute_tolerance = set_default(self.abs, self.DEFAULT_ABSOLUTE_TOLERANCE)

 if absolute_tolerance < 0:
 raise ValueError(
 "absolute tolerance can't be negative: {}".format(absolute_tolerance)
)
 if math.isnan(absolute_tolerance):
 raise ValueError("absolute tolerance can't be NaN.")

 # If the user specified an absolute tolerance but not a relative one,
 # just return the absolute tolerance.
 if self.rel is None:
 if self.abs is not None:
 return absolute_tolerance

 # Figure out what the relative tolerance should be. ``self.rel`` is
 # either None or a value specified by the user. This is done after
 # we've made sure the user didn't ask for an absolute tolerance only,
 # because we don't want to raise errors about the relative tolerance if
 # we aren't even going to use it.
 relative_tolerance = set_default(
 self.rel, self.DEFAULT_RELATIVE_TOLERANCE
) * abs(self.expected)

 if relative_tolerance < 0:
 raise ValueError(
 "relative tolerance can't be negative: {}".format(absolute_tolerance)
)
 if math.isnan(relative_tolerance):
 raise ValueError("relative tolerance can't be NaN.")

 # Return the larger of the relative and absolute tolerances.
 return max(relative_tolerance, absolute_tolerance)

class ApproxDecimal(ApproxScalar):
 """
 Perform approximate comparisons where the expected value is a decimal.
 """

 DEFAULT_ABSOLUTE_TOLERANCE = Decimal("1e-12")
 DEFAULT_RELATIVE_TOLERANCE = Decimal("1e-6")

[docs]def approx(expected, rel=None, abs=None, nan_ok=False):
 """
 Assert that two numbers (or two sets of numbers) are equal to each other
 within some tolerance.

 Due to the `intricacies of floating-point arithmetic`__, numbers that we
 would intuitively expect to be equal are not always so::

 >>> 0.1 + 0.2 == 0.3
 False

 __ https://docs.python.org/3/tutorial/floatingpoint.html

 This problem is commonly encountered when writing tests, e.g. when making
 sure that floating-point values are what you expect them to be. One way to
 deal with this problem is to assert that two floating-point numbers are
 equal to within some appropriate tolerance::

 >>> abs((0.1 + 0.2) - 0.3) < 1e-6
 True

 However, comparisons like this are tedious to write and difficult to
 understand. Furthermore, absolute comparisons like the one above are
 usually discouraged because there's no tolerance that works well for all
 situations. ``1e-6`` is good for numbers around ``1``, but too small for
 very big numbers and too big for very small ones. It's better to express
 the tolerance as a fraction of the expected value, but relative comparisons
 like that are even more difficult to write correctly and concisely.

 The ``approx`` class performs floating-point comparisons using a syntax
 that's as intuitive as possible::

 >>> from pytest import approx
 >>> 0.1 + 0.2 == approx(0.3)
 True

 The same syntax also works for sequences of numbers::

 >>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
 True

 Dictionary *values*::

 >>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
 True

 ``numpy`` arrays::

 >>> import numpy as np # doctest: +SKIP
 >>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6])) # doctest: +SKIP
 True

 And for a ``numpy`` array against a scalar::

 >>> import numpy as np # doctest: +SKIP
 >>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3) # doctest: +SKIP
 True

 By default, ``approx`` considers numbers within a relative tolerance of
 ``1e-6`` (i.e. one part in a million) of its expected value to be equal.
 This treatment would lead to surprising results if the expected value was
 ``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``.
 To handle this case less surprisingly, ``approx`` also considers numbers
 within an absolute tolerance of ``1e-12`` of its expected value to be
 equal. Infinity and NaN are special cases. Infinity is only considered
 equal to itself, regardless of the relative tolerance. NaN is not
 considered equal to anything by default, but you can make it be equal to
 itself by setting the ``nan_ok`` argument to True. (This is meant to
 facilitate comparing arrays that use NaN to mean "no data".)

 Both the relative and absolute tolerances can be changed by passing
 arguments to the ``approx`` constructor::

 >>> 1.0001 == approx(1)
 False
 >>> 1.0001 == approx(1, rel=1e-3)
 True
 >>> 1.0001 == approx(1, abs=1e-3)
 True

 If you specify ``abs`` but not ``rel``, the comparison will not consider
 the relative tolerance at all. In other words, two numbers that are within
 the default relative tolerance of ``1e-6`` will still be considered unequal
 if they exceed the specified absolute tolerance. If you specify both
 ``abs`` and ``rel``, the numbers will be considered equal if either
 tolerance is met::

 >>> 1 + 1e-8 == approx(1)
 True
 >>> 1 + 1e-8 == approx(1, abs=1e-12)
 False
 >>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
 True

 If you're thinking about using ``approx``, then you might want to know how
 it compares to other good ways of comparing floating-point numbers. All of
 these algorithms are based on relative and absolute tolerances and should
 agree for the most part, but they do have meaningful differences:

 - ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``: True if the relative
 tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute
 tolerance is met. Because the relative tolerance is calculated w.r.t.
 both ``a`` and ``b``, this test is symmetric (i.e. neither ``a`` nor
 ``b`` is a "reference value"). You have to specify an absolute tolerance
 if you want to compare to ``0.0`` because there is no tolerance by
 default. Only available in python>=3.5. `More information...`__

 __ https://docs.python.org/3/library/math.html#math.isclose

 - ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference
 between ``a`` and ``b`` is less that the sum of the relative tolerance
 w.r.t. ``b`` and the absolute tolerance. Because the relative tolerance
 is only calculated w.r.t. ``b``, this test is asymmetric and you can
 think of ``b`` as the reference value. Support for comparing sequences
 is provided by ``numpy.allclose``. `More information...`__

 __ http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.isclose.html

 - ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b``
 are within an absolute tolerance of ``1e-7``. No relative tolerance is
 considered and the absolute tolerance cannot be changed, so this function
 is not appropriate for very large or very small numbers. Also, it's only
 available in subclasses of ``unittest.TestCase`` and it's ugly because it
 doesn't follow PEP8. `More information...`__

 __ https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual

 - ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative
 tolerance is met w.r.t. ``b`` or if the absolute tolerance is met.
 Because the relative tolerance is only calculated w.r.t. ``b``, this test
 is asymmetric and you can think of ``b`` as the reference value. In the
 special case that you explicitly specify an absolute tolerance but not a
 relative tolerance, only the absolute tolerance is considered.

 .. warning::

 .. versionchanged:: 3.2

 In order to avoid inconsistent behavior, ``TypeError`` is
 raised for ``>``, ``>=``, ``<`` and ``<=`` comparisons.
 The example below illustrates the problem::

 assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10)
 assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10)

 In the second example one expects ``approx(0.1).__le__(0.1 + 1e-10)``
 to be called. But instead, ``approx(0.1).__lt__(0.1 + 1e-10)`` is used to
 comparison. This is because the call hierarchy of rich comparisons
 follows a fixed behavior. `More information...`__

 __ https://docs.python.org/3/reference/datamodel.html#object.__ge__
 """

 # Delegate the comparison to a class that knows how to deal with the type
 # of the expected value (e.g. int, float, list, dict, numpy.array, etc).
 #
 # The primary responsibility of these classes is to implement ``__eq__()``
 # and ``__repr__()``. The former is used to actually check if some
 # "actual" value is equivalent to the given expected value within the
 # allowed tolerance. The latter is used to show the user the expected
 # value and tolerance, in the case that a test failed.
 #
 # The actual logic for making approximate comparisons can be found in
 # ApproxScalar, which is used to compare individual numbers. All of the
 # other Approx classes eventually delegate to this class. The ApproxBase
 # class provides some convenient methods and overloads, but isn't really
 # essential.

 __tracebackhide__ = True

 if isinstance(expected, Decimal):
 cls = ApproxDecimal
 elif isinstance(expected, Number):
 cls = ApproxScalar
 elif isinstance(expected, Mapping):
 cls = ApproxMapping
 elif _is_numpy_array(expected):
 cls = ApproxNumpy
 elif (
 isinstance(expected, Iterable)
 and isinstance(expected, Sized)
 and not isinstance(expected, STRING_TYPES)
):
 cls = ApproxSequencelike
 else:
 raise _non_numeric_type_error(expected, at=None)

 return cls(expected, rel, abs, nan_ok)

def _is_numpy_array(obj):
 """
 Return true if the given object is a numpy array. Make a special effort to
 avoid importing numpy unless it's really necessary.
 """
 import sys

 np = sys.modules.get("numpy")
 if np is not None:
 return isinstance(obj, np.ndarray)
 return False

builtin pytest.raises helper

[docs]def raises(expected_exception, *args, **kwargs):
 r"""
 Assert that a code block/function call raises ``expected_exception``
 or raise a failure exception otherwise.

 :kwparam match: if specified, a string containing a regular expression,
 or a regular expression object, that is tested against the string
 representation of the exception using ``re.search``. To match a literal
 string that may contain `special characters`__, the pattern can
 first be escaped with ``re.escape``.

 __ https://docs.python.org/3/library/re.html#regular-expression-syntax

 :kwparam message: **(deprecated since 4.1)** if specified, provides a custom failure message
 if the exception is not raised. See :ref:`the deprecation docs <raises message deprecated>` for a workaround.

 .. currentmodule:: _pytest._code

 Use ``pytest.raises`` as a context manager, which will capture the exception of the given
 type::

 >>> with raises(ZeroDivisionError):
 ... 1/0

 If the code block does not raise the expected exception (``ZeroDivisionError`` in the example
 above), or no exception at all, the check will fail instead.

 You can also use the keyword argument ``match`` to assert that the
 exception matches a text or regex::

 >>> with raises(ValueError, match='must be 0 or None'):
 ... raise ValueError("value must be 0 or None")

 >>> with raises(ValueError, match=r'must be \d+$'):
 ... raise ValueError("value must be 42")

 The context manager produces an :class:`ExceptionInfo` object which can be used to inspect the
 details of the captured exception::

 >>> with raises(ValueError) as exc_info:
 ... raise ValueError("value must be 42")
 >>> assert exc_info.type is ValueError
 >>> assert exc_info.value.args[0] == "value must be 42"

 .. deprecated:: 4.1

 In the context manager form you may use the keyword argument
 ``message`` to specify a custom failure message that will be displayed
 in case the ``pytest.raises`` check fails. This has been deprecated as it
 is considered error prone as users often mean to use ``match`` instead.
 See :ref:`the deprecation docs <raises message deprecated>` for a workaround.

 .. note::

 When using ``pytest.raises`` as a context manager, it's worthwhile to
 note that normal context manager rules apply and that the exception
 raised *must* be the final line in the scope of the context manager.
 Lines of code after that, within the scope of the context manager will
 not be executed. For example::

 >>> value = 15
 >>> with raises(ValueError) as exc_info:
 ... if value > 10:
 ... raise ValueError("value must be <= 10")
 ... assert exc_info.type is ValueError # this will not execute

 Instead, the following approach must be taken (note the difference in
 scope)::

 >>> with raises(ValueError) as exc_info:
 ... if value > 10:
 ... raise ValueError("value must be <= 10")
 ...
 >>> assert exc_info.type is ValueError

 Using with ``pytest.mark.parametrize``

 When using :ref:`pytest.mark.parametrize ref`
 it is possible to parametrize tests such that
 some runs raise an exception and others do not.

 See :ref:`parametrizing_conditional_raising` for an example.

 Legacy form

 It is possible to specify a callable by passing a to-be-called lambda::

 >>> raises(ZeroDivisionError, lambda: 1/0)
 <ExceptionInfo ...>

 or you can specify an arbitrary callable with arguments::

 >>> def f(x): return 1/x
 ...
 >>> raises(ZeroDivisionError, f, 0)
 <ExceptionInfo ...>
 >>> raises(ZeroDivisionError, f, x=0)
 <ExceptionInfo ...>

 The form above is fully supported but discouraged for new code because the
 context manager form is regarded as more readable and less error-prone.

 .. note::
 Similar to caught exception objects in Python, explicitly clearing
 local references to returned ``ExceptionInfo`` objects can
 help the Python interpreter speed up its garbage collection.

 Clearing those references breaks a reference cycle
 (``ExceptionInfo`` --> caught exception --> frame stack raising
 the exception --> current frame stack --> local variables -->
 ``ExceptionInfo``) which makes Python keep all objects referenced
 from that cycle (including all local variables in the current
 frame) alive until the next cyclic garbage collection run. See the
 official Python ``try`` statement documentation for more detailed
 information.

 """
 __tracebackhide__ = True
 for exc in filterfalse(isclass, always_iterable(expected_exception, BASE_TYPE)):
 msg = (
 "exceptions must be old-style classes or"
 " derived from BaseException, not %s"
)
 raise TypeError(msg % type(exc))

 message = "DID NOT RAISE {}".format(expected_exception)
 match_expr = None

 if not args:
 if "message" in kwargs:
 message = kwargs.pop("message")
 warnings.warn(deprecated.RAISES_MESSAGE_PARAMETER, stacklevel=2)
 if "match" in kwargs:
 match_expr = kwargs.pop("match")
 if kwargs:
 msg = "Unexpected keyword arguments passed to pytest.raises: "
 msg += ", ".join(sorted(kwargs))
 raise TypeError(msg)
 return RaisesContext(expected_exception, message, match_expr)
 elif isinstance(args[0], str):
 warnings.warn(deprecated.RAISES_EXEC, stacklevel=2)
 (code,) = args
 assert isinstance(code, str)
 frame = sys._getframe(1)
 loc = frame.f_locals.copy()
 loc.update(kwargs)
 # print "raises frame scope: %r" % frame.f_locals
 try:
 code = _pytest._code.Source(code).compile(_genframe=frame)
 exec(code, frame.f_globals, loc)
 # XXX didn't mean f_globals == f_locals something special?
 # this is destroyed here ...
 except expected_exception:
 return _pytest._code.ExceptionInfo.from_current()
 else:
 func = args[0]
 try:
 func(*args[1:], **kwargs)
 except expected_exception:
 return _pytest._code.ExceptionInfo.from_current()
 fail(message)

raises.Exception = fail.Exception

class RaisesContext(object):
 def __init__(self, expected_exception, message, match_expr):
 self.expected_exception = expected_exception
 self.message = message
 self.match_expr = match_expr
 self.excinfo = None

 def __enter__(self):
 self.excinfo = _pytest._code.ExceptionInfo.for_later()
 return self.excinfo

 def __exit__(self, *tp):
 __tracebackhide__ = True
 if tp[0] is None:
 fail(self.message)
 self.excinfo.__init__(tp)
 suppress_exception = issubclass(self.excinfo.type, self.expected_exception)
 if sys.version_info[0] == 2 and suppress_exception:
 sys.exc_clear()
 if self.match_expr is not None and suppress_exception:
 self.excinfo.match(self.match_expr)
 return suppress_exception

 Source code for _pytest.recwarn

-*- coding: utf-8 -*-
""" recording warnings during test function execution. """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import re
import sys
import warnings

import six

import _pytest._code
from _pytest.deprecated import PYTEST_WARNS_UNKNOWN_KWARGS
from _pytest.deprecated import WARNS_EXEC
from _pytest.fixtures import yield_fixture
from _pytest.outcomes import fail

[docs]@yield_fixture
def recwarn():
 """Return a :class:`WarningsRecorder` instance that records all warnings emitted by test functions.

 See http://docs.python.org/library/warnings.html for information
 on warning categories.
 """
 wrec = WarningsRecorder()
 with wrec:
 warnings.simplefilter("default")
 yield wrec

[docs]def deprecated_call(func=None, *args, **kwargs):
 """context manager that can be used to ensure a block of code triggers a
 ``DeprecationWarning`` or ``PendingDeprecationWarning``::

 >>> import warnings
 >>> def api_call_v2():
 ... warnings.warn('use v3 of this api', DeprecationWarning)
 ... return 200

 >>> with deprecated_call():
 ... assert api_call_v2() == 200

 ``deprecated_call`` can also be used by passing a function and ``*args`` and ``*kwargs``,
 in which case it will ensure calling ``func(*args, **kwargs)`` produces one of the warnings
 types above.
 """
 __tracebackhide__ = True
 if func is not None:
 args = (func,) + args
 return warns((DeprecationWarning, PendingDeprecationWarning), *args, **kwargs)

[docs]def warns(expected_warning, *args, **kwargs):
 r"""Assert that code raises a particular class of warning.

 Specifically, the parameter ``expected_warning`` can be a warning class or
 sequence of warning classes, and the inside the ``with`` block must issue a warning of that class or
 classes.

 This helper produces a list of :class:`warnings.WarningMessage` objects,
 one for each warning raised.

 This function can be used as a context manager, or any of the other ways
 ``pytest.raises`` can be used::

 >>> with warns(RuntimeWarning):
 ... warnings.warn("my warning", RuntimeWarning)

 In the context manager form you may use the keyword argument ``match`` to assert
 that the exception matches a text or regex::

 >>> with warns(UserWarning, match='must be 0 or None'):
 ... warnings.warn("value must be 0 or None", UserWarning)

 >>> with warns(UserWarning, match=r'must be \d+$'):
 ... warnings.warn("value must be 42", UserWarning)

 >>> with warns(UserWarning, match=r'must be \d+$'):
 ... warnings.warn("this is not here", UserWarning)
 Traceback (most recent call last):
 ...
 Failed: DID NOT WARN. No warnings of type ...UserWarning... was emitted...

 """
 __tracebackhide__ = True
 if not args:
 match_expr = kwargs.pop("match", None)
 if kwargs:
 warnings.warn(
 PYTEST_WARNS_UNKNOWN_KWARGS.format(args=sorted(kwargs)), stacklevel=2
)
 return WarningsChecker(expected_warning, match_expr=match_expr)
 elif isinstance(args[0], str):
 warnings.warn(WARNS_EXEC, stacklevel=2)
 (code,) = args
 assert isinstance(code, str)
 frame = sys._getframe(1)
 loc = frame.f_locals.copy()
 loc.update(kwargs)

 with WarningsChecker(expected_warning):
 code = _pytest._code.Source(code).compile()
 exec(code, frame.f_globals, loc)
 else:
 func = args[0]
 with WarningsChecker(expected_warning):
 return func(*args[1:], **kwargs)

[docs]class WarningsRecorder(warnings.catch_warnings):
 """A context manager to record raised warnings.

 Adapted from `warnings.catch_warnings`.
 """

 def __init__(self):
 super(WarningsRecorder, self).__init__(record=True)
 self._entered = False
 self._list = []

 @property
 def list(self):
 """The list of recorded warnings."""
 return self._list

 def __getitem__(self, i):
 """Get a recorded warning by index."""
 return self._list[i]

 def __iter__(self):
 """Iterate through the recorded warnings."""
 return iter(self._list)

 def __len__(self):
 """The number of recorded warnings."""
 return len(self._list)

[docs] def pop(self, cls=Warning):
 """Pop the first recorded warning, raise exception if not exists."""
 for i, w in enumerate(self._list):
 if issubclass(w.category, cls):
 return self._list.pop(i)
 __tracebackhide__ = True
 raise AssertionError("%r not found in warning list" % cls)

[docs] def clear(self):
 """Clear the list of recorded warnings."""
 self._list[:] = []

 def __enter__(self):
 if self._entered:
 __tracebackhide__ = True
 raise RuntimeError("Cannot enter %r twice" % self)
 self._list = super(WarningsRecorder, self).__enter__()
 warnings.simplefilter("always")
 # python3 keeps track of a "filter version", when the filters are
 # updated previously seen warnings can be re-warned. python2 has no
 # concept of this so we must reset the warnings registry manually.
 # trivial patching of `warnings.warn` seems to be enough somehow?
 if six.PY2:

 def warn(message, category=None, stacklevel=1):
 # duplicate the stdlib logic due to
 # bad handing in the c version of warnings
 if isinstance(message, Warning):
 category = message.__class__
 # Check category argument
 if category is None:
 category = UserWarning
 assert issubclass(category, Warning)

 # emulate resetting the warn registry
 f_globals = sys._getframe(stacklevel).f_globals
 if "__warningregistry__" in f_globals:
 orig = f_globals["__warningregistry__"]
 f_globals["__warningregistry__"] = None
 try:
 return self._saved_warn(message, category, stacklevel + 1)
 finally:
 f_globals["__warningregistry__"] = orig
 else:
 return self._saved_warn(message, category, stacklevel + 1)

 warnings.warn, self._saved_warn = warn, warnings.warn
 return self

 def __exit__(self, *exc_info):
 if not self._entered:
 __tracebackhide__ = True
 raise RuntimeError("Cannot exit %r without entering first" % self)
 # see above where `self._saved_warn` is assigned
 if six.PY2:
 warnings.warn = self._saved_warn
 super(WarningsRecorder, self).__exit__(*exc_info)

 # Built-in catch_warnings does not reset entered state so we do it
 # manually here for this context manager to become reusable.
 self._entered = False

class WarningsChecker(WarningsRecorder):
 def __init__(self, expected_warning=None, match_expr=None):
 super(WarningsChecker, self).__init__()

 msg = "exceptions must be old-style classes or derived from Warning, not %s"
 if isinstance(expected_warning, tuple):
 for exc in expected_warning:
 if not inspect.isclass(exc):
 raise TypeError(msg % type(exc))
 elif inspect.isclass(expected_warning):
 expected_warning = (expected_warning,)
 elif expected_warning is not None:
 raise TypeError(msg % type(expected_warning))

 self.expected_warning = expected_warning
 self.match_expr = match_expr

 def __exit__(self, *exc_info):
 super(WarningsChecker, self).__exit__(*exc_info)

 __tracebackhide__ = True

 # only check if we're not currently handling an exception
 if all(a is None for a in exc_info):
 if self.expected_warning is not None:
 if not any(issubclass(r.category, self.expected_warning) for r in self):
 __tracebackhide__ = True
 fail(
 "DID NOT WARN. No warnings of type {} was emitted. "
 "The list of emitted warnings is: {}.".format(
 self.expected_warning, [each.message for each in self]
)
)
 elif self.match_expr is not None:
 for r in self:
 if issubclass(r.category, self.expected_warning):
 if re.compile(self.match_expr).search(str(r.message)):
 break
 else:
 fail(
 "DID NOT WARN. No warnings of type {} matching"
 " ('{}') was emitted. The list of emitted warnings"
 " is: {}.".format(
 self.expected_warning,
 self.match_expr,
 [each.message for each in self],
)
)

 Source code for _pytest.reports

-*- coding: utf-8 -*-
from pprint import pprint

import py
import six

from _pytest._code.code import ExceptionInfo
from _pytest._code.code import ReprEntry
from _pytest._code.code import ReprEntryNative
from _pytest._code.code import ReprExceptionInfo
from _pytest._code.code import ReprFileLocation
from _pytest._code.code import ReprFuncArgs
from _pytest._code.code import ReprLocals
from _pytest._code.code import ReprTraceback
from _pytest._code.code import TerminalRepr
from _pytest.outcomes import skip
from _pytest.pathlib import Path

def getslaveinfoline(node):
 try:
 return node._slaveinfocache
 except AttributeError:
 d = node.slaveinfo
 ver = "%s.%s.%s" % d["version_info"][:3]
 node._slaveinfocache = s = "[%s] %s -- Python %s %s" % (
 d["id"],
 d["sysplatform"],
 ver,
 d["executable"],
)
 return s

class BaseReport(object):
 when = None
 location = None

 def __init__(self, **kw):
 self.__dict__.update(kw)

 def toterminal(self, out):
 if hasattr(self, "node"):
 out.line(getslaveinfoline(self.node))

 longrepr = self.longrepr
 if longrepr is None:
 return

 if hasattr(longrepr, "toterminal"):
 longrepr.toterminal(out)
 else:
 try:
 out.line(longrepr)
 except UnicodeEncodeError:
 out.line("<unprintable longrepr>")

 def get_sections(self, prefix):
 for name, content in self.sections:
 if name.startswith(prefix):
 yield prefix, content

 @property
 def longreprtext(self):
 """
 Read-only property that returns the full string representation
 of ``longrepr``.

 .. versionadded:: 3.0
 """
 tw = py.io.TerminalWriter(stringio=True)
 tw.hasmarkup = False
 self.toterminal(tw)
 exc = tw.stringio.getvalue()
 return exc.strip()

 @property
 def caplog(self):
 """Return captured log lines, if log capturing is enabled

 .. versionadded:: 3.5
 """
 return "\n".join(
 content for (prefix, content) in self.get_sections("Captured log")
)

 @property
 def capstdout(self):
 """Return captured text from stdout, if capturing is enabled

 .. versionadded:: 3.0
 """
 return "".join(
 content for (prefix, content) in self.get_sections("Captured stdout")
)

 @property
 def capstderr(self):
 """Return captured text from stderr, if capturing is enabled

 .. versionadded:: 3.0
 """
 return "".join(
 content for (prefix, content) in self.get_sections("Captured stderr")
)

 passed = property(lambda x: x.outcome == "passed")
 failed = property(lambda x: x.outcome == "failed")
 skipped = property(lambda x: x.outcome == "skipped")

 @property
 def fspath(self):
 return self.nodeid.split("::")[0]

 @property
 def count_towards_summary(self):
 """
 Experimental

 Returns True if this report should be counted towards the totals shown at the end of the
 test session: "1 passed, 1 failure, etc".

 .. note::

 This function is considered **experimental**, so beware that it is subject to changes
 even in patch releases.
 """
 return True

 @property
 def head_line(self):
 """
 Experimental

 Returns the head line shown with longrepr output for this report, more commonly during
 traceback representation during failures::

 ________ Test.foo ________

 In the example above, the head_line is "Test.foo".

 .. note::

 This function is considered **experimental**, so beware that it is subject to changes
 even in patch releases.
 """
 if self.location is not None:
 fspath, lineno, domain = self.location
 return domain

 def _get_verbose_word(self, config):
 _category, _short, verbose = config.hook.pytest_report_teststatus(
 report=self, config=config
)
 return verbose

 def _to_json(self):
 """
 This was originally the serialize_report() function from xdist (ca03269).

 Returns the contents of this report as a dict of builtin entries, suitable for
 serialization.

 Experimental method.
 """

 def disassembled_report(rep):
 reprtraceback = rep.longrepr.reprtraceback.__dict__.copy()
 reprcrash = rep.longrepr.reprcrash.__dict__.copy()

 new_entries = []
 for entry in reprtraceback["reprentries"]:
 entry_data = {
 "type": type(entry).__name__,
 "data": entry.__dict__.copy(),
 }
 for key, value in entry_data["data"].items():
 if hasattr(value, "__dict__"):
 entry_data["data"][key] = value.__dict__.copy()
 new_entries.append(entry_data)

 reprtraceback["reprentries"] = new_entries

 return {
 "reprcrash": reprcrash,
 "reprtraceback": reprtraceback,
 "sections": rep.longrepr.sections,
 }

 d = self.__dict__.copy()
 if hasattr(self.longrepr, "toterminal"):
 if hasattr(self.longrepr, "reprtraceback") and hasattr(
 self.longrepr, "reprcrash"
):
 d["longrepr"] = disassembled_report(self)
 else:
 d["longrepr"] = six.text_type(self.longrepr)
 else:
 d["longrepr"] = self.longrepr
 for name in d:
 if isinstance(d[name], (py.path.local, Path)):
 d[name] = str(d[name])
 elif name == "result":
 d[name] = None # for now
 return d

 @classmethod
 def _from_json(cls, reportdict):
 """
 This was originally the serialize_report() function from xdist (ca03269).

 Factory method that returns either a TestReport or CollectReport, depending on the calling
 class. It's the callers responsibility to know which class to pass here.

 Experimental method.
 """
 if reportdict["longrepr"]:
 if (
 "reprcrash" in reportdict["longrepr"]
 and "reprtraceback" in reportdict["longrepr"]
):

 reprtraceback = reportdict["longrepr"]["reprtraceback"]
 reprcrash = reportdict["longrepr"]["reprcrash"]

 unserialized_entries = []
 reprentry = None
 for entry_data in reprtraceback["reprentries"]:
 data = entry_data["data"]
 entry_type = entry_data["type"]
 if entry_type == "ReprEntry":
 reprfuncargs = None
 reprfileloc = None
 reprlocals = None
 if data["reprfuncargs"]:
 reprfuncargs = ReprFuncArgs(**data["reprfuncargs"])
 if data["reprfileloc"]:
 reprfileloc = ReprFileLocation(**data["reprfileloc"])
 if data["reprlocals"]:
 reprlocals = ReprLocals(data["reprlocals"]["lines"])

 reprentry = ReprEntry(
 lines=data["lines"],
 reprfuncargs=reprfuncargs,
 reprlocals=reprlocals,
 filelocrepr=reprfileloc,
 style=data["style"],
)
 elif entry_type == "ReprEntryNative":
 reprentry = ReprEntryNative(data["lines"])
 else:
 _report_unserialization_failure(entry_type, cls, reportdict)
 unserialized_entries.append(reprentry)
 reprtraceback["reprentries"] = unserialized_entries

 exception_info = ReprExceptionInfo(
 reprtraceback=ReprTraceback(**reprtraceback),
 reprcrash=ReprFileLocation(**reprcrash),
)

 for section in reportdict["longrepr"]["sections"]:
 exception_info.addsection(*section)
 reportdict["longrepr"] = exception_info

 return cls(**reportdict)

def _report_unserialization_failure(type_name, report_class, reportdict):
 url = "https://github.com/pytest-dev/pytest/issues"
 stream = py.io.TextIO()
 pprint("-" * 100, stream=stream)
 pprint("INTERNALERROR: Unknown entry type returned: %s" % type_name, stream=stream)
 pprint("report_name: %s" % report_class, stream=stream)
 pprint(reportdict, stream=stream)
 pprint("Please report this bug at %s" % url, stream=stream)
 pprint("-" * 100, stream=stream)
 raise RuntimeError(stream.getvalue())

[docs]class TestReport(BaseReport):
 """ Basic test report object (also used for setup and teardown calls if
 they fail).
 """

 __test__ = False

 def __init__(
 self,
 nodeid,
 location,
 keywords,
 outcome,
 longrepr,
 when,
 sections=(),
 duration=0,
 user_properties=None,
 **extra
):
 #: normalized collection node id
 self.nodeid = nodeid

 #: a (filesystempath, lineno, domaininfo) tuple indicating the
 #: actual location of a test item - it might be different from the
 #: collected one e.g. if a method is inherited from a different module.
 self.location = location

 #: a name -> value dictionary containing all keywords and
 #: markers associated with a test invocation.
 self.keywords = keywords

 #: test outcome, always one of "passed", "failed", "skipped".
 self.outcome = outcome

 #: None or a failure representation.
 self.longrepr = longrepr

 #: one of 'setup', 'call', 'teardown' to indicate runtest phase.
 self.when = when

 #: user properties is a list of tuples (name, value) that holds user
 #: defined properties of the test
 self.user_properties = list(user_properties or [])

 #: list of pairs ``(str, str)`` of extra information which needs to
 #: marshallable. Used by pytest to add captured text
 #: from ``stdout`` and ``stderr``, but may be used by other plugins
 #: to add arbitrary information to reports.
 self.sections = list(sections)

 #: time it took to run just the test
 self.duration = duration

 self.__dict__.update(extra)

 def __repr__(self):
 return "<%s %r when=%r outcome=%r>" % (
 self.__class__.__name__,
 self.nodeid,
 self.when,
 self.outcome,
)

[docs] @classmethod
 def from_item_and_call(cls, item, call):
 """
 Factory method to create and fill a TestReport with standard item and call info.
 """
 when = call.when
 duration = call.stop - call.start
 keywords = {x: 1 for x in item.keywords}
 excinfo = call.excinfo
 sections = []
 if not call.excinfo:
 outcome = "passed"
 longrepr = None
 else:
 if not isinstance(excinfo, ExceptionInfo):
 outcome = "failed"
 longrepr = excinfo
 elif excinfo.errisinstance(skip.Exception):
 outcome = "skipped"
 r = excinfo._getreprcrash()
 longrepr = (str(r.path), r.lineno, r.message)
 else:
 outcome = "failed"
 if call.when == "call":
 longrepr = item.repr_failure(excinfo)
 else: # exception in setup or teardown
 longrepr = item._repr_failure_py(
 excinfo, style=item.config.getoption("tbstyle", "auto")
)
 for rwhen, key, content in item._report_sections:
 sections.append(("Captured %s %s" % (key, rwhen), content))
 return cls(
 item.nodeid,
 item.location,
 keywords,
 outcome,
 longrepr,
 when,
 sections,
 duration,
 user_properties=item.user_properties,
)

class CollectReport(BaseReport):
 when = "collect"

 def __init__(self, nodeid, outcome, longrepr, result, sections=(), **extra):
 self.nodeid = nodeid
 self.outcome = outcome
 self.longrepr = longrepr
 self.result = result or []
 self.sections = list(sections)
 self.__dict__.update(extra)

 @property
 def location(self):
 return (self.fspath, None, self.fspath)

 def __repr__(self):
 return "<CollectReport %r lenresult=%s outcome=%r>" % (
 self.nodeid,
 len(self.result),
 self.outcome,
)

class CollectErrorRepr(TerminalRepr):
 def __init__(self, msg):
 self.longrepr = msg

 def toterminal(self, out):
 out.line(self.longrepr, red=True)

def pytest_report_to_serializable(report):
 if isinstance(report, (TestReport, CollectReport)):
 data = report._to_json()
 data["_report_type"] = report.__class__.__name__
 return data

def pytest_report_from_serializable(data):
 if "_report_type" in data:
 if data["_report_type"] == "TestReport":
 return TestReport._from_json(data)
 elif data["_report_type"] == "CollectReport":
 return CollectReport._from_json(data)
 assert False, "Unknown report_type unserialize data: {}".format(
 data["_report_type"]
)

 Source code for _pytest.runner

-*- coding: utf-8 -*-
""" basic collect and runtest protocol implementations """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import bdb
import os
import sys
from time import time

import attr
import six

from .reports import CollectErrorRepr
from .reports import CollectReport
from .reports import TestReport
from _pytest._code.code import ExceptionInfo
from _pytest.outcomes import Exit
from _pytest.outcomes import Skipped
from _pytest.outcomes import TEST_OUTCOME

#
pytest plugin hooks

def pytest_addoption(parser):
 group = parser.getgroup("terminal reporting", "reporting", after="general")
 group.addoption(
 "--durations",
 action="store",
 type=int,
 default=None,
 metavar="N",
 help="show N slowest setup/test durations (N=0 for all).",
),

def pytest_terminal_summary(terminalreporter):
 durations = terminalreporter.config.option.durations
 verbose = terminalreporter.config.getvalue("verbose")
 if durations is None:
 return
 tr = terminalreporter
 dlist = []
 for replist in tr.stats.values():
 for rep in replist:
 if hasattr(rep, "duration"):
 dlist.append(rep)
 if not dlist:
 return
 dlist.sort(key=lambda x: x.duration)
 dlist.reverse()
 if not durations:
 tr.write_sep("=", "slowest test durations")
 else:
 tr.write_sep("=", "slowest %s test durations" % durations)
 dlist = dlist[:durations]

 for rep in dlist:
 if verbose < 2 and rep.duration < 0.005:
 tr.write_line("")
 tr.write_line("(0.00 durations hidden. Use -vv to show these durations.)")
 break
 tr.write_line("%02.2fs %-8s %s" % (rep.duration, rep.when, rep.nodeid))

def pytest_sessionstart(session):
 session._setupstate = SetupState()

def pytest_sessionfinish(session):
 session._setupstate.teardown_all()

def pytest_runtest_protocol(item, nextitem):
 item.ihook.pytest_runtest_logstart(nodeid=item.nodeid, location=item.location)
 runtestprotocol(item, nextitem=nextitem)
 item.ihook.pytest_runtest_logfinish(nodeid=item.nodeid, location=item.location)
 return True

def runtestprotocol(item, log=True, nextitem=None):
 hasrequest = hasattr(item, "_request")
 if hasrequest and not item._request:
 item._initrequest()
 rep = call_and_report(item, "setup", log)
 reports = [rep]
 if rep.passed:
 if item.config.getoption("setupshow", False):
 show_test_item(item)
 if not item.config.getoption("setuponly", False):
 reports.append(call_and_report(item, "call", log))
 reports.append(call_and_report(item, "teardown", log, nextitem=nextitem))
 # after all teardown hooks have been called
 # want funcargs and request info to go away
 if hasrequest:
 item._request = False
 item.funcargs = None
 return reports

def show_test_item(item):
 """Show test function, parameters and the fixtures of the test item."""
 tw = item.config.get_terminal_writer()
 tw.line()
 tw.write(" " * 8)
 tw.write(item._nodeid)
 used_fixtures = sorted(item._fixtureinfo.name2fixturedefs.keys())
 if used_fixtures:
 tw.write(" (fixtures used: {})".format(", ".join(used_fixtures)))

def pytest_runtest_setup(item):
 _update_current_test_var(item, "setup")
 item.session._setupstate.prepare(item)

def pytest_runtest_call(item):
 _update_current_test_var(item, "call")
 sys.last_type, sys.last_value, sys.last_traceback = (None, None, None)
 try:
 item.runtest()
 except Exception:
 # Store trace info to allow postmortem debugging
 type, value, tb = sys.exc_info()
 tb = tb.tb_next # Skip *this* frame
 sys.last_type = type
 sys.last_value = value
 sys.last_traceback = tb
 del type, value, tb # Get rid of these in this frame
 raise

def pytest_runtest_teardown(item, nextitem):
 _update_current_test_var(item, "teardown")
 item.session._setupstate.teardown_exact(item, nextitem)
 _update_current_test_var(item, None)

def _update_current_test_var(item, when):
 """
 Update PYTEST_CURRENT_TEST to reflect the current item and stage.

 If ``when`` is None, delete PYTEST_CURRENT_TEST from the environment.
 """
 var_name = "PYTEST_CURRENT_TEST"
 if when:
 value = "{} ({})".format(item.nodeid, when)
 # don't allow null bytes on environment variables (see #2644, #2957)
 value = value.replace("\x00", "(null)")
 os.environ[var_name] = value
 else:
 os.environ.pop(var_name)

def pytest_report_teststatus(report):
 if report.when in ("setup", "teardown"):
 if report.failed:
 # category, shortletter, verbose-word
 return "error", "E", "ERROR"
 elif report.skipped:
 return "skipped", "s", "SKIPPED"
 else:
 return "", "", ""

#
Implementation

def call_and_report(item, when, log=True, **kwds):
 call = call_runtest_hook(item, when, **kwds)
 hook = item.ihook
 report = hook.pytest_runtest_makereport(item=item, call=call)
 if log:
 hook.pytest_runtest_logreport(report=report)
 if check_interactive_exception(call, report):
 hook.pytest_exception_interact(node=item, call=call, report=report)
 return report

def check_interactive_exception(call, report):
 return call.excinfo and not (
 hasattr(report, "wasxfail")
 or call.excinfo.errisinstance(Skipped)
 or call.excinfo.errisinstance(bdb.BdbQuit)
)

def call_runtest_hook(item, when, **kwds):
 hookname = "pytest_runtest_" + when
 ihook = getattr(item.ihook, hookname)
 reraise = (Exit,)
 if not item.config.getoption("usepdb", False):
 reraise += (KeyboardInterrupt,)
 return CallInfo.from_call(
 lambda: ihook(item=item, **kwds), when=when, reraise=reraise
)

[docs]@attr.s(repr=False)
class CallInfo(object):
 """ Result/Exception info a function invocation. """

 _result = attr.ib()
 # Optional[ExceptionInfo]
 excinfo = attr.ib()
 start = attr.ib()
 stop = attr.ib()
 when = attr.ib()

 @property
 def result(self):
 if self.excinfo is not None:
 raise AttributeError("{!r} has no valid result".format(self))
 return self._result

 @classmethod
 def from_call(cls, func, when, reraise=None):
 #: context of invocation: one of "setup", "call",
 #: "teardown", "memocollect"
 start = time()
 excinfo = None
 try:
 result = func()
 except: # noqa
 excinfo = ExceptionInfo.from_current()
 if reraise is not None and excinfo.errisinstance(reraise):
 raise
 result = None
 stop = time()
 return cls(start=start, stop=stop, when=when, result=result, excinfo=excinfo)

 def __repr__(self):
 if self.excinfo is not None:
 status = "exception"
 value = self.excinfo.value
 else:
 # TODO: investigate unification
 value = repr(self._result)
 status = "result"
 return "<CallInfo when={when!r} {status}: {value}>".format(
 when=self.when, value=value, status=status
)

def pytest_runtest_makereport(item, call):
 return TestReport.from_item_and_call(item, call)

def pytest_make_collect_report(collector):
 call = CallInfo.from_call(lambda: list(collector.collect()), "collect")
 longrepr = None
 if not call.excinfo:
 outcome = "passed"
 else:
 from _pytest import nose

 skip_exceptions = (Skipped,) + nose.get_skip_exceptions()
 if call.excinfo.errisinstance(skip_exceptions):
 outcome = "skipped"
 r = collector._repr_failure_py(call.excinfo, "line").reprcrash
 longrepr = (str(r.path), r.lineno, r.message)
 else:
 outcome = "failed"
 errorinfo = collector.repr_failure(call.excinfo)
 if not hasattr(errorinfo, "toterminal"):
 errorinfo = CollectErrorRepr(errorinfo)
 longrepr = errorinfo
 rep = CollectReport(
 collector.nodeid, outcome, longrepr, getattr(call, "result", None)
)
 rep.call = call # see collect_one_node
 return rep

class SetupState(object):
 """ shared state for setting up/tearing down test items or collectors. """

 def __init__(self):
 self.stack = []
 self._finalizers = {}

 def addfinalizer(self, finalizer, colitem):
 """ attach a finalizer to the given colitem.
 if colitem is None, this will add a finalizer that
 is called at the end of teardown_all().
 """
 assert colitem and not isinstance(colitem, tuple)
 assert callable(finalizer)
 # assert colitem in self.stack # some unit tests don't setup stack :/
 self._finalizers.setdefault(colitem, []).append(finalizer)

 def _pop_and_teardown(self):
 colitem = self.stack.pop()
 self._teardown_with_finalization(colitem)

 def _callfinalizers(self, colitem):
 finalizers = self._finalizers.pop(colitem, None)
 exc = None
 while finalizers:
 fin = finalizers.pop()
 try:
 fin()
 except TEST_OUTCOME:
 # XXX Only first exception will be seen by user,
 # ideally all should be reported.
 if exc is None:
 exc = sys.exc_info()
 if exc:
 six.reraise(*exc)

 def _teardown_with_finalization(self, colitem):
 self._callfinalizers(colitem)
 if hasattr(colitem, "teardown"):
 colitem.teardown()
 for colitem in self._finalizers:
 assert (
 colitem is None or colitem in self.stack or isinstance(colitem, tuple)
)

 def teardown_all(self):
 while self.stack:
 self._pop_and_teardown()
 for key in list(self._finalizers):
 self._teardown_with_finalization(key)
 assert not self._finalizers

 def teardown_exact(self, item, nextitem):
 needed_collectors = nextitem and nextitem.listchain() or []
 self._teardown_towards(needed_collectors)

 def _teardown_towards(self, needed_collectors):
 exc = None
 while self.stack:
 if self.stack == needed_collectors[: len(self.stack)]:
 break
 try:
 self._pop_and_teardown()
 except TEST_OUTCOME:
 # XXX Only first exception will be seen by user,
 # ideally all should be reported.
 if exc is None:
 exc = sys.exc_info()
 if exc:
 six.reraise(*exc)

 def prepare(self, colitem):
 """ setup objects along the collector chain to the test-method
 and teardown previously setup objects."""
 needed_collectors = colitem.listchain()
 self._teardown_towards(needed_collectors)

 # check if the last collection node has raised an error
 for col in self.stack:
 if hasattr(col, "_prepare_exc"):
 six.reraise(*col._prepare_exc)
 for col in needed_collectors[len(self.stack) :]:
 self.stack.append(col)
 try:
 col.setup()
 except TEST_OUTCOME:
 col._prepare_exc = sys.exc_info()
 raise

def collect_one_node(collector):
 ihook = collector.ihook
 ihook.pytest_collectstart(collector=collector)
 rep = ihook.pytest_make_collect_report(collector=collector)
 call = rep.__dict__.pop("call", None)
 if call and check_interactive_exception(call, rep):
 ihook.pytest_exception_interact(node=collector, call=call, report=rep)
 return rep

 Source code for _pytest.tmpdir

-*- coding: utf-8 -*-
""" support for providing temporary directories to test functions. """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import re
import tempfile
import warnings

import attr
import py
import six

import pytest
from .pathlib import ensure_reset_dir
from .pathlib import LOCK_TIMEOUT
from .pathlib import make_numbered_dir
from .pathlib import make_numbered_dir_with_cleanup
from .pathlib import Path
from _pytest.monkeypatch import MonkeyPatch

@attr.s
class TempPathFactory(object):
 """Factory for temporary directories under the common base temp directory.

 The base directory can be configured using the ``--basetemp`` option."""

 _given_basetemp = attr.ib(
 # using os.path.abspath() to get absolute path instead of resolve() as it
 # does not work the same in all platforms (see #4427)
 # Path.absolute() exists, but it is not public (see https://bugs.python.org/issue25012)
 converter=attr.converters.optional(
 lambda p: Path(os.path.abspath(six.text_type(p)))
)
)
 _trace = attr.ib()
 _basetemp = attr.ib(default=None)

 @classmethod
 def from_config(cls, config):
 """
 :param config: a pytest configuration
 """
 return cls(
 given_basetemp=config.option.basetemp, trace=config.trace.get("tmpdir")
)

[docs] def mktemp(self, basename, numbered=True):
 """makes a temporary directory managed by the factory"""
 if not numbered:
 p = self.getbasetemp().joinpath(basename)
 p.mkdir()
 else:
 p = make_numbered_dir(root=self.getbasetemp(), prefix=basename)
 self._trace("mktemp", p)
 return p

[docs] def getbasetemp(self):
 """ return base temporary directory. """
 if self._basetemp is not None:
 return self._basetemp

 if self._given_basetemp is not None:
 basetemp = self._given_basetemp
 ensure_reset_dir(basetemp)
 basetemp = basetemp.resolve()
 else:
 from_env = os.environ.get("PYTEST_DEBUG_TEMPROOT")
 temproot = Path(from_env or tempfile.gettempdir()).resolve()
 user = get_user() or "unknown"
 # use a sub-directory in the temproot to speed-up
 # make_numbered_dir() call
 rootdir = temproot.joinpath("pytest-of-{}".format(user))
 rootdir.mkdir(exist_ok=True)
 basetemp = make_numbered_dir_with_cleanup(
 prefix="pytest-", root=rootdir, keep=3, lock_timeout=LOCK_TIMEOUT
)
 assert basetemp is not None, basetemp
 self._basetemp = t = basetemp
 self._trace("new basetemp", t)
 return t

@attr.s
class TempdirFactory(object):
 """
 backward comptibility wrapper that implements
 :class:``py.path.local`` for :class:``TempPathFactory``
 """

 _tmppath_factory = attr.ib()

 def ensuretemp(self, string, dir=1):
 """ (deprecated) return temporary directory path with
 the given string as the trailing part. It is usually
 better to use the 'tmpdir' function argument which
 provides an empty unique-per-test-invocation directory
 and is guaranteed to be empty.
 """
 # py.log._apiwarn(">1.1", "use tmpdir function argument")
 from .deprecated import PYTEST_ENSURETEMP

 warnings.warn(PYTEST_ENSURETEMP, stacklevel=2)
 return self.getbasetemp().ensure(string, dir=dir)

[docs] def mktemp(self, basename, numbered=True):
 """Create a subdirectory of the base temporary directory and return it.
 If ``numbered``, ensure the directory is unique by adding a number
 prefix greater than any existing one.
 """
 return py.path.local(self._tmppath_factory.mktemp(basename, numbered).resolve())

[docs] def getbasetemp(self):
 """backward compat wrapper for ``_tmppath_factory.getbasetemp``"""
 return py.path.local(self._tmppath_factory.getbasetemp().resolve())

def get_user():
 """Return the current user name, or None if getuser() does not work
 in the current environment (see #1010).
 """
 import getpass

 try:
 return getpass.getuser()
 except (ImportError, KeyError):
 return None

def pytest_configure(config):
 """Create a TempdirFactory and attach it to the config object.

 This is to comply with existing plugins which expect the handler to be
 available at pytest_configure time, but ideally should be moved entirely
 to the tmpdir_factory session fixture.
 """
 mp = MonkeyPatch()
 tmppath_handler = TempPathFactory.from_config(config)
 t = TempdirFactory(tmppath_handler)
 config._cleanup.append(mp.undo)
 mp.setattr(config, "_tmp_path_factory", tmppath_handler, raising=False)
 mp.setattr(config, "_tmpdirhandler", t, raising=False)
 mp.setattr(pytest, "ensuretemp", t.ensuretemp, raising=False)

@pytest.fixture(scope="session")
def tmpdir_factory(request):
 """Return a :class:`_pytest.tmpdir.TempdirFactory` instance for the test session.
 """
 return request.config._tmpdirhandler

@pytest.fixture(scope="session")
def tmp_path_factory(request):
 """Return a :class:`_pytest.tmpdir.TempPathFactory` instance for the test session.
 """
 return request.config._tmp_path_factory

def _mk_tmp(request, factory):
 name = request.node.name
 name = re.sub(r"[\W]", "_", name)
 MAXVAL = 30
 name = name[:MAXVAL]
 return factory.mktemp(name, numbered=True)

[docs]@pytest.fixture
def tmpdir(tmp_path):
 """Return a temporary directory path object
 which is unique to each test function invocation,
 created as a sub directory of the base temporary
 directory. The returned object is a `py.path.local`_
 path object.

 .. _`py.path.local`: https://py.readthedocs.io/en/latest/path.html
 """
 return py.path.local(tmp_path)

[docs]@pytest.fixture
def tmp_path(request, tmp_path_factory):
 """Return a temporary directory path object
 which is unique to each test function invocation,
 created as a sub directory of the base temporary
 directory. The returned object is a :class:`pathlib.Path`
 object.

 .. note::

 in python < 3.6 this is a pathlib2.Path
 """

 return _mk_tmp(request, tmp_path_factory)

 Source code for _pytest.warning_types

-*- coding: utf-8 -*-
import attr

[docs]class PytestWarning(UserWarning):
 """
 Bases: :class:`UserWarning`.

 Base class for all warnings emitted by pytest.
 """

[docs]class PytestAssertRewriteWarning(PytestWarning):
 """
 Bases: :class:`PytestWarning`.

 Warning emitted by the pytest assert rewrite module.
 """

[docs]class PytestCacheWarning(PytestWarning):
 """
 Bases: :class:`PytestWarning`.

 Warning emitted by the cache plugin in various situations.
 """

[docs]class PytestConfigWarning(PytestWarning):
 """
 Bases: :class:`PytestWarning`.

 Warning emitted for configuration issues.
 """

[docs]class PytestCollectionWarning(PytestWarning):
 """
 Bases: :class:`PytestWarning`.

 Warning emitted when pytest is not able to collect a file or symbol in a module.
 """

[docs]class PytestDeprecationWarning(PytestWarning, DeprecationWarning):
 """
 Bases: :class:`pytest.PytestWarning`, :class:`DeprecationWarning`.

 Warning class for features that will be removed in a future version.
 """

[docs]class PytestExperimentalApiWarning(PytestWarning, FutureWarning):
 """
 Bases: :class:`pytest.PytestWarning`, :class:`FutureWarning`.

 Warning category used to denote experiments in pytest. Use sparingly as the API might change or even be
 removed completely in future version
 """

 @classmethod
 def simple(cls, apiname):
 return cls(
 "{apiname} is an experimental api that may change over time".format(
 apiname=apiname
)
)

[docs]class PytestUnhandledCoroutineWarning(PytestWarning):
 """
 Bases: :class:`PytestWarning`.

 Warning emitted when pytest encounters a test function which is a coroutine,
 but it was not handled by any async-aware plugin. Coroutine test functions
 are not natively supported.
 """

[docs]class PytestUnknownMarkWarning(PytestWarning):
 """
 Bases: :class:`PytestWarning`.

 Warning emitted on use of unknown markers.
 See https://docs.pytest.org/en/latest/mark.html for details.
 """

[docs]class RemovedInPytest4Warning(PytestDeprecationWarning):
 """
 Bases: :class:`pytest.PytestDeprecationWarning`.

 Warning class for features scheduled to be removed in pytest 4.0.
 """

@attr.s
class UnformattedWarning(object):
 """Used to hold warnings that need to format their message at runtime, as opposed to a direct message.

 Using this class avoids to keep all the warning types and messages in this module, avoiding misuse.
 """

 category = attr.ib()
 template = attr.ib()

 def format(self, **kwargs):
 """Returns an instance of the warning category, formatted with given kwargs"""
 return self.category(self.template.format(**kwargs))

PYTESTER_COPY_EXAMPLE = PytestExperimentalApiWarning.simple("testdir.copy_example")

 Source code for _pytest._code.code

-*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import re
import sys
import traceback
from inspect import CO_VARARGS
from inspect import CO_VARKEYWORDS
from weakref import ref

import attr
import pluggy
import py
from six import text_type

import _pytest
from _pytest._io.saferepr import safeformat
from _pytest._io.saferepr import saferepr
from _pytest.compat import _PY2
from _pytest.compat import _PY3
from _pytest.compat import PY35
from _pytest.compat import safe_str

if _PY3:
 from traceback import format_exception_only
else:
 from ._py2traceback import format_exception_only

class Code(object):
 """ wrapper around Python code objects """

 def __init__(self, rawcode):
 if not hasattr(rawcode, "co_filename"):
 rawcode = getrawcode(rawcode)
 try:
 self.filename = rawcode.co_filename
 self.firstlineno = rawcode.co_firstlineno - 1
 self.name = rawcode.co_name
 except AttributeError:
 raise TypeError("not a code object: %r" % (rawcode,))
 self.raw = rawcode

 def __eq__(self, other):
 return self.raw == other.raw

 __hash__ = None

 def __ne__(self, other):
 return not self == other

 @property
 def path(self):
 """ return a path object pointing to source code (note that it
 might not point to an actually existing file). """
 try:
 p = py.path.local(self.raw.co_filename)
 # maybe don't try this checking
 if not p.check():
 raise OSError("py.path check failed.")
 except OSError:
 # XXX maybe try harder like the weird logic
 # in the standard lib [linecache.updatecache] does?
 p = self.raw.co_filename

 return p

 @property
 def fullsource(self):
 """ return a _pytest._code.Source object for the full source file of the code
 """
 from _pytest._code import source

 full, _ = source.findsource(self.raw)
 return full

 def source(self):
 """ return a _pytest._code.Source object for the code object's source only
 """
 # return source only for that part of code
 import _pytest._code

 return _pytest._code.Source(self.raw)

 def getargs(self, var=False):
 """ return a tuple with the argument names for the code object

 if 'var' is set True also return the names of the variable and
 keyword arguments when present
 """
 # handfull shortcut for getting args
 raw = self.raw
 argcount = raw.co_argcount
 if var:
 argcount += raw.co_flags & CO_VARARGS
 argcount += raw.co_flags & CO_VARKEYWORDS
 return raw.co_varnames[:argcount]

class Frame(object):
 """Wrapper around a Python frame holding f_locals and f_globals
 in which expressions can be evaluated."""

 def __init__(self, frame):
 self.lineno = frame.f_lineno - 1
 self.f_globals = frame.f_globals
 self.f_locals = frame.f_locals
 self.raw = frame
 self.code = Code(frame.f_code)

 @property
 def statement(self):
 """ statement this frame is at """
 import _pytest._code

 if self.code.fullsource is None:
 return _pytest._code.Source("")
 return self.code.fullsource.getstatement(self.lineno)

 def eval(self, code, **vars):
 """ evaluate 'code' in the frame

 'vars' are optional additional local variables

 returns the result of the evaluation
 """
 f_locals = self.f_locals.copy()
 f_locals.update(vars)
 return eval(code, self.f_globals, f_locals)

 def exec_(self, code, **vars):
 """ exec 'code' in the frame

 'vars' are optiona; additional local variables
 """
 f_locals = self.f_locals.copy()
 f_locals.update(vars)
 exec(code, self.f_globals, f_locals)

 def repr(self, object):
 """ return a 'safe' (non-recursive, one-line) string repr for 'object'
 """
 return saferepr(object)

 def is_true(self, object):
 return object

 def getargs(self, var=False):
 """ return a list of tuples (name, value) for all arguments

 if 'var' is set True also include the variable and keyword
 arguments when present
 """
 retval = []
 for arg in self.code.getargs(var):
 try:
 retval.append((arg, self.f_locals[arg]))
 except KeyError:
 pass # this can occur when using Psyco
 return retval

class TracebackEntry(object):
 """ a single entry in a traceback """

 _repr_style = None
 exprinfo = None

 def __init__(self, rawentry, excinfo=None):
 self._excinfo = excinfo
 self._rawentry = rawentry
 self.lineno = rawentry.tb_lineno - 1

 def set_repr_style(self, mode):
 assert mode in ("short", "long")
 self._repr_style = mode

 @property
 def frame(self):
 import _pytest._code

 return _pytest._code.Frame(self._rawentry.tb_frame)

 @property
 def relline(self):
 return self.lineno - self.frame.code.firstlineno

 def __repr__(self):
 return "<TracebackEntry %s:%d>" % (self.frame.code.path, self.lineno + 1)

 @property
 def statement(self):
 """ _pytest._code.Source object for the current statement """
 source = self.frame.code.fullsource
 return source.getstatement(self.lineno)

 @property
 def path(self):
 """ path to the source code """
 return self.frame.code.path

 def getlocals(self):
 return self.frame.f_locals

 locals = property(getlocals, None, None, "locals of underlaying frame")

 def getfirstlinesource(self):
 # on Jython this firstlineno can be -1 apparently
 return max(self.frame.code.firstlineno, 0)

 def getsource(self, astcache=None):
 """ return failing source code. """
 # we use the passed in astcache to not reparse asttrees
 # within exception info printing
 from _pytest._code.source import getstatementrange_ast

 source = self.frame.code.fullsource
 if source is None:
 return None
 key = astnode = None
 if astcache is not None:
 key = self.frame.code.path
 if key is not None:
 astnode = astcache.get(key, None)
 start = self.getfirstlinesource()
 try:
 astnode, _, end = getstatementrange_ast(
 self.lineno, source, astnode=astnode
)
 except SyntaxError:
 end = self.lineno + 1
 else:
 if key is not None:
 astcache[key] = astnode
 return source[start:end]

 source = property(getsource)

 def ishidden(self):
 """ return True if the current frame has a var __tracebackhide__
 resolving to True.

 If __tracebackhide__ is a callable, it gets called with the
 ExceptionInfo instance and can decide whether to hide the traceback.

 mostly for internal use
 """
 f = self.frame
 tbh = f.f_locals.get(
 "__tracebackhide__", f.f_globals.get("__tracebackhide__", False)
)
 if tbh and callable(tbh):
 return tbh(None if self._excinfo is None else self._excinfo())
 return tbh

 def __str__(self):
 try:
 fn = str(self.path)
 except py.error.Error:
 fn = "???"
 name = self.frame.code.name
 try:
 line = str(self.statement).lstrip()
 except KeyboardInterrupt:
 raise
 except: # noqa
 line = "???"
 return " File %r:%d in %s\n %s\n" % (fn, self.lineno + 1, name, line)

 def name(self):
 return self.frame.code.raw.co_name

 name = property(name, None, None, "co_name of underlaying code")

class Traceback(list):
 """ Traceback objects encapsulate and offer higher level
 access to Traceback entries.
 """

 Entry = TracebackEntry

 def __init__(self, tb, excinfo=None):
 """ initialize from given python traceback object and ExceptionInfo """
 self._excinfo = excinfo
 if hasattr(tb, "tb_next"):

 def f(cur):
 while cur is not None:
 yield self.Entry(cur, excinfo=excinfo)
 cur = cur.tb_next

 list.__init__(self, f(tb))
 else:
 list.__init__(self, tb)

 def cut(self, path=None, lineno=None, firstlineno=None, excludepath=None):
 """ return a Traceback instance wrapping part of this Traceback

 by provding any combination of path, lineno and firstlineno, the
 first frame to start the to-be-returned traceback is determined

 this allows cutting the first part of a Traceback instance e.g.
 for formatting reasons (removing some uninteresting bits that deal
 with handling of the exception/traceback)
 """
 for x in self:
 code = x.frame.code
 codepath = code.path
 if (
 (path is None or codepath == path)
 and (
 excludepath is None
 or not hasattr(codepath, "relto")
 or not codepath.relto(excludepath)
)
 and (lineno is None or x.lineno == lineno)
 and (firstlineno is None or x.frame.code.firstlineno == firstlineno)
):
 return Traceback(x._rawentry, self._excinfo)
 return self

 def __getitem__(self, key):
 val = super(Traceback, self).__getitem__(key)
 if isinstance(key, type(slice(0))):
 val = self.__class__(val)
 return val

 def filter(self, fn=lambda x: not x.ishidden()):
 """ return a Traceback instance with certain items removed

 fn is a function that gets a single argument, a TracebackEntry
 instance, and should return True when the item should be added
 to the Traceback, False when not

 by default this removes all the TracebackEntries which are hidden
 (see ishidden() above)
 """
 return Traceback(filter(fn, self), self._excinfo)

 def getcrashentry(self):
 """ return last non-hidden traceback entry that lead
 to the exception of a traceback.
 """
 for i in range(-1, -len(self) - 1, -1):
 entry = self[i]
 if not entry.ishidden():
 return entry
 return self[-1]

 def recursionindex(self):
 """ return the index of the frame/TracebackEntry where recursion
 originates if appropriate, None if no recursion occurred
 """
 cache = {}
 for i, entry in enumerate(self):
 # id for the code.raw is needed to work around
 # the strange metaprogramming in the decorator lib from pypi
 # which generates code objects that have hash/value equality
 # XXX needs a test
 key = entry.frame.code.path, id(entry.frame.code.raw), entry.lineno
 # print "checking for recursion at", key
 values = cache.setdefault(key, [])
 if values:
 f = entry.frame
 loc = f.f_locals
 for otherloc in values:
 if f.is_true(
 f.eval(
 co_equal,
 __recursioncache_locals_1=loc,
 __recursioncache_locals_2=otherloc,
)
):
 return i
 values.append(entry.frame.f_locals)
 return None

co_equal = compile(
 "__recursioncache_locals_1 == __recursioncache_locals_2", "?", "eval"
)

[docs]@attr.s(repr=False)
class ExceptionInfo(object):
 """ wraps sys.exc_info() objects and offers
 help for navigating the traceback.
 """

 _assert_start_repr = (
 "AssertionError(u'assert " if _PY2 else "AssertionError('assert "
)

 _excinfo = attr.ib()
 _striptext = attr.ib(default="")
 _traceback = attr.ib(default=None)

[docs] @classmethod
 def from_current(cls, exprinfo=None):
 """returns an ExceptionInfo matching the current traceback

 .. warning::

 Experimental API

 :param exprinfo: a text string helping to determine if we should
 strip ``AssertionError`` from the output, defaults
 to the exception message/``__str__()``
 """
 tup = sys.exc_info()
 assert tup[0] is not None, "no current exception"
 _striptext = ""
 if exprinfo is None and isinstance(tup[1], AssertionError):
 exprinfo = getattr(tup[1], "msg", None)
 if exprinfo is None:
 exprinfo = saferepr(tup[1])
 if exprinfo and exprinfo.startswith(cls._assert_start_repr):
 _striptext = "AssertionError: "

 return cls(tup, _striptext)

[docs] @classmethod
 def for_later(cls):
 """return an unfilled ExceptionInfo
 """
 return cls(None)

 @property
 def type(self):
 """the exception class"""
 return self._excinfo[0]

 @property
 def value(self):
 """the exception value"""
 return self._excinfo[1]

 @property
 def tb(self):
 """the exception raw traceback"""
 return self._excinfo[2]

 @property
 def typename(self):
 """the type name of the exception"""
 return self.type.__name__

 @property
 def traceback(self):
 """the traceback"""
 if self._traceback is None:
 self._traceback = Traceback(self.tb, excinfo=ref(self))
 return self._traceback

 @traceback.setter
 def traceback(self, value):
 self._traceback = value

 def __repr__(self):
 if self._excinfo is None:
 return "<ExceptionInfo for raises contextmanager>"
 return "<ExceptionInfo %s tblen=%d>" % (self.typename, len(self.traceback))

[docs] def exconly(self, tryshort=False):
 """ return the exception as a string

 when 'tryshort' resolves to True, and the exception is a
 _pytest._code._AssertionError, only the actual exception part of
 the exception representation is returned (so 'AssertionError: ' is
 removed from the beginning)
 """
 lines = format_exception_only(self.type, self.value)
 text = "".join(lines)
 text = text.rstrip()
 if tryshort:
 if text.startswith(self._striptext):
 text = text[len(self._striptext) :]
 return text

[docs] def errisinstance(self, exc):
 """ return True if the exception is an instance of exc """
 return isinstance(self.value, exc)

 def _getreprcrash(self):
 exconly = self.exconly(tryshort=True)
 entry = self.traceback.getcrashentry()
 path, lineno = entry.frame.code.raw.co_filename, entry.lineno
 return ReprFileLocation(path, lineno + 1, exconly)

[docs] def getrepr(
 self,
 showlocals=False,
 style="long",
 abspath=False,
 tbfilter=True,
 funcargs=False,
 truncate_locals=True,
 chain=True,
):
 """
 Return str()able representation of this exception info.

 :param bool showlocals:
 Show locals per traceback entry.
 Ignored if ``style=="native"``.

 :param str style: long|short|no|native traceback style

 :param bool abspath:
 If paths should be changed to absolute or left unchanged.

 :param bool tbfilter:
 Hide entries that contain a local variable ``__tracebackhide__==True``.
 Ignored if ``style=="native"``.

 :param bool funcargs:
 Show fixtures ("funcargs" for legacy purposes) per traceback entry.

 :param bool truncate_locals:
 With ``showlocals==True``, make sure locals can be safely represented as strings.

 :param bool chain: if chained exceptions in Python 3 should be shown.

 .. versionchanged:: 3.9

 Added the ``chain`` parameter.
 """
 if style == "native":
 return ReprExceptionInfo(
 ReprTracebackNative(
 traceback.format_exception(
 self.type, self.value, self.traceback[0]._rawentry
)
),
 self._getreprcrash(),
)

 fmt = FormattedExcinfo(
 showlocals=showlocals,
 style=style,
 abspath=abspath,
 tbfilter=tbfilter,
 funcargs=funcargs,
 truncate_locals=truncate_locals,
 chain=chain,
)
 return fmt.repr_excinfo(self)

 def __str__(self):
 if self._excinfo is None:
 return repr(self)
 entry = self.traceback[-1]
 loc = ReprFileLocation(entry.path, entry.lineno + 1, self.exconly())
 return str(loc)

 def __unicode__(self):
 entry = self.traceback[-1]
 loc = ReprFileLocation(entry.path, entry.lineno + 1, self.exconly())
 return text_type(loc)

[docs] def match(self, regexp):
 """
 Check whether the regular expression 'regexp' is found in the string
 representation of the exception using ``re.search``. If it matches
 then True is returned (so that it is possible to write
 ``assert excinfo.match()``). If it doesn't match an AssertionError is
 raised.
 """
 __tracebackhide__ = True
 value = (
 text_type(self.value) if isinstance(regexp, text_type) else str(self.value)
)
 if not re.search(regexp, value):
 raise AssertionError(
 u"Pattern {!r} not found in {!r}".format(regexp, value)
)
 return True

@attr.s
class FormattedExcinfo(object):
 """ presenting information about failing Functions and Generators. """

 # for traceback entries
 flow_marker = ">"
 fail_marker = "E"

 showlocals = attr.ib(default=False)
 style = attr.ib(default="long")
 abspath = attr.ib(default=True)
 tbfilter = attr.ib(default=True)
 funcargs = attr.ib(default=False)
 truncate_locals = attr.ib(default=True)
 chain = attr.ib(default=True)
 astcache = attr.ib(default=attr.Factory(dict), init=False, repr=False)

 def _getindent(self, source):
 # figure out indent for given source
 try:
 s = str(source.getstatement(len(source) - 1))
 except KeyboardInterrupt:
 raise
 except: # noqa
 try:
 s = str(source[-1])
 except KeyboardInterrupt:
 raise
 except: # noqa
 return 0
 return 4 + (len(s) - len(s.lstrip()))

 def _getentrysource(self, entry):
 source = entry.getsource(self.astcache)
 if source is not None:
 source = source.deindent()
 return source

 def repr_args(self, entry):
 if self.funcargs:
 args = []
 for argname, argvalue in entry.frame.getargs(var=True):
 args.append((argname, saferepr(argvalue)))
 return ReprFuncArgs(args)

 def get_source(self, source, line_index=-1, excinfo=None, short=False):
 """ return formatted and marked up source lines. """
 import _pytest._code

 lines = []
 if source is None or line_index >= len(source.lines):
 source = _pytest._code.Source("???")
 line_index = 0
 if line_index < 0:
 line_index += len(source)
 space_prefix = " "
 if short:
 lines.append(space_prefix + source.lines[line_index].strip())
 else:
 for line in source.lines[:line_index]:
 lines.append(space_prefix + line)
 lines.append(self.flow_marker + " " + source.lines[line_index])
 for line in source.lines[line_index + 1 :]:
 lines.append(space_prefix + line)
 if excinfo is not None:
 indent = 4 if short else self._getindent(source)
 lines.extend(self.get_exconly(excinfo, indent=indent, markall=True))
 return lines

 def get_exconly(self, excinfo, indent=4, markall=False):
 lines = []
 indent = " " * indent
 # get the real exception information out
 exlines = excinfo.exconly(tryshort=True).split("\n")
 failindent = self.fail_marker + indent[1:]
 for line in exlines:
 lines.append(failindent + line)
 if not markall:
 failindent = indent
 return lines

 def repr_locals(self, locals):
 if self.showlocals:
 lines = []
 keys = [loc for loc in locals if loc[0] != "@"]
 keys.sort()
 for name in keys:
 value = locals[name]
 if name == "__builtins__":
 lines.append("__builtins__ = <builtins>")
 else:
 # This formatting could all be handled by the
 # _repr() function, which is only reprlib.Repr in
 # disguise, so is very configurable.
 if self.truncate_locals:
 str_repr = saferepr(value)
 else:
 str_repr = safeformat(value)
 # if len(str_repr) < 70 or not isinstance(value,
 # (list, tuple, dict)):
 lines.append("%-10s = %s" % (name, str_repr))
 # else:
 # self._line("%-10s =\\" % (name,))
 # # XXX
 # pprint.pprint(value, stream=self.excinfowriter)
 return ReprLocals(lines)

 def repr_traceback_entry(self, entry, excinfo=None):
 import _pytest._code

 source = self._getentrysource(entry)
 if source is None:
 source = _pytest._code.Source("???")
 line_index = 0
 else:
 # entry.getfirstlinesource() can be -1, should be 0 on jython
 line_index = entry.lineno - max(entry.getfirstlinesource(), 0)

 lines = []
 style = entry._repr_style
 if style is None:
 style = self.style
 if style in ("short", "long"):
 short = style == "short"
 reprargs = self.repr_args(entry) if not short else None
 s = self.get_source(source, line_index, excinfo, short=short)
 lines.extend(s)
 if short:
 message = "in %s" % (entry.name)
 else:
 message = excinfo and excinfo.typename or ""
 path = self._makepath(entry.path)
 filelocrepr = ReprFileLocation(path, entry.lineno + 1, message)
 localsrepr = None
 if not short:
 localsrepr = self.repr_locals(entry.locals)
 return ReprEntry(lines, reprargs, localsrepr, filelocrepr, style)
 if excinfo:
 lines.extend(self.get_exconly(excinfo, indent=4))
 return ReprEntry(lines, None, None, None, style)

 def _makepath(self, path):
 if not self.abspath:
 try:
 np = py.path.local().bestrelpath(path)
 except OSError:
 return path
 if len(np) < len(str(path)):
 path = np
 return path

 def repr_traceback(self, excinfo):
 traceback = excinfo.traceback
 if self.tbfilter:
 traceback = traceback.filter()

 if is_recursion_error(excinfo):
 traceback, extraline = self._truncate_recursive_traceback(traceback)
 else:
 extraline = None

 last = traceback[-1]
 entries = []
 for index, entry in enumerate(traceback):
 einfo = (last == entry) and excinfo or None
 reprentry = self.repr_traceback_entry(entry, einfo)
 entries.append(reprentry)
 return ReprTraceback(entries, extraline, style=self.style)

 def _truncate_recursive_traceback(self, traceback):
 """
 Truncate the given recursive traceback trying to find the starting point
 of the recursion.

 The detection is done by going through each traceback entry and finding the
 point in which the locals of the frame are equal to the locals of a previous frame (see ``recursionindex()``.

 Handle the situation where the recursion process might raise an exception (for example
 comparing numpy arrays using equality raises a TypeError), in which case we do our best to
 warn the user of the error and show a limited traceback.
 """
 try:
 recursionindex = traceback.recursionindex()
 except Exception as e:
 max_frames = 10
 extraline = (
 "!!! Recursion error detected, but an error occurred locating the origin of recursion.\n"
 " The following exception happened when comparing locals in the stack frame:\n"
 " {exc_type}: {exc_msg}\n"
 " Displaying first and last {max_frames} stack frames out of {total}."
).format(
 exc_type=type(e).__name__,
 exc_msg=safe_str(e),
 max_frames=max_frames,
 total=len(traceback),
)
 traceback = traceback[:max_frames] + traceback[-max_frames:]
 else:
 if recursionindex is not None:
 extraline = "!!! Recursion detected (same locals & position)"
 traceback = traceback[: recursionindex + 1]
 else:
 extraline = None

 return traceback, extraline

 def repr_excinfo(self, excinfo):
 if _PY2:
 reprtraceback = self.repr_traceback(excinfo)
 reprcrash = excinfo._getreprcrash()

 return ReprExceptionInfo(reprtraceback, reprcrash)
 else:
 repr_chain = []
 e = excinfo.value
 descr = None
 seen = set()
 while e is not None and id(e) not in seen:
 seen.add(id(e))
 if excinfo:
 reprtraceback = self.repr_traceback(excinfo)
 reprcrash = excinfo._getreprcrash()
 else:
 # fallback to native repr if the exception doesn't have a traceback:
 # ExceptionInfo objects require a full traceback to work
 reprtraceback = ReprTracebackNative(
 traceback.format_exception(type(e), e, None)
)
 reprcrash = None

 repr_chain += [(reprtraceback, reprcrash, descr)]
 if e.__cause__ is not None and self.chain:
 e = e.__cause__
 excinfo = (
 ExceptionInfo((type(e), e, e.__traceback__))
 if e.__traceback__
 else None
)
 descr = "The above exception was the direct cause of the following exception:"
 elif (
 e.__context__ is not None
 and not e.__suppress_context__
 and self.chain
):
 e = e.__context__
 excinfo = (
 ExceptionInfo((type(e), e, e.__traceback__))
 if e.__traceback__
 else None
)
 descr = "During handling of the above exception, another exception occurred:"
 else:
 e = None
 repr_chain.reverse()
 return ExceptionChainRepr(repr_chain)

class TerminalRepr(object):
 def __str__(self):
 s = self.__unicode__()
 if _PY2:
 s = s.encode("utf-8")
 return s

 def __unicode__(self):
 # FYI this is called from pytest-xdist's serialization of exception
 # information.
 io = py.io.TextIO()
 tw = py.io.TerminalWriter(file=io)
 self.toterminal(tw)
 return io.getvalue().strip()

 def __repr__(self):
 return "<%s instance at %0x>" % (self.__class__, id(self))

class ExceptionRepr(TerminalRepr):
 def __init__(self):
 self.sections = []

 def addsection(self, name, content, sep="-"):
 self.sections.append((name, content, sep))

 def toterminal(self, tw):
 for name, content, sep in self.sections:
 tw.sep(sep, name)
 tw.line(content)

class ExceptionChainRepr(ExceptionRepr):
 def __init__(self, chain):
 super(ExceptionChainRepr, self).__init__()
 self.chain = chain
 # reprcrash and reprtraceback of the outermost (the newest) exception
 # in the chain
 self.reprtraceback = chain[-1][0]
 self.reprcrash = chain[-1][1]

 def toterminal(self, tw):
 for element in self.chain:
 element[0].toterminal(tw)
 if element[2] is not None:
 tw.line("")
 tw.line(element[2], yellow=True)
 super(ExceptionChainRepr, self).toterminal(tw)

class ReprExceptionInfo(ExceptionRepr):
 def __init__(self, reprtraceback, reprcrash):
 super(ReprExceptionInfo, self).__init__()
 self.reprtraceback = reprtraceback
 self.reprcrash = reprcrash

 def toterminal(self, tw):
 self.reprtraceback.toterminal(tw)
 super(ReprExceptionInfo, self).toterminal(tw)

class ReprTraceback(TerminalRepr):
 entrysep = "_ "

 def __init__(self, reprentries, extraline, style):
 self.reprentries = reprentries
 self.extraline = extraline
 self.style = style

 def toterminal(self, tw):
 # the entries might have different styles
 for i, entry in enumerate(self.reprentries):
 if entry.style == "long":
 tw.line("")
 entry.toterminal(tw)
 if i < len(self.reprentries) - 1:
 next_entry = self.reprentries[i + 1]
 if (
 entry.style == "long"
 or entry.style == "short"
 and next_entry.style == "long"
):
 tw.sep(self.entrysep)

 if self.extraline:
 tw.line(self.extraline)

class ReprTracebackNative(ReprTraceback):
 def __init__(self, tblines):
 self.style = "native"
 self.reprentries = [ReprEntryNative(tblines)]
 self.extraline = None

class ReprEntryNative(TerminalRepr):
 style = "native"

 def __init__(self, tblines):
 self.lines = tblines

 def toterminal(self, tw):
 tw.write("".join(self.lines))

class ReprEntry(TerminalRepr):
 def __init__(self, lines, reprfuncargs, reprlocals, filelocrepr, style):
 self.lines = lines
 self.reprfuncargs = reprfuncargs
 self.reprlocals = reprlocals
 self.reprfileloc = filelocrepr
 self.style = style

 def toterminal(self, tw):
 if self.style == "short":
 self.reprfileloc.toterminal(tw)
 for line in self.lines:
 red = line.startswith("E ")
 tw.line(line, bold=True, red=red)
 # tw.line("")
 return
 if self.reprfuncargs:
 self.reprfuncargs.toterminal(tw)
 for line in self.lines:
 red = line.startswith("E ")
 tw.line(line, bold=True, red=red)
 if self.reprlocals:
 tw.line("")
 self.reprlocals.toterminal(tw)
 if self.reprfileloc:
 if self.lines:
 tw.line("")
 self.reprfileloc.toterminal(tw)

 def __str__(self):
 return "%s\n%s\n%s" % ("\n".join(self.lines), self.reprlocals, self.reprfileloc)

class ReprFileLocation(TerminalRepr):
 def __init__(self, path, lineno, message):
 self.path = str(path)
 self.lineno = lineno
 self.message = message

 def toterminal(self, tw):
 # filename and lineno output for each entry,
 # using an output format that most editors unterstand
 msg = self.message
 i = msg.find("\n")
 if i != -1:
 msg = msg[:i]
 tw.write(self.path, bold=True, red=True)
 tw.line(":%s: %s" % (self.lineno, msg))

class ReprLocals(TerminalRepr):
 def __init__(self, lines):
 self.lines = lines

 def toterminal(self, tw):
 for line in self.lines:
 tw.line(line)

class ReprFuncArgs(TerminalRepr):
 def __init__(self, args):
 self.args = args

 def toterminal(self, tw):
 if self.args:
 linesofar = ""
 for name, value in self.args:
 ns = "%s = %s" % (safe_str(name), safe_str(value))
 if len(ns) + len(linesofar) + 2 > tw.fullwidth:
 if linesofar:
 tw.line(linesofar)
 linesofar = ns
 else:
 if linesofar:
 linesofar += ", " + ns
 else:
 linesofar = ns
 if linesofar:
 tw.line(linesofar)
 tw.line("")

def getrawcode(obj, trycall=True):
 """ return code object for given function. """
 try:
 return obj.__code__
 except AttributeError:
 obj = getattr(obj, "im_func", obj)
 obj = getattr(obj, "func_code", obj)
 obj = getattr(obj, "f_code", obj)
 obj = getattr(obj, "__code__", obj)
 if trycall and not hasattr(obj, "co_firstlineno"):
 if hasattr(obj, "__call__") and not inspect.isclass(obj):
 x = getrawcode(obj.__call__, trycall=False)
 if hasattr(x, "co_firstlineno"):
 return x
 return obj

if PY35: # RecursionError introduced in 3.5

 def is_recursion_error(excinfo):
 return excinfo.errisinstance(RecursionError) # noqa

else:

 def is_recursion_error(excinfo):
 if not excinfo.errisinstance(RuntimeError):
 return False
 try:
 return "maximum recursion depth exceeded" in str(excinfo.value)
 except UnicodeError:
 return False

relative paths that we use to filter traceback entries from appearing to the user;
see filter_traceback
note: if we need to add more paths than what we have now we should probably use a list
for better maintenance

_PLUGGY_DIR = py.path.local(pluggy.__file__.rstrip("oc"))
pluggy is either a package or a single module depending on the version
if _PLUGGY_DIR.basename == "__init__.py":
 _PLUGGY_DIR = _PLUGGY_DIR.dirpath()
_PYTEST_DIR = py.path.local(_pytest.__file__).dirpath()
_PY_DIR = py.path.local(py.__file__).dirpath()

def filter_traceback(entry):
 """Return True if a TracebackEntry instance should be removed from tracebacks:
 * dynamically generated code (no code to show up for it);
 * internal traceback from pytest or its internal libraries, py and pluggy.
 """
 # entry.path might sometimes return a str object when the entry
 # points to dynamically generated code
 # see https://bitbucket.org/pytest-dev/py/issues/71
 raw_filename = entry.frame.code.raw.co_filename
 is_generated = "<" in raw_filename and ">" in raw_filename
 if is_generated:
 return False
 # entry.path might point to a non-existing file, in which case it will
 # also return a str object. see #1133
 p = py.path.local(entry.path)
 return (
 not p.relto(_PLUGGY_DIR) and not p.relto(_PYTEST_DIR) and not p.relto(_PY_DIR)
)

 Source code for _pytest.config.argparsing

-*- coding: utf-8 -*-
import argparse
import warnings

import py
import six

from _pytest.config.exceptions import UsageError

FILE_OR_DIR = "file_or_dir"

[docs]class Parser(object):
 """ Parser for command line arguments and ini-file values.

 :ivar extra_info: dict of generic param -> value to display in case
 there's an error processing the command line arguments.
 """

 prog = None

 def __init__(self, usage=None, processopt=None):
 self._anonymous = OptionGroup("custom options", parser=self)
 self._groups = []
 self._processopt = processopt
 self._usage = usage
 self._inidict = {}
 self._ininames = []
 self.extra_info = {}

 def processoption(self, option):
 if self._processopt:
 if option.dest:
 self._processopt(option)

[docs] def getgroup(self, name, description="", after=None):
 """ get (or create) a named option Group.

 :name: name of the option group.
 :description: long description for --help output.
 :after: name of other group, used for ordering --help output.

 The returned group object has an ``addoption`` method with the same
 signature as :py:func:`parser.addoption
 <_pytest.config.Parser.addoption>` but will be shown in the
 respective group in the output of ``pytest. --help``.
 """
 for group in self._groups:
 if group.name == name:
 return group
 group = OptionGroup(name, description, parser=self)
 i = 0
 for i, grp in enumerate(self._groups):
 if grp.name == after:
 break
 self._groups.insert(i + 1, group)
 return group

[docs] def addoption(self, *opts, **attrs):
 """ register a command line option.

 :opts: option names, can be short or long options.
 :attrs: same attributes which the ``add_option()`` function of the
 `argparse library
 <http://docs.python.org/2/library/argparse.html>`_
 accepts.

 After command line parsing options are available on the pytest config
 object via ``config.option.NAME`` where ``NAME`` is usually set
 by passing a ``dest`` attribute, for example
 ``addoption("--long", dest="NAME", ...)``.
 """
 self._anonymous.addoption(*opts, **attrs)

 def parse(self, args, namespace=None):
 from _pytest._argcomplete import try_argcomplete

 self.optparser = self._getparser()
 try_argcomplete(self.optparser)
 args = [str(x) if isinstance(x, py.path.local) else x for x in args]
 return self.optparser.parse_args(args, namespace=namespace)

 def _getparser(self):
 from _pytest._argcomplete import filescompleter

 optparser = MyOptionParser(self, self.extra_info, prog=self.prog)
 groups = self._groups + [self._anonymous]
 for group in groups:
 if group.options:
 desc = group.description or group.name
 arggroup = optparser.add_argument_group(desc)
 for option in group.options:
 n = option.names()
 a = option.attrs()
 arggroup.add_argument(*n, **a)
 # bash like autocompletion for dirs (appending '/')
 optparser.add_argument(FILE_OR_DIR, nargs="*").completer = filescompleter
 return optparser

 def parse_setoption(self, args, option, namespace=None):
 parsedoption = self.parse(args, namespace=namespace)
 for name, value in parsedoption.__dict__.items():
 setattr(option, name, value)
 return getattr(parsedoption, FILE_OR_DIR)

[docs] def parse_known_args(self, args, namespace=None):
 """parses and returns a namespace object with known arguments at this
 point.
 """
 return self.parse_known_and_unknown_args(args, namespace=namespace)[0]

[docs] def parse_known_and_unknown_args(self, args, namespace=None):
 """parses and returns a namespace object with known arguments, and
 the remaining arguments unknown at this point.
 """
 optparser = self._getparser()
 args = [str(x) if isinstance(x, py.path.local) else x for x in args]
 return optparser.parse_known_args(args, namespace=namespace)

[docs] def addini(self, name, help, type=None, default=None):
 """ register an ini-file option.

 :name: name of the ini-variable
 :type: type of the variable, can be ``pathlist``, ``args``, ``linelist``
 or ``bool``.
 :default: default value if no ini-file option exists but is queried.

 The value of ini-variables can be retrieved via a call to
 :py:func:`config.getini(name) <_pytest.config.Config.getini>`.
 """
 assert type in (None, "pathlist", "args", "linelist", "bool")
 self._inidict[name] = (help, type, default)
 self._ininames.append(name)

class ArgumentError(Exception):
 """
 Raised if an Argument instance is created with invalid or
 inconsistent arguments.
 """

 def __init__(self, msg, option):
 self.msg = msg
 self.option_id = str(option)

 def __str__(self):
 if self.option_id:
 return "option %s: %s" % (self.option_id, self.msg)
 else:
 return self.msg

class Argument(object):
 """class that mimics the necessary behaviour of optparse.Option

 it's currently a least effort implementation
 and ignoring choices and integer prefixes
 https://docs.python.org/3/library/optparse.html#optparse-standard-option-types
 """

 _typ_map = {"int": int, "string": str, "float": float, "complex": complex}

 def __init__(self, *names, **attrs):
 """store parms in private vars for use in add_argument"""
 self._attrs = attrs
 self._short_opts = []
 self._long_opts = []
 self.dest = attrs.get("dest")
 if "%default" in (attrs.get("help") or ""):
 warnings.warn(
 'pytest now uses argparse. "%default" should be'
 ' changed to "%(default)s" ',
 DeprecationWarning,
 stacklevel=3,
)
 try:
 typ = attrs["type"]
 except KeyError:
 pass
 else:
 # this might raise a keyerror as well, don't want to catch that
 if isinstance(typ, six.string_types):
 if typ == "choice":
 warnings.warn(
 "`type` argument to addoption() is the string %r."
 " For choices this is optional and can be omitted, "
 " but when supplied should be a type (for example `str` or `int`)."
 " (options: %s)" % (typ, names),
 DeprecationWarning,
 stacklevel=4,
)
 # argparse expects a type here take it from
 # the type of the first element
 attrs["type"] = type(attrs["choices"][0])
 else:
 warnings.warn(
 "`type` argument to addoption() is the string %r, "
 " but when supplied should be a type (for example `str` or `int`)."
 " (options: %s)" % (typ, names),
 DeprecationWarning,
 stacklevel=4,
)
 attrs["type"] = Argument._typ_map[typ]
 # used in test_parseopt -> test_parse_defaultgetter
 self.type = attrs["type"]
 else:
 self.type = typ
 try:
 # attribute existence is tested in Config._processopt
 self.default = attrs["default"]
 except KeyError:
 pass
 self._set_opt_strings(names)
 if not self.dest:
 if self._long_opts:
 self.dest = self._long_opts[0][2:].replace("-", "_")
 else:
 try:
 self.dest = self._short_opts[0][1:]
 except IndexError:
 raise ArgumentError("need a long or short option", self)

 def names(self):
 return self._short_opts + self._long_opts

 def attrs(self):
 # update any attributes set by processopt
 attrs = "default dest help".split()
 if self.dest:
 attrs.append(self.dest)
 for attr in attrs:
 try:
 self._attrs[attr] = getattr(self, attr)
 except AttributeError:
 pass
 if self._attrs.get("help"):
 a = self._attrs["help"]
 a = a.replace("%default", "%(default)s")
 # a = a.replace('%prog', '%(prog)s')
 self._attrs["help"] = a
 return self._attrs

 def _set_opt_strings(self, opts):
 """directly from optparse

 might not be necessary as this is passed to argparse later on"""
 for opt in opts:
 if len(opt) < 2:
 raise ArgumentError(
 "invalid option string %r: "
 "must be at least two characters long" % opt,
 self,
)
 elif len(opt) == 2:
 if not (opt[0] == "-" and opt[1] != "-"):
 raise ArgumentError(
 "invalid short option string %r: "
 "must be of the form -x, (x any non-dash char)" % opt,
 self,
)
 self._short_opts.append(opt)
 else:
 if not (opt[0:2] == "--" and opt[2] != "-"):
 raise ArgumentError(
 "invalid long option string %r: "
 "must start with --, followed by non-dash" % opt,
 self,
)
 self._long_opts.append(opt)

 def __repr__(self):
 args = []
 if self._short_opts:
 args += ["_short_opts: " + repr(self._short_opts)]
 if self._long_opts:
 args += ["_long_opts: " + repr(self._long_opts)]
 args += ["dest: " + repr(self.dest)]
 if hasattr(self, "type"):
 args += ["type: " + repr(self.type)]
 if hasattr(self, "default"):
 args += ["default: " + repr(self.default)]
 return "Argument({})".format(", ".join(args))

class OptionGroup(object):
 def __init__(self, name, description="", parser=None):
 self.name = name
 self.description = description
 self.options = []
 self.parser = parser

 def addoption(self, *optnames, **attrs):
 """ add an option to this group.

 if a shortened version of a long option is specified it will
 be suppressed in the help. addoption('--twowords', '--two-words')
 results in help showing '--two-words' only, but --twowords gets
 accepted **and** the automatic destination is in args.twowords
 """
 conflict = set(optnames).intersection(
 name for opt in self.options for name in opt.names()
)
 if conflict:
 raise ValueError("option names %s already added" % conflict)
 option = Argument(*optnames, **attrs)
 self._addoption_instance(option, shortupper=False)

 def _addoption(self, *optnames, **attrs):
 option = Argument(*optnames, **attrs)
 self._addoption_instance(option, shortupper=True)

 def _addoption_instance(self, option, shortupper=False):
 if not shortupper:
 for opt in option._short_opts:
 if opt[0] == "-" and opt[1].islower():
 raise ValueError("lowercase shortoptions reserved")
 if self.parser:
 self.parser.processoption(option)
 self.options.append(option)

class MyOptionParser(argparse.ArgumentParser):
 def __init__(self, parser, extra_info=None, prog=None):
 if not extra_info:
 extra_info = {}
 self._parser = parser
 argparse.ArgumentParser.__init__(
 self,
 prog=prog,
 usage=parser._usage,
 add_help=False,
 formatter_class=DropShorterLongHelpFormatter,
)
 # extra_info is a dict of (param -> value) to display if there's
 # an usage error to provide more contextual information to the user
 self.extra_info = extra_info

 def error(self, message):
 """Transform argparse error message into UsageError."""
 msg = "%s: error: %s" % (self.prog, message)

 if hasattr(self._parser, "_config_source_hint"):
 msg = "%s (%s)" % (msg, self._parser._config_source_hint)

 raise UsageError(self.format_usage() + msg)

 def parse_args(self, args=None, namespace=None):
 """allow splitting of positional arguments"""
 args, argv = self.parse_known_args(args, namespace)
 if argv:
 for arg in argv:
 if arg and arg[0] == "-":
 lines = ["unrecognized arguments: %s" % (" ".join(argv))]
 for k, v in sorted(self.extra_info.items()):
 lines.append(" %s: %s" % (k, v))
 self.error("\n".join(lines))
 getattr(args, FILE_OR_DIR).extend(argv)
 return args

class DropShorterLongHelpFormatter(argparse.HelpFormatter):
 """shorten help for long options that differ only in extra hyphens

 - collapse **long** options that are the same except for extra hyphens
 - special action attribute map_long_option allows surpressing additional
 long options
 - shortcut if there are only two options and one of them is a short one
 - cache result on action object as this is called at least 2 times
 """

 def _format_action_invocation(self, action):
 orgstr = argparse.HelpFormatter._format_action_invocation(self, action)
 if orgstr and orgstr[0] != "-": # only optional arguments
 return orgstr
 res = getattr(action, "_formatted_action_invocation", None)
 if res:
 return res
 options = orgstr.split(", ")
 if len(options) == 2 and (len(options[0]) == 2 or len(options[1]) == 2):
 # a shortcut for '-h, --help' or '--abc', '-a'
 action._formatted_action_invocation = orgstr
 return orgstr
 return_list = []
 option_map = getattr(action, "map_long_option", {})
 if option_map is None:
 option_map = {}
 short_long = {}
 for option in options:
 if len(option) == 2 or option[2] == " ":
 continue
 if not option.startswith("--"):
 raise ArgumentError(
 'long optional argument without "--": [%s]' % (option), self
)
 xxoption = option[2:]
 if xxoption.split()[0] not in option_map:
 shortened = xxoption.replace("-", "")
 if shortened not in short_long or len(short_long[shortened]) < len(
 xxoption
):
 short_long[shortened] = xxoption
 # now short_long has been filled out to the longest with dashes
 # **and** we keep the right option ordering from add_argument
 for option in options:
 if len(option) == 2 or option[2] == " ":
 return_list.append(option)
 if option[2:] == short_long.get(option.replace("-", "")):
 return_list.append(option.replace(" ", "=", 1))
 action._formatted_action_invocation = ", ".join(return_list)
 return action._formatted_action_invocation

 Source code for _pytest.mark.structures

-*- coding: utf-8 -*-
import inspect
import warnings
from collections import namedtuple
from operator import attrgetter

import attr
import six

from ..compat import ascii_escaped
from ..compat import ATTRS_EQ_FIELD
from ..compat import getfslineno
from ..compat import MappingMixin
from ..compat import NOTSET
from _pytest.deprecated import PYTEST_PARAM_UNKNOWN_KWARGS
from _pytest.outcomes import fail
from _pytest.warning_types import PytestUnknownMarkWarning

EMPTY_PARAMETERSET_OPTION = "empty_parameter_set_mark"

def alias(name, warning=None):
 getter = attrgetter(name)

 def warned(self):
 warnings.warn(warning, stacklevel=2)
 return getter(self)

 return property(getter if warning is None else warned, doc="alias for " + name)

def istestfunc(func):
 return (
 hasattr(func, "__call__")
 and getattr(func, "__name__", "<lambda>") != "<lambda>"
)

def get_empty_parameterset_mark(config, argnames, func):
 from ..nodes import Collector

 requested_mark = config.getini(EMPTY_PARAMETERSET_OPTION)
 if requested_mark in ("", None, "skip"):
 mark = MARK_GEN.skip
 elif requested_mark == "xfail":
 mark = MARK_GEN.xfail(run=False)
 elif requested_mark == "fail_at_collect":
 f_name = func.__name__
 _, lineno = getfslineno(func)
 raise Collector.CollectError(
 "Empty parameter set in '%s' at line %d" % (f_name, lineno + 1)
)
 else:
 raise LookupError(requested_mark)
 fs, lineno = getfslineno(func)
 reason = "got empty parameter set %r, function %s at %s:%d" % (
 argnames,
 func.__name__,
 fs,
 lineno,
)
 return mark(reason=reason)

class ParameterSet(namedtuple("ParameterSet", "values, marks, id")):
 @classmethod
 def param(cls, *values, **kwargs):
 marks = kwargs.pop("marks", ())
 if isinstance(marks, MarkDecorator):
 marks = (marks,)
 else:
 assert isinstance(marks, (tuple, list, set))

 id_ = kwargs.pop("id", None)
 if id_ is not None:
 if not isinstance(id_, six.string_types):
 raise TypeError(
 "Expected id to be a string, got {}: {!r}".format(type(id_), id_)
)
 id_ = ascii_escaped(id_)

 if kwargs:
 warnings.warn(
 PYTEST_PARAM_UNKNOWN_KWARGS.format(args=sorted(kwargs)), stacklevel=3
)
 return cls(values, marks, id_)

 @classmethod
 def extract_from(cls, parameterset, force_tuple=False):
 """
 :param parameterset:
 a legacy style parameterset that may or may not be a tuple,
 and may or may not be wrapped into a mess of mark objects

 :param force_tuple:
 enforce tuple wrapping so single argument tuple values
 don't get decomposed and break tests
 """

 if isinstance(parameterset, cls):
 return parameterset
 if force_tuple:
 return cls.param(parameterset)
 else:
 return cls(parameterset, marks=[], id=None)

 @staticmethod
 def _parse_parametrize_args(argnames, argvalues, *args, **kwargs):
 if not isinstance(argnames, (tuple, list)):
 argnames = [x.strip() for x in argnames.split(",") if x.strip()]
 force_tuple = len(argnames) == 1
 else:
 force_tuple = False
 return argnames, force_tuple

 @staticmethod
 def _parse_parametrize_parameters(argvalues, force_tuple):
 return [
 ParameterSet.extract_from(x, force_tuple=force_tuple) for x in argvalues
]

 @classmethod
 def _for_parametrize(cls, argnames, argvalues, func, config, function_definition):
 argnames, force_tuple = cls._parse_parametrize_args(argnames, argvalues)
 parameters = cls._parse_parametrize_parameters(argvalues, force_tuple)
 del argvalues

 if parameters:
 # check all parameter sets have the correct number of values
 for param in parameters:
 if len(param.values) != len(argnames):
 msg = (
 '{nodeid}: in "parametrize" the number of names ({names_len}):\n'
 " {names}\n"
 "must be equal to the number of values ({values_len}):\n"
 " {values}"
)
 fail(
 msg.format(
 nodeid=function_definition.nodeid,
 values=param.values,
 names=argnames,
 names_len=len(argnames),
 values_len=len(param.values),
),
 pytrace=False,
)
 else:
 # empty parameter set (likely computed at runtime): create a single
 # parameter set with NOTSET values, with the "empty parameter set" mark applied to it
 mark = get_empty_parameterset_mark(config, argnames, func)
 parameters.append(
 ParameterSet(values=(NOTSET,) * len(argnames), marks=[mark], id=None)
)
 return argnames, parameters

[docs]@attr.s(frozen=True)
class Mark(object):
 #: name of the mark
 name = attr.ib(type=str)
 #: positional arguments of the mark decorator
 args = attr.ib() # List[object]
 #: keyword arguments of the mark decorator
 kwargs = attr.ib() # Dict[str, object]

[docs] def combined_with(self, other):
 """
 :param other: the mark to combine with
 :type other: Mark
 :rtype: Mark

 combines by appending args and merging the mappings
 """
 assert self.name == other.name
 return Mark(
 self.name, self.args + other.args, dict(self.kwargs, **other.kwargs)
)

[docs]@attr.s
class MarkDecorator(object):
 """ A decorator for test functions and test classes. When applied
 it will create :class:`MarkInfo` objects which may be
 :ref:`retrieved by hooks as item keywords <excontrolskip>`.
 MarkDecorator instances are often created like this::

 mark1 = pytest.mark.NAME # simple MarkDecorator
 mark2 = pytest.mark.NAME(name1=value) # parametrized MarkDecorator

 and can then be applied as decorators to test functions::

 @mark2
 def test_function():
 pass

 When a MarkDecorator instance is called it does the following:
 1. If called with a single class as its only positional argument and no
 additional keyword arguments, it attaches itself to the class so it
 gets applied automatically to all test cases found in that class.
 2. If called with a single function as its only positional argument and
 no additional keyword arguments, it attaches a MarkInfo object to the
 function, containing all the arguments already stored internally in
 the MarkDecorator.
 3. When called in any other case, it performs a 'fake construction' call,
 i.e. it returns a new MarkDecorator instance with the original
 MarkDecorator's content updated with the arguments passed to this
 call.

 Note: The rules above prevent MarkDecorator objects from storing only a
 single function or class reference as their positional argument with no
 additional keyword or positional arguments.

 """

 mark = attr.ib(validator=attr.validators.instance_of(Mark))

 name = alias("mark.name")
 args = alias("mark.args")
 kwargs = alias("mark.kwargs")

 @property
 def markname(self):
 return self.name # for backward-compat (2.4.1 had this attr)

 def __eq__(self, other):
 return self.mark == other.mark if isinstance(other, MarkDecorator) else False

 def __repr__(self):
 return "<MarkDecorator %r>" % (self.mark,)

[docs] def with_args(self, *args, **kwargs):
 """ return a MarkDecorator with extra arguments added

 unlike call this can be used even if the sole argument is a callable/class

 :return: MarkDecorator
 """

 mark = Mark(self.name, args, kwargs)
 return self.__class__(self.mark.combined_with(mark))

 def __call__(self, *args, **kwargs):
 """ if passed a single callable argument: decorate it with mark info.
 otherwise add *args/**kwargs in-place to mark information. """
 if args and not kwargs:
 func = args[0]
 is_class = inspect.isclass(func)
 if len(args) == 1 and (istestfunc(func) or is_class):
 store_mark(func, self.mark)
 return func
 return self.with_args(*args, **kwargs)

def get_unpacked_marks(obj):
 """
 obtain the unpacked marks that are stored on an object
 """
 mark_list = getattr(obj, "pytestmark", [])
 if not isinstance(mark_list, list):
 mark_list = [mark_list]
 return normalize_mark_list(mark_list)

def normalize_mark_list(mark_list):
 """
 normalizes marker decorating helpers to mark objects

 :type mark_list: List[Union[Mark, Markdecorator]]
 :rtype: List[Mark]
 """
 extracted = [
 getattr(mark, "mark", mark) for mark in mark_list
] # unpack MarkDecorator
 for mark in extracted:
 if not isinstance(mark, Mark):
 raise TypeError("got {!r} instead of Mark".format(mark))
 return [x for x in extracted if isinstance(x, Mark)]

def store_mark(obj, mark):
 """store a Mark on an object
 this is used to implement the Mark declarations/decorators correctly
 """
 assert isinstance(mark, Mark), mark
 # always reassign name to avoid updating pytestmark
 # in a reference that was only borrowed
 obj.pytestmark = get_unpacked_marks(obj) + [mark]

[docs]class MarkGenerator(object):
 """ Factory for :class:`MarkDecorator` objects - exposed as
 a ``pytest.mark`` singleton instance. Example::

 import pytest
 @pytest.mark.slowtest
 def test_function():
 pass

 will set a 'slowtest' :class:`MarkInfo` object
 on the ``test_function`` object. """

 _config = None
 _markers = set()

 def __getattr__(self, name):
 if name[0] == "_":
 raise AttributeError("Marker name must NOT start with underscore")

 if self._config is not None:
 # We store a set of markers as a performance optimisation - if a mark
 # name is in the set we definitely know it, but a mark may be known and
 # not in the set. We therefore start by updating the set!
 if name not in self._markers:
 for line in self._config.getini("markers"):
 # example lines: "skipif(condition): skip the given test if..."
 # or "hypothesis: tests which use Hypothesis", so to get the
 # marker name we split on both `:` and `(`.
 marker = line.split(":")[0].split("(")[0].strip()
 self._markers.add(marker)

 # If the name is not in the set of known marks after updating,
 # then it really is time to issue a warning or an error.
 if name not in self._markers:
 if self._config.option.strict_markers:
 fail(
 "{!r} not found in `markers` configuration option".format(name),
 pytrace=False,
)
 else:
 warnings.warn(
 "Unknown pytest.mark.%s - is this a typo? You can register "
 "custom marks to avoid this warning - for details, see "
 "https://docs.pytest.org/en/latest/mark.html" % name,
 PytestUnknownMarkWarning,
)

 return MarkDecorator(Mark(name, (), {}))

MARK_GEN = MarkGenerator()

class NodeKeywords(MappingMixin):
 def __init__(self, node):
 self.node = node
 self.parent = node.parent
 self._markers = {node.name: True}

 def __getitem__(self, key):
 try:
 return self._markers[key]
 except KeyError:
 if self.parent is None:
 raise
 return self.parent.keywords[key]

 def __setitem__(self, key, value):
 self._markers[key] = value

 def __delitem__(self, key):
 raise ValueError("cannot delete key in keywords dict")

 def __iter__(self):
 seen = self._seen()
 return iter(seen)

 def _seen(self):
 seen = set(self._markers)
 if self.parent is not None:
 seen.update(self.parent.keywords)
 return seen

 def __len__(self):
 return len(self._seen())

 def __repr__(self):
 return "<NodeKeywords for node %s>" % (self.node,)

mypy cannot find this overload, remove when on attrs>=19.2
@attr.s(hash=False, **{ATTRS_EQ_FIELD: False}) # type: ignore
class NodeMarkers(object):
 """
 internal structure for storing marks belonging to a node

 ..warning::

 unstable api

 """

 own_markers = attr.ib(default=attr.Factory(list))

 def update(self, add_markers):
 """update the own markers
 """
 self.own_markers.extend(add_markers)

 def find(self, name):
 """
 find markers in own nodes or parent nodes
 needs a better place
 """
 for mark in self.own_markers:
 if mark.name == name:
 yield mark

 def __iter__(self):
 return iter(self.own_markers)

 Source code for pluggy.callers

"""
Call loop machinery
"""
import sys
import warnings

_py3 = sys.version_info > (3, 0)

if not _py3:
 exec(
 """
def _reraise(cls, val, tb):
 raise cls, val, tb
"""
)

def _raise_wrapfail(wrap_controller, msg):
 co = wrap_controller.gi_code
 raise RuntimeError(
 "wrap_controller at %r %s:%d %s"
 % (co.co_name, co.co_filename, co.co_firstlineno, msg)
)

class HookCallError(Exception):
 """ Hook was called wrongly. """

[docs]class _Result(object):
 def __init__(self, result, excinfo):
 self._result = result
 self._excinfo = excinfo

 @property
 def excinfo(self):
 return self._excinfo

 @property
 def result(self):
 """Get the result(s) for this hook call (DEPRECATED in favor of ``get_result()``)."""
 msg = "Use get_result() which forces correct exception handling"
 warnings.warn(DeprecationWarning(msg), stacklevel=2)
 return self._result

 @classmethod
 def from_call(cls, func):
 __tracebackhide__ = True
 result = excinfo = None
 try:
 result = func()
 except BaseException:
 excinfo = sys.exc_info()

 return cls(result, excinfo)

[docs] def force_result(self, result):
 """Force the result(s) to ``result``.

 If the hook was marked as a ``firstresult`` a single value should
 be set otherwise set a (modified) list of results. Any exceptions
 found during invocation will be deleted.
 """
 self._result = result
 self._excinfo = None

[docs] def get_result(self):
 """Get the result(s) for this hook call.

 If the hook was marked as a ``firstresult`` only a single value
 will be returned otherwise a list of results.
 """
 __tracebackhide__ = True
 if self._excinfo is None:
 return self._result
 else:
 ex = self._excinfo
 if _py3:
 raise ex[1].with_traceback(ex[2])
 _reraise(*ex) # noqa

def _wrapped_call(wrap_controller, func):
 """ Wrap calling to a function with a generator which needs to yield
 exactly once. The yield point will trigger calling the wrapped function
 and return its ``_Result`` to the yield point. The generator then needs
 to finish (raise StopIteration) in order for the wrapped call to complete.
 """
 try:
 next(wrap_controller) # first yield
 except StopIteration:
 _raise_wrapfail(wrap_controller, "did not yield")
 call_outcome = _Result.from_call(func)
 try:
 wrap_controller.send(call_outcome)
 _raise_wrapfail(wrap_controller, "has second yield")
 except StopIteration:
 pass
 return call_outcome.get_result()

class _LegacyMultiCall(object):
 """ execute a call into multiple python functions/methods. """

 # XXX note that the __multicall__ argument is supported only
 # for pytest compatibility reasons. It was never officially
 # supported there and is explicitely deprecated since 2.8
 # so we can remove it soon, allowing to avoid the below recursion
 # in execute() and simplify/speed up the execute loop.

 def __init__(self, hook_impls, kwargs, firstresult=False):
 self.hook_impls = hook_impls
 self.caller_kwargs = kwargs # come from _HookCaller.__call__()
 self.caller_kwargs["__multicall__"] = self
 self.firstresult = firstresult

 def execute(self):
 caller_kwargs = self.caller_kwargs
 self.results = results = []
 firstresult = self.firstresult

 while self.hook_impls:
 hook_impl = self.hook_impls.pop()
 try:
 args = [caller_kwargs[argname] for argname in hook_impl.argnames]
 except KeyError:
 for argname in hook_impl.argnames:
 if argname not in caller_kwargs:
 raise HookCallError(
 "hook call must provide argument %r" % (argname,)
)
 if hook_impl.hookwrapper:
 return _wrapped_call(hook_impl.function(*args), self.execute)
 res = hook_impl.function(*args)
 if res is not None:
 if firstresult:
 return res
 results.append(res)

 if not firstresult:
 return results

 def __repr__(self):
 status = "%d meths" % (len(self.hook_impls),)
 if hasattr(self, "results"):
 status = ("%d results, " % len(self.results)) + status
 return "<_MultiCall %s, kwargs=%r>" % (status, self.caller_kwargs)

def _legacymulticall(hook_impls, caller_kwargs, firstresult=False):
 return _LegacyMultiCall(
 hook_impls, caller_kwargs, firstresult=firstresult
).execute()

def _multicall(hook_impls, caller_kwargs, firstresult=False):
 """Execute a call into multiple python functions/methods and return the
 result(s).

 ``caller_kwargs`` comes from _HookCaller.__call__().
 """
 __tracebackhide__ = True
 results = []
 excinfo = None
 try: # run impl and wrapper setup functions in a loop
 teardowns = []
 try:
 for hook_impl in reversed(hook_impls):
 try:
 args = [caller_kwargs[argname] for argname in hook_impl.argnames]
 except KeyError:
 for argname in hook_impl.argnames:
 if argname not in caller_kwargs:
 raise HookCallError(
 "hook call must provide argument %r" % (argname,)
)

 if hook_impl.hookwrapper:
 try:
 gen = hook_impl.function(*args)
 next(gen) # first yield
 teardowns.append(gen)
 except StopIteration:
 _raise_wrapfail(gen, "did not yield")
 else:
 res = hook_impl.function(*args)
 if res is not None:
 results.append(res)
 if firstresult: # halt further impl calls
 break
 except BaseException:
 excinfo = sys.exc_info()
 finally:
 if firstresult: # first result hooks return a single value
 outcome = _Result(results[0] if results else None, excinfo)
 else:
 outcome = _Result(results, excinfo)

 # run all wrapper post-yield blocks
 for gen in reversed(teardowns):
 try:
 gen.send(outcome)
 _raise_wrapfail(gen, "has second yield")
 except StopIteration:
 pass

 return outcome.get_result()

 Source code for pluggy.manager

import inspect
import sys
from . import _tracing
from .callers import _Result
from .hooks import HookImpl, _HookRelay, _HookCaller, normalize_hookimpl_opts
import warnings

if sys.version_info >= (3, 8):
 from importlib import metadata as importlib_metadata
else:
 import importlib_metadata

def _warn_for_function(warning, function):
 warnings.warn_explicit(
 warning,
 type(warning),
 lineno=function.__code__.co_firstlineno,
 filename=function.__code__.co_filename,
)

class PluginValidationError(Exception):
 """ plugin failed validation.

 :param object plugin: the plugin which failed validation,
 may be a module or an arbitrary object.
 """

 def __init__(self, plugin, message):
 self.plugin = plugin
 super(Exception, self).__init__(message)

class DistFacade(object):
 """Emulate a pkg_resources Distribution"""

 def __init__(self, dist):
 self._dist = dist

 @property
 def project_name(self):
 return self.metadata["name"]

 def __getattr__(self, attr, default=None):
 return getattr(self._dist, attr, default)

 def __dir__(self):
 return sorted(dir(self._dist) + ["_dist", "project_name"])

[docs]class PluginManager(object):
 """ Core :py:class:`.PluginManager` class which manages registration
 of plugin objects and 1:N hook calling.

 You can register new hooks by calling :py:meth:`add_hookspecs(module_or_class)
 <.PluginManager.add_hookspecs>`.
 You can register plugin objects (which contain hooks) by calling
 :py:meth:`register(plugin) <.PluginManager.register>`. The :py:class:`.PluginManager`
 is initialized with a prefix that is searched for in the names of the dict
 of registered plugin objects.

 For debugging purposes you can call :py:meth:`.PluginManager.enable_tracing`
 which will subsequently send debug information to the trace helper.
 """

 def __init__(self, project_name, implprefix=None):
 """If ``implprefix`` is given implementation functions
 will be recognized if their name matches the ``implprefix``. """
 self.project_name = project_name
 self._name2plugin = {}
 self._plugin2hookcallers = {}
 self._plugin_distinfo = []
 self.trace = _tracing.TagTracer().get("pluginmanage")
 self.hook = _HookRelay()
 if implprefix is not None:
 warnings.warn(
 "Support for the `implprefix` arg is now deprecated and will "
 "be removed in an upcoming release. Please use HookimplMarker.",
 DeprecationWarning,
 stacklevel=2,
)
 self._implprefix = implprefix
 self._inner_hookexec = lambda hook, methods, kwargs: hook.multicall(
 methods,
 kwargs,
 firstresult=hook.spec.opts.get("firstresult") if hook.spec else False,
)

 def _hookexec(self, hook, methods, kwargs):
 # called from all hookcaller instances.
 # enable_tracing will set its own wrapping function at self._inner_hookexec
 return self._inner_hookexec(hook, methods, kwargs)

[docs] def register(self, plugin, name=None):
 """ Register a plugin and return its canonical name or ``None`` if the name
 is blocked from registering. Raise a :py:class:`ValueError` if the plugin
 is already registered. """
 plugin_name = name or self.get_canonical_name(plugin)

 if plugin_name in self._name2plugin or plugin in self._plugin2hookcallers:
 if self._name2plugin.get(plugin_name, -1) is None:
 return # blocked plugin, return None to indicate no registration
 raise ValueError(
 "Plugin already registered: %s=%s\n%s"
 % (plugin_name, plugin, self._name2plugin)
)

 # XXX if an error happens we should make sure no state has been
 # changed at point of return
 self._name2plugin[plugin_name] = plugin

 # register matching hook implementations of the plugin
 self._plugin2hookcallers[plugin] = hookcallers = []
 for name in dir(plugin):
 hookimpl_opts = self.parse_hookimpl_opts(plugin, name)
 if hookimpl_opts is not None:
 normalize_hookimpl_opts(hookimpl_opts)
 method = getattr(plugin, name)
 hookimpl = HookImpl(plugin, plugin_name, method, hookimpl_opts)
 hook = getattr(self.hook, name, None)
 if hook is None:
 hook = _HookCaller(name, self._hookexec)
 setattr(self.hook, name, hook)
 elif hook.has_spec():
 self._verify_hook(hook, hookimpl)
 hook._maybe_apply_history(hookimpl)
 hook._add_hookimpl(hookimpl)
 hookcallers.append(hook)
 return plugin_name

 def parse_hookimpl_opts(self, plugin, name):
 method = getattr(plugin, name)
 if not inspect.isroutine(method):
 return
 try:
 res = getattr(method, self.project_name + "_impl", None)
 except Exception:
 res = {}
 if res is not None and not isinstance(res, dict):
 # false positive
 res = None
 # TODO: remove when we drop implprefix in 1.0
 elif res is None and self._implprefix and name.startswith(self._implprefix):
 _warn_for_function(
 DeprecationWarning(
 "The `implprefix` system is deprecated please decorate "
 "this function using an instance of HookimplMarker."
),
 method,
)
 res = {}
 return res

[docs] def unregister(self, plugin=None, name=None):
 """ unregister a plugin object and all its contained hook implementations
 from internal data structures. """
 if name is None:
 assert plugin is not None, "one of name or plugin needs to be specified"
 name = self.get_name(plugin)

 if plugin is None:
 plugin = self.get_plugin(name)

 # if self._name2plugin[name] == None registration was blocked: ignore
 if self._name2plugin.get(name):
 del self._name2plugin[name]

 for hookcaller in self._plugin2hookcallers.pop(plugin, []):
 hookcaller._remove_plugin(plugin)

 return plugin

[docs] def set_blocked(self, name):
 """ block registrations of the given name, unregister if already registered. """
 self.unregister(name=name)
 self._name2plugin[name] = None

[docs] def is_blocked(self, name):
 """ return ``True`` if the given plugin name is blocked. """
 return name in self._name2plugin and self._name2plugin[name] is None

[docs] def add_hookspecs(self, module_or_class):
 """ add new hook specifications defined in the given ``module_or_class``.
 Functions are recognized if they have been decorated accordingly. """
 names = []
 for name in dir(module_or_class):
 spec_opts = self.parse_hookspec_opts(module_or_class, name)
 if spec_opts is not None:
 hc = getattr(self.hook, name, None)
 if hc is None:
 hc = _HookCaller(name, self._hookexec, module_or_class, spec_opts)
 setattr(self.hook, name, hc)
 else:
 # plugins registered this hook without knowing the spec
 hc.set_specification(module_or_class, spec_opts)
 for hookfunction in hc.get_hookimpls():
 self._verify_hook(hc, hookfunction)
 names.append(name)

 if not names:
 raise ValueError(
 "did not find any %r hooks in %r" % (self.project_name, module_or_class)
)

 def parse_hookspec_opts(self, module_or_class, name):
 method = getattr(module_or_class, name)
 return getattr(method, self.project_name + "_spec", None)

[docs] def get_plugins(self):
 """ return the set of registered plugins. """
 return set(self._plugin2hookcallers)

[docs] def is_registered(self, plugin):
 """ Return ``True`` if the plugin is already registered. """
 return plugin in self._plugin2hookcallers

[docs] def get_canonical_name(self, plugin):
 """ Return canonical name for a plugin object. Note that a plugin
 may be registered under a different name which was specified
 by the caller of :py:meth:`register(plugin, name) <.PluginManager.register>`.
 To obtain the name of an registered plugin use :py:meth:`get_name(plugin)
 <.PluginManager.get_name>` instead."""
 return getattr(plugin, "__name__", None) or str(id(plugin))

[docs] def get_plugin(self, name):
 """ Return a plugin or ``None`` for the given name. """
 return self._name2plugin.get(name)

[docs] def has_plugin(self, name):
 """ Return ``True`` if a plugin with the given name is registered. """
 return self.get_plugin(name) is not None

[docs] def get_name(self, plugin):
 """ Return name for registered plugin or ``None`` if not registered. """
 for name, val in self._name2plugin.items():
 if plugin == val:
 return name

 def _verify_hook(self, hook, hookimpl):
 if hook.is_historic() and hookimpl.hookwrapper:
 raise PluginValidationError(
 hookimpl.plugin,
 "Plugin %r\nhook %r\nhistoric incompatible to hookwrapper"
 % (hookimpl.plugin_name, hook.name),
)
 if hook.spec.warn_on_impl:
 _warn_for_function(hook.spec.warn_on_impl, hookimpl.function)
 # positional arg checking
 notinspec = set(hookimpl.argnames) - set(hook.spec.argnames)
 if notinspec:
 raise PluginValidationError(
 hookimpl.plugin,
 "Plugin %r for hook %r\nhookimpl definition: %s\n"
 "Argument(s) %s are declared in the hookimpl but "
 "can not be found in the hookspec"
 % (
 hookimpl.plugin_name,
 hook.name,
 _formatdef(hookimpl.function),
 notinspec,
),
)

[docs] def check_pending(self):
 """ Verify that all hooks which have not been verified against
 a hook specification are optional, otherwise raise :py:class:`.PluginValidationError`."""
 for name in self.hook.__dict__:
 if name[0] != "_":
 hook = getattr(self.hook, name)
 if not hook.has_spec():
 for hookimpl in hook.get_hookimpls():
 if not hookimpl.optionalhook:
 raise PluginValidationError(
 hookimpl.plugin,
 "unknown hook %r in plugin %r"
 % (name, hookimpl.plugin),
)

[docs] def load_setuptools_entrypoints(self, group, name=None):
 """ Load modules from querying the specified setuptools ``group``.

 :param str group: entry point group to load plugins
 :param str name: if given, loads only plugins with the given ``name``.
 :rtype: int
 :return: return the number of loaded plugins by this call.
 """
 count = 0
 for dist in importlib_metadata.distributions():
 for ep in dist.entry_points:
 if (
 ep.group != group
 or (name is not None and ep.name != name)
 # already registered
 or self.get_plugin(ep.name)
 or self.is_blocked(ep.name)
):
 continue
 plugin = ep.load()
 self.register(plugin, name=ep.name)
 self._plugin_distinfo.append((plugin, DistFacade(dist)))
 count += 1
 return count

[docs] def list_plugin_distinfo(self):
 """ return list of distinfo/plugin tuples for all setuptools registered
 plugins. """
 return list(self._plugin_distinfo)

[docs] def list_name_plugin(self):
 """ return list of name/plugin pairs. """
 return list(self._name2plugin.items())

[docs] def get_hookcallers(self, plugin):
 """ get all hook callers for the specified plugin. """
 return self._plugin2hookcallers.get(plugin)

[docs] def add_hookcall_monitoring(self, before, after):
 """ add before/after tracing functions for all hooks
 and return an undo function which, when called,
 will remove the added tracers.

 ``before(hook_name, hook_impls, kwargs)`` will be called ahead
 of all hook calls and receive a hookcaller instance, a list
 of HookImpl instances and the keyword arguments for the hook call.

 ``after(outcome, hook_name, hook_impls, kwargs)`` receives the
 same arguments as ``before`` but also a :py:class:`pluggy.callers._Result` object
 which represents the result of the overall hook call.
 """
 oldcall = self._inner_hookexec

 def traced_hookexec(hook, hook_impls, kwargs):
 before(hook.name, hook_impls, kwargs)
 outcome = _Result.from_call(lambda: oldcall(hook, hook_impls, kwargs))
 after(outcome, hook.name, hook_impls, kwargs)
 return outcome.get_result()

 self._inner_hookexec = traced_hookexec

 def undo():
 self._inner_hookexec = oldcall

 return undo

[docs] def enable_tracing(self):
 """ enable tracing of hook calls and return an undo function. """
 hooktrace = self.trace.root.get("hook")

 def before(hook_name, methods, kwargs):
 hooktrace.root.indent += 1
 hooktrace(hook_name, kwargs)

 def after(outcome, hook_name, methods, kwargs):
 if outcome.excinfo is None:
 hooktrace("finish", hook_name, "-->", outcome.get_result())
 hooktrace.root.indent -= 1

 return self.add_hookcall_monitoring(before, after)

[docs] def subset_hook_caller(self, name, remove_plugins):
 """ Return a new :py:class:`.hooks._HookCaller` instance for the named method
 which manages calls to all registered plugins except the
 ones from remove_plugins. """
 orig = getattr(self.hook, name)
 plugins_to_remove = [plug for plug in remove_plugins if hasattr(plug, name)]
 if plugins_to_remove:
 hc = _HookCaller(
 orig.name, orig._hookexec, orig.spec.namespace, orig.spec.opts
)
 for hookimpl in orig.get_hookimpls():
 plugin = hookimpl.plugin
 if plugin not in plugins_to_remove:
 hc._add_hookimpl(hookimpl)
 # we also keep track of this hook caller so it
 # gets properly removed on plugin unregistration
 self._plugin2hookcallers.setdefault(plugin, []).append(hc)
 return hc
 return orig

if hasattr(inspect, "signature"):

 def _formatdef(func):
 return "%s%s" % (func.__name__, str(inspect.signature(func)))

else:

 def _formatdef(func):
 return "%s%s" % (
 func.__name__,
 inspect.formatargspec(*inspect.getargspec(func)),
)

PROPOSAL: Parametrize with fixtures

Warning

This document outlines a proposal around using fixtures as input
of parametrized tests or fixtures.

Problem

As a user I have functional tests that I would like to run against various
scenarios.

In this particular example we want to generate a new project based on a
cookiecutter template. We want to test default values but also data that
emulates user input.

	use default values

	emulate user input

	specify ‘author’

	specify ‘project_slug’

	specify ‘author’ and ‘project_slug’

This is how a functional test could look like:

import pytest

@pytest.fixture
def default_context():
 return {"extra_context": {}}

@pytest.fixture(
 params=[
 {"author": "alice"},
 {"project_slug": "helloworld"},
 {"author": "bob", "project_slug": "foobar"},
]
)
def extra_context(request):
 return {"extra_context": request.param}

@pytest.fixture(params=["default", "extra"])
def context(request):
 if request.param == "default":
 return request.getfuncargvalue("default_context")
 else:
 return request.getfuncargvalue("extra_context")

def test_generate_project(cookies, context):
 """Call the cookiecutter API to generate a new project from a
 template.
 """
 result = cookies.bake(extra_context=context)

 assert result.exit_code == 0
 assert result.exception is None
 assert result.project.isdir()

Issues

	By using request.getfuncargvalue() we rely on actual fixture function
execution to know what fixtures are involved, due to its dynamic nature

	More importantly, request.getfuncargvalue() cannot be combined with
parametrized fixtures, such as extra_context

	This is very inconvenient if you wish to extend an existing test suite by
certain parameters for fixtures that are already used by tests

pytest version 3.0 reports an error if you try to run above code:

Failed: The requested fixture has no parameter defined for the current
test.

Requested fixture 'extra_context'

Proposed solution

A new function that can be used in modules can be used to dynamically define
fixtures from existing ones.

pytest.define_combined_fixture(
 name="context", fixtures=["default_context", "extra_context"]
)

The new fixture context inherits the scope from the used fixtures and yield
the following values.

	{}

	{'author': 'alice'}

	{'project_slug': 'helloworld'}

	{'author': 'bob', 'project_slug': 'foobar'}

Alternative approach

A new helper function named fixture_request would tell pytest to yield
all parameters marked as a fixture.

Note

The pytest-lazy-fixture [https://pypi.org/project/pytest-lazy-fixture/] plugin implements a very
similar solution to the proposal below, make sure to check it out.

@pytest.fixture(
 params=[
 pytest.fixture_request("default_context"),
 pytest.fixture_request("extra_context"),
]
)
def context(request):
 """Returns all values for ``default_context``, one-by-one before it
 does the same for ``extra_context``.

 request.param:
 - {}
 - {'author': 'alice'}
 - {'project_slug': 'helloworld'}
 - {'author': 'bob', 'project_slug': 'foobar'}
 """
 return request.param

The same helper can be used in combination with pytest.mark.parametrize.

@pytest.mark.parametrize(
 "context, expected_response_code",
 [
 (pytest.fixture_request("default_context"), 0),
 (pytest.fixture_request("extra_context"), 0),
],
)
def test_generate_project(cookies, context, exit_code):
 """Call the cookiecutter API to generate a new project from a
 template.
 """
 result = cookies.bake(extra_context=context)

 assert result.exit_code == exit_code

 _static/up.png

_static/pytest1.png
: "
ytest

_static/up-pressed.png

_static/plus.png

_images/theuni.png
- % theuni
theuni

Switched test runner for #batou to #pytest picked

up everything correctly, no failing tests. Correct
skips. Kudos to (@hpk42 Very impressed.

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/file.png

_static/comment-bright.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Full pytest documentation

 		
 Installation and Getting Started

 		
 Install pytest

 		
 Create your first test

 		
 Run multiple tests

 		
 Assert that a certain exception is raised

 		
 Group multiple tests in a class

 		
 Request a unique temporary directory for functional tests

 		
 Continue reading

 		
 Usage and Invocations

 		
 Calling pytest through python -m pytest

 		
 Possible exit codes

 		
 Getting help on version, option names, environment variables

 		
 Stopping after the first (or N) failures

 		
 Specifying tests / selecting tests

 		
 Modifying Python traceback printing

 		
 Detailed summary report

 		
 Dropping to PDB (Python Debugger) on failures

 		
 Dropping to PDB (Python Debugger) at the start of a test

 		
 Setting breakpoints

 		
 Using the builtin breakpoint function

 		
 Profiling test execution duration

 		
 Creating JUnitXML format files

 		
 record_property

 		
 record_xml_attribute

 		
 record_testsuite_property

 		
 Creating resultlog format files

 		
 Sending test report to online pastebin service

 		
 Early loading plugins

 		
 Disabling plugins

 		
 Calling pytest from Python code

 		
 Using pytest with an existing test suite

 		
 Running an existing test suite with pytest

 		
 The writing and reporting of assertions in tests

 		
 Asserting with the assert statement

 		
 Assertions about expected exceptions

 		
 Assertions about expected warnings

 		
 Making use of context-sensitive comparisons

 		
 Defining your own explanation for failed assertions

 		
 Assertion introspection details

 		
 Assertion rewriting caches files on disk

 		
 Disabling assert rewriting

 		
 pytest fixtures: explicit, modular, scalable

 		
 Fixtures as Function arguments

 		
 Fixtures: a prime example of dependency injection

 		
 conftest.py: sharing fixture functions

 		
 Sharing test data

 		
 Scope: sharing a fixture instance across tests in a class, module or session

 		
 package scope (experimental)

 		
 Higher-scoped fixtures are instantiated first

 		
 Fixture finalization / executing teardown code

 		
 Fixtures can introspect the requesting test context

 		
 Factories as fixtures

 		
 Parametrizing fixtures

 		
 Using marks with parametrized fixtures

 		
 Modularity: using fixtures from a fixture function

 		
 Automatic grouping of tests by fixture instances

 		
 Using fixtures from classes, modules or projects

 		
 Autouse fixtures (xUnit setup on steroids)

 		
 Overriding fixtures on various levels

 		
 Override a fixture on a folder (conftest) level

 		
 Override a fixture on a test module level

 		
 Override a fixture with direct test parametrization

 		
 Override a parametrized fixture with non-parametrized one and vice versa

 		
 Marking test functions with attributes

 		
 Registering marks

 		
 Raising errors on unknown marks

 		
 Monkeypatching/mocking modules and environments

 		
 Simple example: monkeypatching functions

 		
 Global patch example: preventing “requests” from remote operations

 		
 Monkeypatching environment variables

 		
 API Reference

 		
 Temporary directories and files

 		
 The tmp_path fixture

 		
 The tmp_path_factory fixture

 		
 The ‘tmpdir’ fixture

 		
 The ‘tmpdir_factory’ fixture

 		
 The default base temporary directory

 		
 Capturing of the stdout/stderr output

 		
 Default stdout/stderr/stdin capturing behaviour

 		
 Setting capturing methods or disabling capturing

 		
 Using print statements for debugging

 		
 Accessing captured output from a test function

 		
 Warnings Capture

 		
 @pytest.mark.filterwarnings

 		
 Disabling warnings summary

 		
 Disabling warning capture entirely

 		
 DeprecationWarning and PendingDeprecationWarning

 		
 Ensuring code triggers a deprecation warning

 		
 Asserting warnings with the warns function

 		
 Recording warnings

 		
 Custom failure messages

 		
 Internal pytest warnings

 		
 Doctest integration for modules and test files

 		
 Encoding

 		
 Using ‘doctest’ options

 		
 Output format

 		
 pytest-specific features

 		
 Using fixtures

 		
 ‘doctest_namespace’ fixture

 		
 Skipping tests dynamically

 		
 Skip and xfail: dealing with tests that cannot succeed

 		
 Skipping test functions

 		
 skipif

 		
 Skip all test functions of a class or module

 		
 Skipping files or directories

 		
 Skipping on a missing import dependency

 		
 Summary

 		
 XFail: mark test functions as expected to fail

 		
 strict parameter

 		
 reason parameter

 		
 raises parameter

 		
 run parameter

 		
 Ignoring xfail

 		
 Examples

 		
 Skip/xfail with parametrize

 		
 Parametrizing fixtures and test functions

 		
 @pytest.mark.parametrize: parametrizing test functions

 		
 Basic pytest_generate_tests example

 		
 More examples

 		
 Cache: working with cross-testrun state

 		
 Usage

 		
 Rerunning only failures or failures first

 		
 Behavior when no tests failed in the last run

 		
 The new config.cache object

 		
 Inspecting Cache content

 		
 Clearing Cache content

 		
 Stepwise

 		
 unittest.TestCase Support

 		
 Benefits out of the box

 		
 pytest features in unittest.TestCase subclasses

 		
 Mixing pytest fixtures into unittest.TestCase subclasses using marks

 		
 Using autouse fixtures and accessing other fixtures

 		
 Running tests written for nose

 		
 Usage

 		
 Supported nose Idioms

 		
 Unsupported idioms / known issues

 		
 classic xunit-style setup

 		
 Module level setup/teardown

 		
 Class level setup/teardown

 		
 Method and function level setup/teardown

 		
 Installing and Using plugins

 		
 Requiring/Loading plugins in a test module or conftest file

 		
 Finding out which plugins are active

 		
 Deactivating / unregistering a plugin by name

 		
 Writing plugins

 		
 Plugin discovery order at tool startup

 		
 conftest.py: local per-directory plugins

 		
 Writing your own plugin

 		
 Making your plugin installable by others

 		
 Assertion Rewriting

 		
 Requiring/Loading plugins in a test module or conftest file

 		
 Accessing another plugin by name

 		
 Registering custom markers

 		
 Testing plugins

 		
 Writing hook functions

 		
 hook function validation and execution

 		
 firstresult: stop at first non-None result

 		
 hookwrapper: executing around other hooks

 		
 Hook function ordering / call example

 		
 Declaring new hooks

 		
 Optionally using hooks from 3rd party plugins

 		
 Logging

 		
 caplog fixture

 		
 Live Logs

 		
 Release notes

 		
 Incompatible changes in pytest 3.4

 		
 Reference

 		
 Functions

 		
 pytest.approx

 		
 pytest.fail

 		
 pytest.skip

 		
 pytest.importorskip

 		
 pytest.xfail

 		
 pytest.exit

 		
 pytest.main

 		
 pytest.param

 		
 pytest.raises

 		
 pytest.deprecated_call

 		
 pytest.register_assert_rewrite

 		
 pytest.warns

 		
 pytest.freeze_includes

 		
 Marks

 		
 pytest.mark.filterwarnings

 		
 pytest.mark.parametrize

 		
 pytest.mark.skip

 		
 pytest.mark.skipif

 		
 pytest.mark.usefixtures

 		
 pytest.mark.xfail

 		
 custom marks

 		
 Fixtures

 		
 @pytest.fixture

 		
 config.cache

 		
 capsys

 		
 capsysbinary

 		
 capfd

 		
 capfdbinary

 		
 doctest_namespace

 		
 request

 		
 pytestconfig

 		
 record_property

 		
 record_testsuite_property

 		
 caplog

 		
 monkeypatch

 		
 testdir

 		
 recwarn

 		
 tmp_path

 		
 tmp_path_factory

 		
 tmpdir

 		
 tmpdir_factory

 		
 Hooks

 		
 Bootstrapping hooks

 		
 Initialization hooks

 		
 Test running hooks

 		
 Collection hooks

 		
 Reporting hooks

 		
 Debugging/Interaction hooks

 		
 Objects

 		
 CallInfo

 		
 Class

 		
 Collector

 		
 Config

 		
 ExceptionInfo

 		
 FixtureDef

 		
 FSCollector

 		
 Function

 		
 Item

 		
 MarkDecorator

 		
 MarkGenerator

 		
 Mark

 		
 Metafunc

 		
 Module

 		
 Node

 		
 Parser

 		
 PluginManager

 		
 PytestPluginManager

 		
 Session

 		
 TestReport

 		
 _Result

 		
 Special Variables

 		
 collect_ignore

 		
 collect_ignore_glob

 		
 pytest_plugins

 		
 pytest_mark

 		
 PYTEST_DONT_REWRITE (module docstring)

 		
 Environment Variables

 		
 PYTEST_ADDOPTS

 		
 PYTEST_DEBUG

 		
 PYTEST_PLUGINS

 		
 PYTEST_DISABLE_PLUGIN_AUTOLOAD

 		
 PYTEST_CURRENT_TEST

 		
 Configuration Options

 		
 Good Integration Practices

 		
 Install package with pip

 		
 Conventions for Python test discovery

 		
 Choosing a test layout / import rules

 		
 Tests outside application code

 		
 Tests as part of application code

 		
 tox

 		
 Integrating with setuptools / python setup.py test / pytest-runner

 		
 Manual Integration

 		
 Flaky tests

 		
 Why flaky tests are a problem

 		
 Potential root causes

 		
 System state

 		
 Overly strict assertion

 		
 Pytest features

 		
 Xfail strict

 		
 PYTEST_CURRENT_TEST

 		
 Plugins

 		
 Other general strategies

 		
 Split up test suites

 		
 Video/screenshot on failure

 		
 Delete or rewrite the test

 		
 Quarantine

 		
 CI tools that rerun on failure

 		
 Research

 		
 Resources

 		
 pytest import mechanisms and sys.path/PYTHONPATH

 		
 Test modules / conftest.py files inside packages

 		
 Standalone test modules / conftest.py files

 		
 Invoking pytest versus python -m pytest

 		
 Configuration

 		
 Command line options and configuration file settings

 		
 Initialization: determining rootdir and inifile

 		
 Finding the rootdir

 		
 How to change command line options defaults

 		
 Builtin configuration file options

 		
 Examples and customization tricks

 		
 Demo of Python failure reports with pytest

 		
 Basic patterns and examples

 		
 Pass different values to a test function, depending on command line options

 		
 Dynamically adding command line options

 		
 Control skipping of tests according to command line option

 		
 Writing well integrated assertion helpers

 		
 Detect if running from within a pytest run

 		
 Adding info to test report header

 		
 profiling test duration

 		
 incremental testing - test steps

 		
 Package/Directory-level fixtures (setups)

 		
 post-process test reports / failures

 		
 Making test result information available in fixtures

 		
 PYTEST_CURRENT_TEST environment variable

 		
 Freezing pytest

 		
 Parametrizing tests

 		
 Generating parameters combinations, depending on command line

 		
 Different options for test IDs

 		
 A quick port of “testscenarios”

 		
 Deferring the setup of parametrized resources

 		
 Apply indirect on particular arguments

 		
 Parametrizing test methods through per-class configuration

 		
 Indirect parametrization with multiple fixtures

 		
 Indirect parametrization of optional implementations/imports

 		
 Set marks or test ID for individual parametrized test

 		
 Parametrizing conditional raising

 		
 Working with custom markers

 		
 Marking test functions and selecting them for a run

 		
 Selecting tests based on their node ID

 		
 Using -k expr to select tests based on their name

 		
 Registering markers

 		
 Marking whole classes or modules

 		
 Marking individual tests when using parametrize

 		
 Custom marker and command line option to control test runs

 		
 Passing a callable to custom markers

 		
 Reading markers which were set from multiple places

 		
 marking platform specific tests with pytest

 		
 Automatically adding markers based on test names

 		
 A session-fixture which can look at all collected tests

 		
 Changing standard (Python) test discovery

 		
 Ignore paths during test collection

 		
 Deselect tests during test collection

 		
 Keeping duplicate paths specified from command line

 		
 Changing directory recursion

 		
 Changing naming conventions

 		
 Interpreting cmdline arguments as Python packages

 		
 Finding out what is collected

 		
 Customizing test collection

 		
 Working with non-python tests

 		
 A basic example for specifying tests in Yaml files

 		
 Setting up bash completion

 		
 Backwards Compatibility Policy

 		
 Deprecation Roadmap

 		
 Deprecations and Removals

 		
 Deprecated Features

 		
 “message” parameter of pytest.raises

 		
 pytest.config global

 		
 raises / warns with a string as the second argument

 		
 Result log (–result-log)

 		
 Removed Features

 		
 Using Class in custom Collectors

 		
 marks in pytest.mark.parametrize

 		
 pytest_funcarg__ prefix

 		
 [pytest] section in setup.cfg files

 		
 Metafunc.addcall

 		
 cached_setup

 		
 pytest_plugins in non-top-level conftest files

 		
 Config.warn and Node.warn

 		
 record_xml_property

 		
 Passing command-line string to pytest.main()

 		
 Calling fixtures directly

 		
 yield tests

 		
 Internal classes accessed through Node

 		
 Node.get_marker

 		
 somefunction.markname

 		
 pytest_namespace

 		
 Reinterpretation mode (–assert=reinterp)

 		
 Removed command-line options

 		
 py.test-X* entry points

 		
 Python 2.7 and 3.4 support plan

 		
 Historical Notes

 		
 Marker revamp and iteration

 		
 Updating code

 		
 Related issues

 		
 cache plugin integrated into the core

 		
 funcargs and pytest_funcarg__

 		
 @pytest.yield_fixture decorator

 		
 [pytest] header in setup.cfg

 		
 Applying marks to @pytest.mark.parametrize parameters

 		
 @pytest.mark.parametrize argument names as a tuple

 		
 setup: is now an “autouse fixture”

 		
 Conditions as strings instead of booleans

 		
 pytest.set_trace()

 		
 “compat” properties

 		
 License

 		
 Contribution getting started

 		
 Feature requests and feedback

 		
 Report bugs

 		
 Fix bugs

 		
 Implement features

 		
 Write documentation

 		
 Submitting Plugins to pytest-dev

 		
 Preparing Pull Requests

 		
 Short version

 		
 Long version

 		
 Writing Tests

 		
 Joining the Development Team

 		
 Development Guide

 		
 Code Style

 		
 Branches

 		
 Issues

 		
 Temporary labels

 		
 Release Procedure

 		
 Talks and Tutorials

 		
 Books

 		
 Talks and blog postings

 		
 Project examples

 		
 Some organisations using pytest

 		
 Some Issues and Questions

 		
 On naming, nosetests, licensing and magic

 		
 How does pytest relate to nose and unittest?

 		
 how does pytest relate to twisted’s trial?

 		
 how does pytest work with Django?

 		
 What’s this “magic” with pytest? (historic notes)

 		
 Why can I use both pytest and py.test commands?

 		
 pytest fixtures, parametrized tests

 		
 Is using pytest fixtures versus xUnit setup a style question?

 		
 Can I yield multiple values from a fixture function?

 		
 pytest interaction with other packages

 		
 Issues with pytest, multiprocess and setuptools?

 		
 Contact channels

 		
 Tidelift

 		
 What is it

 		
 Funds

 		
 Admins

 		
 Release announcements

 		
 pytest-4.6.11

 		
 pytest-4.6.10

 		
 pytest-4.6.9

 		
 pytest-4.6.8

 		
 pytest-4.6.7

 		
 pytest-4.6.6

 		
 pytest-4.6.5

 		
 pytest-4.6.4

 		
 pytest-4.6.3

 		
 pytest-4.6.2

 		
 pytest-4.6.1

 		
 pytest-4.6.0

 		
 pytest-4.5.0

 		
 pytest-4.4.2

 		
 pytest-4.4.1

 		
 pytest-4.4.0

 		
 pytest-4.3.1

 		
 pytest-4.3.0

 		
 pytest-4.2.1

 		
 pytest-4.2.0

 		
 pytest-4.1.1

 		
 pytest-4.1.0

 		
 pytest-4.0.2

 		
 pytest-4.0.1

 		
 pytest-4.0.0

 		
 pytest-3.10.1

 		
 pytest-3.10.0

 		
 pytest-3.9.3

 		
 pytest-3.9.2

 		
 pytest-3.9.1

 		
 pytest-3.9.0

 		
 pytest-3.8.2

 		
 pytest-3.8.1

 		
 pytest-3.8.0

 		
 pytest-3.7.4

 		
 pytest-3.7.3

 		
 pytest-3.7.2

 		
 pytest-3.7.1

 		
 pytest-3.7.0

 		
 pytest-3.6.4

 		
 pytest-3.6.3

 		
 pytest-3.6.2

 		
 pytest-3.6.1

 		
 pytest-3.6.0

 		
 pytest-3.5.1

 		
 pytest-3.5.0

 		
 pytest-3.4.2

 		
 pytest-3.4.1

 		
 pytest-3.4.0

 		
 pytest-3.3.2

 		
 pytest-3.3.1

 		
 pytest-3.3.0

 		
 pytest-3.2.5

 		
 pytest-3.2.4

 		
 pytest-3.2.3

 		
 pytest-3.2.2

 		
 pytest-3.2.1

 		
 pytest-3.2.0

 		
 pytest-3.1.3

 		
 pytest-3.1.2

 		
 pytest-3.1.1

 		
 pytest-3.1.0

 		
 pytest-3.0.7

 		
 pytest-3.0.6

 		
 pytest-3.0.5

 		
 pytest-3.0.4

 		
 pytest-3.0.3

 		
 pytest-3.0.2

 		
 pytest-3.0.1

 		
 pytest-3.0.0

 		
 python testing sprint June 20th-26th 2016

 		
 Participants

 		
 Sprint organisation, schedule

 		
 Money / funding

 		
 pytest-2.9.2

 		
 2.9.2 (compared to 2.9.1)

 		
 pytest-2.9.1

 		
 2.9.1 (compared to 2.9.0)

 		
 pytest-2.9.0

 		
 2.9.0 (compared to 2.8.7)

 		
 pytest-2.8.7

 		
 2.8.7 (compared to 2.8.6)

 		
 pytest-2.8.6

 		
 2.8.6 (compared to 2.8.5)

 		
 pytest-2.8.5

 		
 2.8.5 (compared to 2.8.4)

 		
 pytest-2.8.4

 		
 2.8.4 (compared to 2.8.3)

 		
 pytest-2.8.3: bug fixes

 		
 2.8.3 (compared to 2.8.2)

 		
 pytest-2.8.2: bug fixes

 		
 2.8.2 (compared to 2.7.2)

 		
 pytest-2.7.2: bug fixes

 		
 2.7.2 (compared to 2.7.1)

 		
 pytest-2.7.1: bug fixes

 		
 2.7.1 (compared to 2.7.0)

 		
 pytest-2.7.0: fixes, features, speed improvements

 		
 2.7.0 (compared to 2.6.4)

 		
 pytest-2.6.3: fixes and little improvements

 		
 Changes 2.6.3

 		
 pytest-2.6.2: few fixes and cx_freeze support

 		
 2.6.2

 		
 pytest-2.6.1: fixes and new xfail feature

 		
 Changes 2.6.1

 		
 pytest-2.6.0: shorter tracebacks, new warning system, test runner compat

 		
 2.6.0

 		
 pytest-2.5.2: fixes

 		
 2.5.2

 		
 pytest-2.5.1: fixes and new home page styling

 		
 2.5.1

 		
 pytest-2.5.0: now down to ZERO reported bugs!

 		
 2.5.0

 		
 pytest-2.4.2: colorama on windows, plugin/tmpdir fixes

 		
 pytest-2.4.1: fixing three regressions compared to 2.3.5

 		
 pytest-2.4.0: new fixture features/hooks and bug fixes

 		
 Changes between 2.3.5 and 2.4

 		
 pytest-2.3.5: bug fixes and little improvements

 		
 Changes between 2.3.4 and 2.3.5

 		
 pytest-2.3.4: stabilization, more flexible selection via “-k expr”

 		
 pytest-2.3.3: integration fixes, py24 support, */** shown in traceback

 		
 Changes between 2.3.2 and 2.3.3

 		
 pytest-2.3.2: some fixes and more traceback-printing speed

 		
 Changes between 2.3.1 and 2.3.2

 		
 pytest-2.3.1: fix regression with factory functions

 		
 Changes between 2.3.0 and 2.3.1

 		
 pytest-2.3: improved fixtures / better unittest integration

 		
 Changes between 2.2.4 and 2.3.0

 		
 pytest-2.2.4: bug fixes, better junitxml/unittest/python3 compat

 		
 Changes between 2.2.3 and 2.2.4

 		
 pytest-2.2.2: bug fixes

 		
 Changes between 2.2.1 and 2.2.2

 		
 pytest-2.2.1: bug fixes, perfect teardowns

 		
 Changes between 2.2.0 and 2.2.1

 		
 py.test 2.2.0: test marking++, parametrization++ and duration profiling

 		
 notes on incompatibility

 		
 Changes between 2.1.3 and 2.2.0

 		
 py.test 2.1.3: just some more fixes

 		
 Changes between 2.1.2 and 2.1.3

 		
 py.test 2.1.2: bug fixes and fixes for jython

 		
 Changes between 2.1.1 and 2.1.2

 		
 py.test 2.1.1: assertion fixes and improved junitxml output

 		
 Changes between 2.1.0 and 2.1.1

 		
 py.test 2.1.0: perfected assertions and bug fixes

 		
 Changes between 2.0.3 and 2.1.0

 		
 py.test 2.0.3: bug fixes and speed ups

 		
 Changes between 2.0.2 and 2.0.3

 		
 py.test 2.0.2: bug fixes, improved xfail/skip expressions, speed ups

 		
 Changes between 2.0.1 and 2.0.2

 		
 py.test 2.0.1: bug fixes

 		
 Changes between 2.0.0 and 2.0.1

 		
 py.test 2.0.0: asserts++, unittest++, reporting++, config++, docs++

 		
 New Features

 		
 Fixes

 		
 Important Notes

 		
 (Incompatible) Removals

_images/cramer2.png
E David Cramer
zeeq

Converting all my projects to py.test. Not sure
why it took me so long. /cc @hpk42

_images/keleshev.png
Vladimir Keleshev
keleshev

Seriously, #pytest is among my top-5 reasons to
use #python.

_images/freiburg2.jpg

_images/gaynor3.png
J’“ Alex Gaynor
alex_gaynor

py.test is pretty much the best thing ever. Not
entirely sure why you'd use anything else.

