
pytest Documentation
Release 4.6

holger krekel, trainer and consultant, http://merlinux.eu

Nov 25, 2020





Contents

1 Installation and Getting Started 3
1.1 Install pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Create your first test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Run multiple tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Assert that a certain exception is raised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Group multiple tests in a class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Request a unique temporary directory for functional tests . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Continue reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Usage and Invocations 7
2.1 Calling pytest through python -m pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Possible exit codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Getting help on version, option names, environment variables . . . . . . . . . . . . . . . . . . . . . 7
2.4 Stopping after the first (or N) failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Specifying tests / selecting tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Modifying Python traceback printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Detailed summary report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Dropping to PDB (Python Debugger) on failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.9 Dropping to PDB (Python Debugger) at the start of a test . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10 Setting breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.11 Using the builtin breakpoint function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.12 Profiling test execution duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.13 Creating JUnitXML format files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.14 Creating resultlog format files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.15 Sending test report to online pastebin service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.16 Early loading plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.17 Disabling plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.18 Calling pytest from Python code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Using pytest with an existing test suite 19
3.1 Running an existing test suite with pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 The writing and reporting of assertions in tests 21
4.1 Asserting with the assert statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Assertions about expected exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Assertions about expected warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Making use of context-sensitive comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



4.5 Defining your own explanation for failed assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Assertion introspection details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 pytest fixtures: explicit, modular, scalable 27
5.1 Fixtures as Function arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Fixtures: a prime example of dependency injection . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 conftest.py: sharing fixture functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Sharing test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Scope: sharing a fixture instance across tests in a class, module or session . . . . . . . . . . . . . . . 29
5.6 Higher-scoped fixtures are instantiated first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Fixture finalization / executing teardown code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8 Fixtures can introspect the requesting test context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.9 Factories as fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.10 Parametrizing fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.11 Using marks with parametrized fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.12 Modularity: using fixtures from a fixture function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.13 Automatic grouping of tests by fixture instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.14 Using fixtures from classes, modules or projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.15 Autouse fixtures (xUnit setup on steroids) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.16 Overriding fixtures on various levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Marking test functions with attributes 47
6.1 Registering marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Raising errors on unknown marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Monkeypatching/mocking modules and environments 49
7.1 Simple example: monkeypatching functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Global patch example: preventing “requests” from remote operations . . . . . . . . . . . . . . . . . 49
7.3 Monkeypatching environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Temporary directories and files 53
8.1 The tmp_path fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 The tmp_path_factory fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.3 The ‘tmpdir’ fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.4 The ‘tmpdir_factory’ fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.5 The default base temporary directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9 Capturing of the stdout/stderr output 57
9.1 Default stdout/stderr/stdin capturing behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2 Setting capturing methods or disabling capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.3 Using print statements for debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.4 Accessing captured output from a test function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10 Warnings Capture 61
10.1 @pytest.mark.filterwarnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.2 Disabling warnings summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.3 Disabling warning capture entirely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.4 DeprecationWarning and PendingDeprecationWarning . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.5 Ensuring code triggers a deprecation warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.6 Asserting warnings with the warns function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.7 Recording warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.8 Custom failure messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.9 Internal pytest warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ii



11 Doctest integration for modules and test files 69
11.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.2 Using ‘doctest’ options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.3 Output format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.4 pytest-specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12 Skip and xfail: dealing with tests that cannot succeed 73
12.1 Skipping test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12.2 XFail: mark test functions as expected to fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
12.3 Skip/xfail with parametrize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

13 Parametrizing fixtures and test functions 81
13.1 @pytest.mark.parametrize: parametrizing test functions . . . . . . . . . . . . . . . . . . . 81
13.2 Basic pytest_generate_tests example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
13.3 More examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

14 Cache: working with cross-testrun state 85
14.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
14.2 Rerunning only failures or failures first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
14.3 Behavior when no tests failed in the last run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
14.4 The new config.cache object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
14.5 Inspecting Cache content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
14.6 Clearing Cache content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
14.7 Stepwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

15 unittest.TestCase Support 91
15.1 Benefits out of the box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
15.2 pytest features in unittest.TestCase subclasses . . . . . . . . . . . . . . . . . . . . . . . . . 92
15.3 Mixing pytest fixtures into unittest.TestCase subclasses using marks . . . . . . . . . . . . . 92
15.4 Using autouse fixtures and accessing other fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

16 Running tests written for nose 97
16.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
16.2 Supported nose Idioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
16.3 Unsupported idioms / known issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

17 classic xunit-style setup 99
17.1 Module level setup/teardown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
17.2 Class level setup/teardown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
17.3 Method and function level setup/teardown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

18 Installing and Using plugins 101
18.1 Requiring/Loading plugins in a test module or conftest file . . . . . . . . . . . . . . . . . . . . . . . 102
18.2 Finding out which plugins are active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
18.3 Deactivating / unregistering a plugin by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

19 Writing plugins 103
19.1 Plugin discovery order at tool startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
19.2 conftest.py: local per-directory plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
19.3 Writing your own plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
19.4 Making your plugin installable by others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
19.5 Assertion Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
19.6 Requiring/Loading plugins in a test module or conftest file . . . . . . . . . . . . . . . . . . . . . . . 106
19.7 Accessing another plugin by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
19.8 Registering custom markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

iii



19.9 Testing plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

20 Writing hook functions 111
20.1 hook function validation and execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
20.2 firstresult: stop at first non-None result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
20.3 hookwrapper: executing around other hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
20.4 Hook function ordering / call example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
20.5 Declaring new hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
20.6 Optionally using hooks from 3rd party plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

21 Logging 115
21.1 caplog fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
21.2 Live Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
21.3 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
21.4 Incompatible changes in pytest 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

22 Reference 119
22.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
22.2 Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
22.3 Fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
22.4 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
22.5 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
22.6 Special Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
22.7 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
22.8 Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

23 Good Integration Practices 175
23.1 Install package with pip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
23.2 Conventions for Python test discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
23.3 Choosing a test layout / import rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
23.4 tox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
23.5 Integrating with setuptools / python setup.py test / pytest-runner . . . . . . . . . . . 178

24 Flaky tests 181
24.1 Why flaky tests are a problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
24.2 Potential root causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
24.3 Pytest features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
24.4 Other general strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
24.5 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
24.6 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

25 pytest import mechanisms and sys.path/PYTHONPATH 185
25.1 Test modules / conftest.py files inside packages . . . . . . . . . . . . . . . . . . . . . . . . . . 185
25.2 Standalone test modules / conftest.py files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
25.3 Invoking pytest versus python -m pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

26 Configuration 187
26.1 Command line options and configuration file settings . . . . . . . . . . . . . . . . . . . . . . . . . . 187
26.2 Initialization: determining rootdir and inifile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
26.3 How to change command line options defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
26.4 Builtin configuration file options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

27 Examples and customization tricks 191
27.1 Demo of Python failure reports with pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
27.2 Basic patterns and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

iv



27.3 Parametrizing tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
27.4 Working with custom markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
27.5 A session-fixture which can look at all collected tests . . . . . . . . . . . . . . . . . . . . . . . . . . 240
27.6 Changing standard (Python) test discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
27.7 Working with non-python tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

28 Setting up bash completion 249

29 Backwards Compatibility Policy 251
29.1 Deprecation Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

30 Deprecations and Removals 253
30.1 Deprecated Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
30.2 Removed Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

31 Python 2.7 and 3.4 support plan 263

32 Historical Notes 265
32.1 Marker revamp and iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
32.2 cache plugin integrated into the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
32.3 funcargs and pytest_funcarg__ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
32.4 @pytest.yield_fixture decorator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
32.5 [pytest] header in setup.cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
32.6 Applying marks to @pytest.mark.parametrize parameters . . . . . . . . . . . . . . . . . . 267
32.7 @pytest.mark.parametrize argument names as a tuple . . . . . . . . . . . . . . . . . . . . 268
32.8 setup: is now an “autouse fixture” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
32.9 Conditions as strings instead of booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
32.10 pytest.set_trace() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
32.11 “compat” properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

33 License 271

34 Contribution getting started 273
34.1 Feature requests and feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
34.2 Report bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
34.3 Fix bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
34.4 Implement features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
34.5 Write documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
34.6 Submitting Plugins to pytest-dev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
34.7 Preparing Pull Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
34.8 Writing Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
34.9 Joining the Development Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

35 Development Guide 279
35.1 Code Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
35.2 Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
35.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
35.4 Release Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

36 Talks and Tutorials 283
36.1 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
36.2 Talks and blog postings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

37 Project examples 287
37.1 Some organisations using pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

v



38 Some Issues and Questions 289
38.1 On naming, nosetests, licensing and magic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
38.2 pytest fixtures, parametrized tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
38.3 pytest interaction with other packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

39 Contact channels 293

40 Tidelift 295
40.1 What is it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
40.2 Funds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
40.3 Admins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Index 297

vi



pytest Documentation, Release 4.6

Download latest version as PDF

Contents 1

https://media.readthedocs.org/pdf/pytest/latest/pytest.pdf


pytest Documentation, Release 4.6

2 Contents



CHAPTER 1

Installation and Getting Started

Pythons: Python 2.7, 3.4, 3.5, 3.6, 3.7, Jython, PyPy-2.3

Platforms: Unix/Posix and Windows

PyPI package name: pytest

Documentation as PDF: download latest

pytest is a framework that makes building simple and scalable tests easy. Tests are expressive and readable—no
boilerplate code required. Get started in minutes with a small unit test or complex functional test for your application
or library.

1.1 Install pytest

1. Run the following command in your command line:

pip install -U pytest

2. Check that you installed the correct version:

$ pytest --version
This is pytest version 4.x.y, imported from $PYTHON_PREFIX/lib/python3.7/site-
→˓packages/pytest.py

1.2 Create your first test

Create a simple test function with just four lines of code:

# content of test_sample.py
def func(x):

return x + 1

(continues on next page)

3

https://pypi.org/project/pytest/
https://media.readthedocs.org/pdf/pytest/latest/pytest.pdf


pytest Documentation, Release 4.6

(continued from previous page)

def test_answer():
assert func(3) == 5

That’s it. You can now execute the test function:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_sample.py F [100%]

================================= FAILURES =================================
_______________________________ test_answer ________________________________

def test_answer():
> assert func(3) == 5
E assert 4 == 5
E + where 4 = func(3)

test_sample.py:5: AssertionError
========================= 1 failed in 0.12 seconds =========================

This test returns a failure report because func(3) does not return 5.

Note: You can use the assert statement to verify test expectations. pytest’s Advanced assertion introspection will
intelligently report intermediate values of the assert expression so you can avoid the many names of JUnit legacy
methods.

1.3 Run multiple tests

pytest will run all files of the form test_*.py or *_test.py in the current directory and its subdirectories. More
generally, it follows standard test discovery rules.

1.4 Assert that a certain exception is raised

Use the raises helper to assert that some code raises an exception:

# content of test_sysexit.py
import pytest
def f():

raise SystemExit(1)

def test_mytest():
with pytest.raises(SystemExit):

f()

Execute the test function with “quiet” reporting mode:

4 Chapter 1. Installation and Getting Started

http://docs.python.org/reference/simple_stmts.html#the-assert-statement
http://docs.python.org/library/unittest.html#test-cases
http://docs.python.org/library/unittest.html#test-cases


pytest Documentation, Release 4.6

$ pytest -q test_sysexit.py
. [100%]
1 passed in 0.12 seconds

1.5 Group multiple tests in a class

Once you develop multiple tests, you may want to group them into a class. pytest makes it easy to create a class
containing more than one test:

# content of test_class.py
class TestClass(object):

def test_one(self):
x = "this"
assert 'h' in x

def test_two(self):
x = "hello"
assert hasattr(x, 'check')

pytest discovers all tests following its Conventions for Python test discovery, so it finds both test_ prefixed
functions. There is no need to subclass anything. We can simply run the module by passing its filename:

$ pytest -q test_class.py
.F [100%]
================================= FAILURES =================================
____________________________ TestClass.test_two ____________________________

self = <test_class.TestClass object at 0xdeadbeef>

def test_two(self):
x = "hello"

> assert hasattr(x, 'check')
E AssertionError: assert False
E + where False = hasattr('hello', 'check')

test_class.py:8: AssertionError
1 failed, 1 passed in 0.12 seconds

The first test passed and the second failed. You can easily see the intermediate values in the assertion to help you
understand the reason for the failure.

1.6 Request a unique temporary directory for functional tests

pytest provides Builtin fixtures/function arguments to request arbitrary resources, like a unique temporary directory:

# content of test_tmpdir.py
def test_needsfiles(tmpdir):

print(tmpdir)
assert 0

List the name tmpdir in the test function signature and pytest will lookup and call a fixture factory to create the
resource before performing the test function call. Before the test runs, pytest creates a unique-per-test-invocation
temporary directory:

1.5. Group multiple tests in a class 5

https://docs.pytest.org/en/latest/builtin.html#builtinfixtures


pytest Documentation, Release 4.6

$ pytest -q test_tmpdir.py
F [100%]
================================= FAILURES =================================
_____________________________ test_needsfiles ______________________________

tmpdir = local('PYTEST_TMPDIR/test_needsfiles0')

def test_needsfiles(tmpdir):
print(tmpdir)

> assert 0
E assert 0

test_tmpdir.py:3: AssertionError
--------------------------- Captured stdout call ---------------------------
PYTEST_TMPDIR/test_needsfiles0
1 failed in 0.12 seconds

More info on tmpdir handling is available at Temporary directories and files.

Find out what kind of builtin pytest fixtures exist with the command:

pytest --fixtures # shows builtin and custom fixtures

Note that this command omits fixtures with leading _ unless the -v option is added.

1.7 Continue reading

Check out additional pytest resources to help you customize tests for your unique workflow:

• “Calling pytest through python -m pytest” for command line invocation examples

• “Using pytest with an existing test suite” for working with pre-existing tests

• “Marking test functions with attributes” for information on the pytest.mark mechanism

• “pytest fixtures: explicit, modular, scalable” for providing a functional baseline to your tests

• “Writing plugins” for managing and writing plugins

• “Good Integration Practices” for virtualenv and test layouts

6 Chapter 1. Installation and Getting Started



CHAPTER 2

Usage and Invocations

2.1 Calling pytest through python -m pytest

You can invoke testing through the Python interpreter from the command line:

python -m pytest [...]

This is almost equivalent to invoking the command line script pytest [...] directly, except that calling via
python will also add the current directory to sys.path.

2.2 Possible exit codes

Running pytest can result in six different exit codes:

Exit code 0 All tests were collected and passed successfully

Exit code 1 Tests were collected and run but some of the tests failed

Exit code 2 Test execution was interrupted by the user

Exit code 3 Internal error happened while executing tests

Exit code 4 pytest command line usage error

Exit code 5 No tests were collected

2.3 Getting help on version, option names, environment variables

pytest --version # shows where pytest was imported from
pytest --fixtures # show available builtin function arguments
pytest -h | --help # show help on command line and config file options

7



pytest Documentation, Release 4.6

2.4 Stopping after the first (or N) failures

To stop the testing process after the first (N) failures:

pytest -x # stop after first failure
pytest --maxfail=2 # stop after two failures

2.5 Specifying tests / selecting tests

Pytest supports several ways to run and select tests from the command-line.

Run tests in a module

pytest test_mod.py

Run tests in a directory

pytest testing/

Run tests by keyword expressions

pytest -k "MyClass and not method"

This will run tests which contain names that match the given string expression, which can include Python operators
that use filenames, class names and function names as variables. The example above will run TestMyClass.
test_something but not TestMyClass.test_method_simple.

Run tests by node ids

Each collected test is assigned a unique nodeid which consist of the module filename followed by specifiers like
class names, function names and parameters from parametrization, separated by :: characters.

To run a specific test within a module:

pytest test_mod.py::test_func

Another example specifying a test method in the command line:

pytest test_mod.py::TestClass::test_method

Run tests by marker expressions

pytest -m slow

Will run all tests which are decorated with the @pytest.mark.slow decorator.

For more information see marks.

Run tests from packages

pytest --pyargs pkg.testing

This will import pkg.testing and use its filesystem location to find and run tests from.

8 Chapter 2. Usage and Invocations



pytest Documentation, Release 4.6

2.6 Modifying Python traceback printing

Examples for modifying traceback printing:

pytest --showlocals # show local variables in tracebacks
pytest -l # show local variables (shortcut)

pytest --tb=auto # (default) 'long' tracebacks for the first and last
# entry, but 'short' style for the other entries

pytest --tb=long # exhaustive, informative traceback formatting
pytest --tb=short # shorter traceback format
pytest --tb=line # only one line per failure
pytest --tb=native # Python standard library formatting
pytest --tb=no # no traceback at all

The --full-trace causes very long traces to be printed on error (longer than --tb=long). It also ensures that
a stack trace is printed on KeyboardInterrupt (Ctrl+C). This is very useful if the tests are taking too long and you
interrupt them with Ctrl+C to find out where the tests are hanging. By default no output will be shown (because
KeyboardInterrupt is caught by pytest). By using this option you make sure a trace is shown.

2.7 Detailed summary report

The -r flag can be used to display a “short test summary info” at the end of the test session, making it easy in large
test suites to get a clear picture of all failures, skips, xfails, etc.

Example:

# content of test_example.py
import pytest

@pytest.fixture
def error_fixture():

assert 0

def test_ok():
print("ok")

def test_fail():
assert 0

def test_error(error_fixture):
pass

def test_skip():
pytest.skip("skipping this test")

def test_xfail():
pytest.xfail("xfailing this test")

(continues on next page)

2.6. Modifying Python traceback printing 9



pytest Documentation, Release 4.6

(continued from previous page)

@pytest.mark.xfail(reason="always xfail")
def test_xpass():

pass

$ pytest -ra
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 6 items

test_example.py .FEsxX [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

@pytest.fixture
def error_fixture():

> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

def test_fail():
> assert 0
E assert 0

test_example.py:14: AssertionError
========================= short test summary info ==========================
SKIPPED [1] $REGENDOC_TMPDIR/test_example.py:23: skipping this test
XFAIL test_example.py::test_xfail

reason: xfailing this test
XPASS test_example.py::test_xpass always xfail
ERROR test_example.py::test_error - assert 0
FAILED test_example.py::test_fail - assert 0
= 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.12 seconds =

The -r options accepts a number of characters after it, with a used above meaning “all except passes”.

Here is the full list of available characters that can be used:

• f - failed

• E - error

• s - skipped

• x - xfailed

• X - xpassed

• p - passed

• P - passed with output

• a - all except pP

• A - all

10 Chapter 2. Usage and Invocations



pytest Documentation, Release 4.6

More than one character can be used, so for example to only see failed and skipped tests, you can execute:

$ pytest -rfs
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 6 items

test_example.py .FEsxX [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

@pytest.fixture
def error_fixture():

> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

def test_fail():
> assert 0
E assert 0

test_example.py:14: AssertionError
========================= short test summary info ==========================
FAILED test_example.py::test_fail - assert 0
SKIPPED [1] $REGENDOC_TMPDIR/test_example.py:23: skipping this test
= 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.12 seconds =

Using p lists the passing tests, whilst P adds an extra section “PASSES” with those tests that passed but had captured
output:

$ pytest -rpP
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 6 items

test_example.py .FEsxX [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

@pytest.fixture
def error_fixture():

> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

def test_fail():

(continues on next page)

2.7. Detailed summary report 11



pytest Documentation, Release 4.6

(continued from previous page)

> assert 0
E assert 0

test_example.py:14: AssertionError
================================== PASSES ==================================
_________________________________ test_ok __________________________________
--------------------------- Captured stdout call ---------------------------
ok
========================= short test summary info ==========================
PASSED test_example.py::test_ok
= 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.12 seconds =

2.8 Dropping to PDB (Python Debugger) on failures

Python comes with a builtin Python debugger called PDB. pytest allows one to drop into the PDB prompt via a
command line option:

pytest --pdb

This will invoke the Python debugger on every failure (or KeyboardInterrupt). Often you might only want to do this
for the first failing test to understand a certain failure situation:

pytest -x --pdb # drop to PDB on first failure, then end test session
pytest --pdb --maxfail=3 # drop to PDB for first three failures

Note that on any failure the exception information is stored on sys.last_value, sys.last_type and sys.
last_traceback. In interactive use, this allows one to drop into postmortem debugging with any debug tool. One
can also manually access the exception information, for example:

>>> import sys
>>> sys.last_traceback.tb_lineno
42
>>> sys.last_value
AssertionError('assert result == "ok"',)

2.9 Dropping to PDB (Python Debugger) at the start of a test

pytest allows one to drop into the PDB prompt immediately at the start of each test via a command line option:

pytest --trace

This will invoke the Python debugger at the start of every test.

2.10 Setting breakpoints

To set a breakpoint in your code use the native Python import pdb;pdb.set_trace() call in your code and
pytest automatically disables its output capture for that test:

• Output capture in other tests is not affected.

12 Chapter 2. Usage and Invocations

http://docs.python.org/library/pdb.html
http://docs.python.org/library/pdb.html
http://docs.python.org/library/pdb.html


pytest Documentation, Release 4.6

• Any prior test output that has already been captured and will be processed as such.

• Output capture gets resumed when ending the debugger session (via the continue command).

2.11 Using the builtin breakpoint function

Python 3.7 introduces a builtin breakpoint() function. Pytest supports the use of breakpoint() with the
following behaviours:

• When breakpoint() is called and PYTHONBREAKPOINT is set to the default value, pytest will use the
custom internal PDB trace UI instead of the system default Pdb.

• When tests are complete, the system will default back to the system Pdb trace UI.

• With --pdb passed to pytest, the custom internal Pdb trace UI is used with both breakpoint() and failed
tests/unhandled exceptions.

• --pdbcls can be used to specify a custom debugger class.

2.12 Profiling test execution duration

To get a list of the slowest 10 test durations:

pytest --durations=10

By default, pytest will not show test durations that are too small (<0.01s) unless -vv is passed on the command-line.

2.13 Creating JUnitXML format files

To create result files which can be read by Jenkins or other Continuous integration servers, use this invocation:

pytest --junitxml=path

to create an XML file at path.

To set the name of the root test suite xml item, you can configure the junit_suite_name option in your config
file:

[pytest]
junit_suite_name = my_suite

New in version 4.0.

JUnit XML specification seems to indicate that "time" attribute should report total test execution times, includ-
ing setup and teardown (1, 2). It is the default pytest behavior. To report just call durations instead, configure the
junit_duration_report option like this:

[pytest]
junit_duration_report = call

2.11. Using the builtin breakpoint function 13

http://jenkins-ci.org/
http://windyroad.com.au/dl/Open%20Source/JUnit.xsd
https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_14.1.0/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_useresults_junit.html


pytest Documentation, Release 4.6

2.13.1 record_property

If you want to log additional information for a test, you can use the record_property fixture:

def test_function(record_property):
record_property("example_key", 1)
assert True

This will add an extra property example_key="1" to the generated testcase tag:

<testcase classname="test_function" file="test_function.py" line="0" name="test_
→˓function" time="0.0009">
<properties>
<property name="example_key" value="1" />

</properties>
</testcase>

Alternatively, you can integrate this functionality with custom markers:

# content of conftest.py

def pytest_collection_modifyitems(session, config, items):
for item in items:

for marker in item.iter_markers(name="test_id"):
test_id = marker.args[0]
item.user_properties.append(("test_id", test_id))

And in your tests:

# content of test_function.py
import pytest

@pytest.mark.test_id(1501)
def test_function():

assert True

Will result in:

<testcase classname="test_function" file="test_function.py" line="0" name="test_
→˓function" time="0.0009">
<properties>
<property name="test_id" value="1501" />

</properties>
</testcase>

Warning: Please note that using this feature will break schema verifications for the latest JUnitXML schema.
This might be a problem when used with some CI servers.

2.13.2 record_xml_attribute

To add an additional xml attribute to a testcase element, you can use record_xml_attribute fixture. This can
also be used to override existing values:

14 Chapter 2. Usage and Invocations



pytest Documentation, Release 4.6

def test_function(record_xml_attribute):
record_xml_attribute("assertions", "REQ-1234")
record_xml_attribute("classname", "custom_classname")
print("hello world")
assert True

Unlike record_property, this will not add a new child element. Instead, this will add an attribute
assertions="REQ-1234" inside the generated testcase tag and override the default classname with
"classname=custom_classname":

<testcase classname="custom_classname" file="test_function.py" line="0" name="test_
→˓function" time="0.003" assertions="REQ-1234">

<system-out>
hello world

</system-out>
</testcase>

Warning: record_xml_attribute is an experimental feature, and its interface might be replaced by some-
thing more powerful and general in future versions. The functionality per-se will be kept, however.

Using this over record_xml_property can help when using ci tools to parse the xml report. However, some
parsers are quite strict about the elements and attributes that are allowed. Many tools use an xsd schema (like the
example below) to validate incoming xml. Make sure you are using attribute names that are allowed by your parser.

Below is the Scheme used by Jenkins to validate the XML report:

<xs:element name="testcase">
<xs:complexType>

<xs:sequence>
<xs:element ref="skipped" minOccurs="0" maxOccurs="1"/>
<xs:element ref="error" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="failure" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="system-out" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="system-err" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="assertions" type="xs:string" use="optional"/>
<xs:attribute name="time" type="xs:string" use="optional"/>
<xs:attribute name="classname" type="xs:string" use="optional"/>
<xs:attribute name="status" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

Warning: Please note that using this feature will break schema verifications for the latest JUnitXML schema.
This might be a problem when used with some CI servers.

2.13.3 record_testsuite_property

New in version 4.5.

If you want to add a properties node at the test-suite level, which may contains properties that are relevant to all tests,
you can use the record_testsuite_property session-scoped fixture:

2.13. Creating JUnitXML format files 15



pytest Documentation, Release 4.6

The record_testsuite_property session-scoped fixture can be used to add properties relevant to all tests.

import pytest

@pytest.fixture(scope="session", autouse=True)
def log_global_env_facts(record_testsuite_property):

record_testsuite_property("ARCH", "PPC")
record_testsuite_property("STORAGE_TYPE", "CEPH")

class TestMe(object):
def test_foo(self):

assert True

The fixture is a callable which receives name and value of a <property> tag added at the test-suite level of the
generated xml:

<testsuite errors="0" failures="0" name="pytest" skipped="0" tests="1" time="0.006">
<properties>
<property name="ARCH" value="PPC"/>
<property name="STORAGE_TYPE" value="CEPH"/>

</properties>
<testcase classname="test_me.TestMe" file="test_me.py" line="16" name="test_foo"

→˓time="0.000243663787842"/>
</testsuite>

name must be a string, value will be converted to a string and properly xml-escaped.

The generated XML is compatible with the latest xunit standard, contrary to record_property and
record_xml_attribute.

2.14 Creating resultlog format files

This option is rarely used and is scheduled for removal in 5.0.

See the deprecation docs for more information.

To create plain-text machine-readable result files you can issue:

pytest --resultlog=path

and look at the content at the path location. Such files are used e.g. by the PyPy-test web page to show test results
over several revisions.

2.15 Sending test report to online pastebin service

Creating a URL for each test failure:

pytest --pastebin=failed

This will submit test run information to a remote Paste service and provide a URL for each failure. You may select
tests as usual or add for example -x if you only want to send one particular failure.

Creating a URL for a whole test session log:

16 Chapter 2. Usage and Invocations

https://docs.pytest.org/en/latest/deprecations.html#result-log-result-log
http://buildbot.pypy.org/summary


pytest Documentation, Release 4.6

pytest --pastebin=all

Currently only pasting to the http://bpaste.net service is implemented.

2.16 Early loading plugins

You can early-load plugins (internal and external) explicitly in the command-line with the -p option:

pytest -p mypluginmodule

The option receives a name parameter, which can be:

• A full module dotted name, for example myproject.plugins. This dotted name must be importable.

• The entry-point name of a plugin. This is the name passed to setuptools when the plugin is registered. For
example to early-load the pytest-cov plugin you can use:

pytest -p pytest_cov

2.17 Disabling plugins

To disable loading specific plugins at invocation time, use the -p option together with the prefix no:.

Example: to disable loading the plugin doctest, which is responsible for executing doctest tests from text files,
invoke pytest like this:

pytest -p no:doctest

2.18 Calling pytest from Python code

You can invoke pytest from Python code directly:

pytest.main()

this acts as if you would call “pytest” from the command line. It will not raise SystemExit but return the exitcode
instead. You can pass in options and arguments:

pytest.main(['-x', 'mytestdir'])

You can specify additional plugins to pytest.main:

# content of myinvoke.py
import pytest
class MyPlugin(object):

def pytest_sessionfinish(self):
print("*** test run reporting finishing")

pytest.main(["-qq"], plugins=[MyPlugin()])

Running it will show that MyPlugin was added and its hook was invoked:

2.16. Early loading plugins 17

http://bpaste.net
https://pypi.org/project/pytest-cov/


pytest Documentation, Release 4.6

$ python myinvoke.py
.FEsxX. [100%]*** test
→˓run reporting finishing

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

@pytest.fixture
def error_fixture():

> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

def test_fail():
> assert 0
E assert 0

test_example.py:14: AssertionError

Note: Calling pytest.main() will result in importing your tests and any modules that they import. Due to the
caching mechanism of python’s import system, making subsequent calls to pytest.main() from the same process
will not reflect changes to those files between the calls. For this reason, making multiple calls to pytest.main()
from the same process (in order to re-run tests, for example) is not recommended.

18 Chapter 2. Usage and Invocations



CHAPTER 3

Using pytest with an existing test suite

Pytest can be used with most existing test suites, but its behavior differs from other test runners such as nose or
Python’s default unittest framework.

Before using this section you will want to install pytest.

3.1 Running an existing test suite with pytest

Say you want to contribute to an existing repository somewhere. After pulling the code into your development space
using some flavor of version control and (optionally) setting up a virtualenv you will want to run:

cd <repository>
pip install -e . # Environment dependent alternatives include

# 'python setup.py develop' and 'conda develop'

in your project root. This will set up a symlink to your code in site-packages, allowing you to edit your code while
your tests run against it as if it were installed.

Setting up your project in development mode lets you avoid having to reinstall every time you want to run your tests,
and is less brittle than mucking about with sys.path to point your tests at local code.

Also consider using tox.

19



pytest Documentation, Release 4.6

20 Chapter 3. Using pytest with an existing test suite



CHAPTER 4

The writing and reporting of assertions in tests

4.1 Asserting with the assert statement

pytest allows you to use the standard python assert for verifying expectations and values in Python tests. For
example, you can write the following:

# content of test_assert1.py
def f():

return 3

def test_function():
assert f() == 4

to assert that your function returns a certain value. If this assertion fails you will see the return value of the function
call:

$ pytest test_assert1.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_assert1.py F [100%]

================================= FAILURES =================================
______________________________ test_function _______________________________

def test_function():
> assert f() == 4
E assert 3 == 4
E + where 3 = f()

(continues on next page)

21



pytest Documentation, Release 4.6

(continued from previous page)

test_assert1.py:6: AssertionError
========================= 1 failed in 0.12 seconds =========================

pytest has support for showing the values of the most common subexpressions including calls, attributes, compar-
isons, and binary and unary operators. (See Demo of Python failure reports with pytest). This allows you to use the
idiomatic python constructs without boilerplate code while not losing introspection information.

However, if you specify a message with the assertion like this:

assert a % 2 == 0, "value was odd, should be even"

then no assertion introspection takes places at all and the message will be simply shown in the traceback.

See Assertion introspection details for more information on assertion introspection.

4.2 Assertions about expected exceptions

In order to write assertions about raised exceptions, you can use pytest.raises as a context manager like this:

import pytest

def test_zero_division():
with pytest.raises(ZeroDivisionError):

1 / 0

and if you need to have access to the actual exception info you may use:

def test_recursion_depth():
with pytest.raises(RuntimeError) as excinfo:

def f():
f()

f()
assert "maximum recursion" in str(excinfo.value)

excinfo is a ExceptionInfo instance, which is a wrapper around the actual exception raised. The main attributes
of interest are .type, .value and .traceback.

You can pass a match keyword parameter to the context-manager to test that a regular expression matches on the string
representation of an exception (similar to the TestCase.assertRaisesRegexp method from unittest):

import pytest

def myfunc():
raise ValueError("Exception 123 raised")

def test_match():
with pytest.raises(ValueError, match=r".* 123 .*"):

myfunc()

The regexp parameter of the match method is matched with the re.search function, so in the above example
match='123' would have worked as well.

22 Chapter 4. The writing and reporting of assertions in tests



pytest Documentation, Release 4.6

There’s an alternate form of the pytest.raises function where you pass a function that will be executed with the
given *args and **kwargs and assert that the given exception is raised:

pytest.raises(ExpectedException, func, *args, **kwargs)

The reporter will provide you with helpful output in case of failures such as no exception or wrong exception.

Note that it is also possible to specify a “raises” argument to pytest.mark.xfail, which checks that the test is
failing in a more specific way than just having any exception raised:

@pytest.mark.xfail(raises=IndexError)
def test_f():

f()

Using pytest.raises is likely to be better for cases where you are testing exceptions your own code is deliber-
ately raising, whereas using @pytest.mark.xfail with a check function is probably better for something like
documenting unfixed bugs (where the test describes what “should” happen) or bugs in dependencies.

4.3 Assertions about expected warnings

You can check that code raises a particular warning using pytest.warns.

4.4 Making use of context-sensitive comparisons

pytest has rich support for providing context-sensitive information when it encounters comparisons. For example:

# content of test_assert2.py

def test_set_comparison():
set1 = set("1308")
set2 = set("8035")
assert set1 == set2

if you run this module:

$ pytest test_assert2.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_assert2.py F [100%]

================================= FAILURES =================================
___________________________ test_set_comparison ____________________________

def test_set_comparison():
set1 = set("1308")
set2 = set("8035")

> assert set1 == set2
E AssertionError: assert {'0', '1', '3', '8'} == {'0', '3', '5', '8'}

(continues on next page)

4.3. Assertions about expected warnings 23



pytest Documentation, Release 4.6

(continued from previous page)

E Extra items in the left set:
E '1'
E Extra items in the right set:
E '5'
E Use -v to get the full diff

test_assert2.py:6: AssertionError
========================= 1 failed in 0.12 seconds =========================

Special comparisons are done for a number of cases:

• comparing long strings: a context diff is shown

• comparing long sequences: first failing indices

• comparing dicts: different entries

See the reporting demo for many more examples.

4.5 Defining your own explanation for failed assertions

It is possible to add your own detailed explanations by implementing the pytest_assertrepr_compare hook.

pytest_assertrepr_compare(config, op, left, right)
return explanation for comparisons in failing assert expressions.

Return None for no custom explanation, otherwise return a list of strings. The strings will be joined by newlines
but any newlines in a string will be escaped. Note that all but the first line will be indented slightly, the intention
is for the first line to be a summary.

Parameters config (_pytest.config.Config) – pytest config object

As an example consider adding the following hook in a conftest.py file which provides an alternative explanation for
Foo objects:

# content of conftest.py
from test_foocompare import Foo

def pytest_assertrepr_compare(op, left, right):
if isinstance(left, Foo) and isinstance(right, Foo) and op == "==":

return ["Comparing Foo instances:", " vals: %s != %s" % (left.val, right.
→˓val)]

now, given this test module:

# content of test_foocompare.py
class Foo(object):

def __init__(self, val):
self.val = val

def __eq__(self, other):
return self.val == other.val

def test_compare():
f1 = Foo(1)

(continues on next page)

24 Chapter 4. The writing and reporting of assertions in tests



pytest Documentation, Release 4.6

(continued from previous page)

f2 = Foo(2)
assert f1 == f2

you can run the test module and get the custom output defined in the conftest file:

$ pytest -q test_foocompare.py
F [100%]
================================= FAILURES =================================
_______________________________ test_compare _______________________________

def test_compare():
f1 = Foo(1)
f2 = Foo(2)

> assert f1 == f2
E assert Comparing Foo instances:
E vals: 1 != 2

test_foocompare.py:12: AssertionError
1 failed in 0.12 seconds

4.6 Assertion introspection details

Reporting details about a failing assertion is achieved by rewriting assert statements before they are run. Rewritten
assert statements put introspection information into the assertion failure message. pytest only rewrites test modules
directly discovered by its test collection process, so asserts in supporting modules which are not themselves test
modules will not be rewritten.

You can manually enable assertion rewriting for an imported module by calling register_assert_rewrite before you
import it (a good place to do that is in your root conftest.py).

For further information, Benjamin Peterson wrote up Behind the scenes of pytest’s new assertion rewriting.

4.6.1 Assertion rewriting caches files on disk

pytest will write back the rewritten modules to disk for caching. You can disable this behavior (for example to
avoid leaving stale .pyc files around in projects that move files around a lot) by adding this to the top of your
conftest.py file:

import sys

sys.dont_write_bytecode = True

Note that you still get the benefits of assertion introspection, the only change is that the .pyc files won’t be cached
on disk.

Additionally, rewriting will silently skip caching if it cannot write new .pyc files, i.e. in a read-only filesystem or a
zipfile.

4.6.2 Disabling assert rewriting

pytest rewrites test modules on import by using an import hook to write new pyc files. Most of the time this works
transparently. However, if you are working with the import machinery yourself, the import hook may interfere.

4.6. Assertion introspection details 25

https://docs.pytest.org/en/latest/writing_plugins.html#assertion-rewriting
http://pybites.blogspot.com/2011/07/behind-scenes-of-pytests-new-assertion.html


pytest Documentation, Release 4.6

If this is the case you have two options:

• Disable rewriting for a specific module by adding the string PYTEST_DONT_REWRITE to its docstring.

• Disable rewriting for all modules by using --assert=plain.

Add assert rewriting as an alternate introspection technique.

Introduce the --assert option. Deprecate --no-assert and --nomagic.

Removes the --no-assert and --nomagic options. Removes the --assert=reinterp
option.

26 Chapter 4. The writing and reporting of assertions in tests



CHAPTER 5

pytest fixtures: explicit, modular, scalable

The purpose of test fixtures is to provide a fixed baseline upon which tests can reliably and repeatedly execute. pytest
fixtures offer dramatic improvements over the classic xUnit style of setup/teardown functions:

• fixtures have explicit names and are activated by declaring their use from test functions, modules, classes or
whole projects.

• fixtures are implemented in a modular manner, as each fixture name triggers a fixture function which can itself
use other fixtures.

• fixture management scales from simple unit to complex functional testing, allowing to parametrize fixtures and
tests according to configuration and component options, or to re-use fixtures across function, class, module or
whole test session scopes.

In addition, pytest continues to support classic xunit-style setup. You can mix both styles, moving incrementally from
classic to new style, as you prefer. You can also start out from existing unittest.TestCase style or nose based projects.

5.1 Fixtures as Function arguments

Test functions can receive fixture objects by naming them as an input argument. For each argument name, a fixture
function with that name provides the fixture object. Fixture functions are registered by marking them with @pytest.
fixture. Let’s look at a simple self-contained test module containing a fixture and a test function using it:

# content of ./test_smtpsimple.py
import pytest

@pytest.fixture
def smtp_connection():

import smtplib
return smtplib.SMTP("smtp.gmail.com", 587, timeout=5)

def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()

(continues on next page)

27

http://en.wikipedia.org/wiki/Test_fixture#Software


pytest Documentation, Release 4.6

(continued from previous page)

assert response == 250
assert 0 # for demo purposes

Here, the test_ehlo needs the smtp_connection fixture value. pytest will discover and call the @pytest.
fixture marked smtp_connection fixture function. Running the test looks like this:

$ pytest test_smtpsimple.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_smtpsimple.py F [100%]

================================= FAILURES =================================
________________________________ test_ehlo _________________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250

> assert 0 # for demo purposes
E assert 0

test_smtpsimple.py:11: AssertionError
========================= 1 failed in 0.12 seconds =========================

In the failure traceback we see that the test function was called with a smtp_connection argument, the smtplib.
SMTP() instance created by the fixture function. The test function fails on our deliberate assert 0. Here is the
exact protocol used by pytest to call the test function this way:

1. pytest finds the test_ehlo because of the test_ prefix. The test function needs a function argument named
smtp_connection. A matching fixture function is discovered by looking for a fixture-marked function
named smtp_connection.

2. smtp_connection() is called to create an instance.

3. test_ehlo(<smtp_connection instance>) is called and fails in the last line of the test function.

Note that if you misspell a function argument or want to use one that isn’t available, you’ll see an error with a list of
available function arguments.

Note: You can always issue:

pytest --fixtures test_simplefactory.py

to see available fixtures (fixtures with leading _ are only shown if you add the -v option).

5.2 Fixtures: a prime example of dependency injection

Fixtures allow test functions to easily receive and work against specific pre-initialized application objects without
having to care about import/setup/cleanup details. It’s a prime example of dependency injection where fixture functions

28 Chapter 5. pytest fixtures: explicit, modular, scalable

http://en.wikipedia.org/wiki/Dependency_injection


pytest Documentation, Release 4.6

take the role of the injector and test functions are the consumers of fixture objects.

5.3 conftest.py: sharing fixture functions

If during implementing your tests you realize that you want to use a fixture function from multiple test files you can
move it to a conftest.py file. You don’t need to import the fixture you want to use in a test, it automatically gets
discovered by pytest. The discovery of fixture functions starts at test classes, then test modules, then conftest.py
files and finally builtin and third party plugins.

You can also use the conftest.py file to implement local per-directory plugins.

5.4 Sharing test data

If you want to make test data from files available to your tests, a good way to do this is by loading these data in a
fixture for use by your tests. This makes use of the automatic caching mechanisms of pytest.

Another good approach is by adding the data files in the tests folder. There are also community plugins available
to help managing this aspect of testing, e.g. pytest-datadir and pytest-datafiles.

5.5 Scope: sharing a fixture instance across tests in a class, module
or session

Fixtures requiring network access depend on connectivity and are usually time-expensive to create. Extending the
previous example, we can add a scope="module" parameter to the @pytest.fixture invocation to cause the
decorated smtp_connection fixture function to only be invoked once per test module (the default is to invoke once
per test function). Multiple test functions in a test module will thus each receive the same smtp_connection fixture
instance, thus saving time. Possible values for scope are: function, class, module, package or session.

The next example puts the fixture function into a separate conftest.py file so that tests from multiple test modules
in the directory can access the fixture function:

# content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module")
def smtp_connection():

return smtplib.SMTP("smtp.gmail.com", 587, timeout=5)

The name of the fixture again is smtp_connection and you can access its result by listing the name
smtp_connection as an input parameter in any test or fixture function (in or below the directory where
conftest.py is located):

# content of test_module.py

def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg
assert 0 # for demo purposes

(continues on next page)

5.3. conftest.py: sharing fixture functions 29

https://pypi.org/project/pytest-datadir/
https://pypi.org/project/pytest-datafiles/


pytest Documentation, Release 4.6

(continued from previous page)

def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250
assert 0 # for demo purposes

We deliberately insert failing assert 0 statements in order to inspect what is going on and can now run the tests:

$ pytest test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py FF [100%]

================================= FAILURES =================================
________________________________ test_ehlo _________________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg

> assert 0 # for demo purposes
E assert 0

test_module.py:6: AssertionError
________________________________ test_noop _________________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250

> assert 0 # for demo purposes
E assert 0

test_module.py:11: AssertionError
========================= 2 failed in 0.12 seconds =========================

You see the two assert 0 failing and more importantly you can also see that the same (module-scoped)
smtp_connection object was passed into the two test functions because pytest shows the incoming argument
values in the traceback. As a result, the two test functions using smtp_connection run as quick as a single one
because they reuse the same instance.

If you decide that you rather want to have a session-scoped smtp_connection instance, you can simply declare it:

@pytest.fixture(scope="session")
def smtp_connection():

# the returned fixture value will be shared for
# all tests needing it
...

Finally, the class scope will invoke the fixture once per test class.

30 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 4.6

Note: Pytest will only cache one instance of a fixture at a time. This means that when using a parametrized fixture,
pytest may invoke a fixture more than once in the given scope.

5.5.1 package scope (experimental)

In pytest 3.7 the package scope has been introduced. Package-scoped fixtures are finalized when the last test of a
package finishes.

Warning: This functionality is considered experimental and may be removed in future versions if hidden corner-
cases or serious problems with this functionality are discovered after it gets more usage in the wild.

Use this new feature sparingly and please make sure to report any issues you find.

5.6 Higher-scoped fixtures are instantiated first

Within a function request for features, fixture of higher-scopes (such as session) are instantiated first than lower-
scoped fixtures (such as function or class). The relative order of fixtures of same scope follows the declared
order in the test function and honours dependencies between fixtures.

Consider the code below:

@pytest.fixture(scope="session")
def s1():

pass

@pytest.fixture(scope="module")
def m1():

pass

@pytest.fixture
def f1(tmpdir):

pass

@pytest.fixture
def f2():

pass

def test_foo(f1, m1, f2, s1):
...

The fixtures requested by test_foo will be instantiated in the following order:

1. s1: is the highest-scoped fixture (session).

2. m1: is the second highest-scoped fixture (module).

3. tmpdir: is a function-scoped fixture, required by f1: it needs to be instantiated at this point because it is
a dependency of f1.

5.6. Higher-scoped fixtures are instantiated first 31



pytest Documentation, Release 4.6

4. f1: is the first function-scoped fixture in test_foo parameter list.

5. f2: is the last function-scoped fixture in test_foo parameter list.

5.7 Fixture finalization / executing teardown code

pytest supports execution of fixture specific finalization code when the fixture goes out of scope. By using a yield
statement instead of return, all the code after the yield statement serves as the teardown code:

# content of conftest.py

import smtplib
import pytest

@pytest.fixture(scope="module")
def smtp_connection():

smtp_connection = smtplib.SMTP("smtp.gmail.com", 587, timeout=5)
yield smtp_connection # provide the fixture value
print("teardown smtp")
smtp_connection.close()

The print and smtp.close() statements will execute when the last test in the module has finished execution,
regardless of the exception status of the tests.

Let’s execute it:

$ pytest -s -q --tb=no
FFteardown smtp

2 failed in 0.12 seconds

We see that the smtp_connection instance is finalized after the two tests finished execution. Note that if we
decorated our fixture function with scope='function' then fixture setup and cleanup would occur around each
single test. In either case the test module itself does not need to change or know about these details of fixture setup.

Note that we can also seamlessly use the yield syntax with with statements:

# content of test_yield2.py

import smtplib
import pytest

@pytest.fixture(scope="module")
def smtp_connection():

with smtplib.SMTP("smtp.gmail.com", 587, timeout=5) as smtp_connection:
yield smtp_connection # provide the fixture value

The smtp_connection connection will be closed after the test finished execution because the
smtp_connection object automatically closes when the with statement ends.

Note that if an exception happens during the setup code (before the yield keyword), the teardown code (after the
yield) will not be called.

An alternative option for executing teardown code is to make use of the addfinalizer method of the request-
context object to register finalization functions.

32 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 4.6

Here’s the smtp_connection fixture changed to use addfinalizer for cleanup:

# content of conftest.py
import smtplib
import pytest

@pytest.fixture(scope="module")
def smtp_connection(request):

smtp_connection = smtplib.SMTP("smtp.gmail.com", 587, timeout=5)

def fin():
print("teardown smtp_connection")
smtp_connection.close()

request.addfinalizer(fin)
return smtp_connection # provide the fixture value

Both yield and addfinalizer methods work similarly by calling their code after the test ends, but
addfinalizer has two key differences over yield:

1. It is possible to register multiple finalizer functions.

2. Finalizers will always be called regardless if the fixture setup code raises an exception. This is handy to properly
close all resources created by a fixture even if one of them fails to be created/acquired:

@pytest.fixture
def equipments(request):

r = []
for port in ('C1', 'C3', 'C28'):

equip = connect(port)
request.addfinalizer(equip.disconnect)
r.append(equip)

return r

In the example above, if "C28" fails with an exception, "C1" and "C3" will still be properly closed. Of
course, if an exception happens before the finalize function is registered then it will not be executed.

5.8 Fixtures can introspect the requesting test context

Fixture functions can accept the request object to introspect the “requesting” test function, class or module context.
Further extending the previous smtp_connection fixture example, let’s read an optional server URL from the test
module which uses our fixture:

# content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module")
def smtp_connection(request):

server = getattr(request.module, "smtpserver", "smtp.gmail.com")
smtp_connection = smtplib.SMTP(server, 587, timeout=5)
yield smtp_connection
print("finalizing %s (%s)" % (smtp_connection, server))
smtp_connection.close()

5.8. Fixtures can introspect the requesting test context 33



pytest Documentation, Release 4.6

We use the request.module attribute to optionally obtain an smtpserver attribute from the test module. If we
just execute again, nothing much has changed:

$ pytest -s -q --tb=no
FFfinalizing <smtplib.SMTP object at 0xdeadbeef> (smtp.gmail.com)

2 failed in 0.12 seconds

Let’s quickly create another test module that actually sets the server URL in its module namespace:

# content of test_anothersmtp.py

smtpserver = "mail.python.org" # will be read by smtp fixture

def test_showhelo(smtp_connection):
assert 0, smtp_connection.helo()

Running it:

$ pytest -qq --tb=short test_anothersmtp.py
F [100%]
================================= FAILURES =================================
______________________________ test_showhelo _______________________________
test_anothersmtp.py:5: in test_showhelo

assert 0, smtp_connection.helo()
E AssertionError: (250, b'mail.python.org')
E assert 0
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef> (mail.python.org)

voila! The smtp_connection fixture function picked up our mail server name from the module namespace.

5.9 Factories as fixtures

The “factory as fixture” pattern can help in situations where the result of a fixture is needed multiple times in a single
test. Instead of returning data directly, the fixture instead returns a function which generates the data. This function
can then be called multiple times in the test.

Factories can have have parameters as needed:

@pytest.fixture
def make_customer_record():

def _make_customer_record(name):
return {

"name": name,
"orders": []

}

return _make_customer_record

def test_customer_records(make_customer_record):
customer_1 = make_customer_record("Lisa")
customer_2 = make_customer_record("Mike")
customer_3 = make_customer_record("Meredith")

34 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 4.6

If the data created by the factory requires managing, the fixture can take care of that:

@pytest.fixture
def make_customer_record():

created_records = []

def _make_customer_record(name):
record = models.Customer(name=name, orders=[])
created_records.append(record)
return record

yield _make_customer_record

for record in created_records:
record.destroy()

def test_customer_records(make_customer_record):
customer_1 = make_customer_record("Lisa")
customer_2 = make_customer_record("Mike")
customer_3 = make_customer_record("Meredith")

5.10 Parametrizing fixtures

Fixture functions can be parametrized in which case they will be called multiple times, each time executing the set
of dependent tests, i. e. the tests that depend on this fixture. Test functions usually do not need to be aware of their
re-running. Fixture parametrization helps to write exhaustive functional tests for components which themselves can
be configured in multiple ways.

Extending the previous example, we can flag the fixture to create two smtp_connection fixture instances which
will cause all tests using the fixture to run twice. The fixture function gets access to each parameter through the special
request object:

# content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module",
params=["smtp.gmail.com", "mail.python.org"])

def smtp_connection(request):
smtp_connection = smtplib.SMTP(request.param, 587, timeout=5)
yield smtp_connection
print("finalizing %s" % smtp_connection)
smtp_connection.close()

The main change is the declaration of params with @pytest.fixture, a list of values for each of which the
fixture function will execute and can access a value via request.param. No test function code needs to change.
So let’s just do another run:

$ pytest -q test_module.py
FFFF [100%]
================================= FAILURES =================================
________________________ test_ehlo[smtp.gmail.com] _________________________

(continues on next page)

5.10. Parametrizing fixtures 35



pytest Documentation, Release 4.6

(continued from previous page)

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg

> assert 0 # for demo purposes
E assert 0

test_module.py:6: AssertionError
________________________ test_noop[smtp.gmail.com] _________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250

> assert 0 # for demo purposes
E assert 0

test_module.py:11: AssertionError
________________________ test_ehlo[mail.python.org] ________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250

> assert b"smtp.gmail.com" in msg
E AssertionError: assert b'smtp.gmail.com' in b'mail.python.
→˓org\nPIPELINING\nSIZE 51200000\nETRN\nSTARTTLS\nAUTH DIGEST-MD5 NTLM CRAM-
→˓MD5\nENHANCEDSTATUSCODES\n8BITMIME\nDSN\nSMTPUTF8\nCHUNKING'

test_module.py:5: AssertionError
-------------------------- Captured stdout setup ---------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
________________________ test_noop[mail.python.org] ________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250

> assert 0 # for demo purposes
E assert 0

test_module.py:11: AssertionError
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
4 failed in 0.12 seconds

We see that our two test functions each ran twice, against the different smtp_connection instances. Note also,
that with the mail.python.org connection the second test fails in test_ehlo because a different server string
is expected than what arrived.

pytest will build a string that is the test ID for each fixture value in a parametrized fixture, e.g. test_ehlo[smtp.
gmail.com] and test_ehlo[mail.python.org] in the above examples. These IDs can be used with -k

36 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 4.6

to select specific cases to run, and they will also identify the specific case when one is failing. Running pytest with
--collect-only will show the generated IDs.

Numbers, strings, booleans and None will have their usual string representation used in the test ID. For other objects,
pytest will make a string based on the argument name. It is possible to customise the string used in a test ID for a
certain fixture value by using the ids keyword argument:

# content of test_ids.py
import pytest

@pytest.fixture(params=[0, 1], ids=["spam", "ham"])
def a(request):

return request.param

def test_a(a):
pass

def idfn(fixture_value):
if fixture_value == 0:

return "eggs"
else:

return None

@pytest.fixture(params=[0, 1], ids=idfn)
def b(request):

return request.param

def test_b(b):
pass

The above shows how ids can be either a list of strings to use or a function which will be called with the fixture value
and then has to return a string to use. In the latter case if the function return None then pytest’s auto-generated ID will
be used.

Running the above tests results in the following test IDs being used:

$ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 10 items
<Module test_anothersmtp.py>

<Function test_showhelo[smtp.gmail.com]>
<Function test_showhelo[mail.python.org]>

<Module test_ids.py>
<Function test_a[spam]>
<Function test_a[ham]>
<Function test_b[eggs]>
<Function test_b[1]>

<Module test_module.py>
<Function test_ehlo[smtp.gmail.com]>
<Function test_noop[smtp.gmail.com]>
<Function test_ehlo[mail.python.org]>
<Function test_noop[mail.python.org]>

======================= no tests ran in 0.12 seconds =======================

5.10. Parametrizing fixtures 37



pytest Documentation, Release 4.6

5.11 Using marks with parametrized fixtures

pytest.param() can be used to apply marks in values sets of parametrized fixtures in the same way that they can
be used with @pytest.mark.parametrize.

Example:

# content of test_fixture_marks.py
import pytest
@pytest.fixture(params=[0, 1, pytest.param(2, marks=pytest.mark.skip)])
def data_set(request):

return request.param

def test_data(data_set):
pass

Running this test will skip the invocation of data_set with value 2:

$ pytest test_fixture_marks.py -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 3 items

test_fixture_marks.py::test_data[0] PASSED [ 33%]
test_fixture_marks.py::test_data[1] PASSED [ 66%]
test_fixture_marks.py::test_data[2] SKIPPED [100%]

=================== 2 passed, 1 skipped in 0.12 seconds ====================

5.12 Modularity: using fixtures from a fixture function

You can not only use fixtures in test functions but fixture functions can use other fixtures themselves. This contributes
to a modular design of your fixtures and allows re-use of framework-specific fixtures across many projects. As a
simple example, we can extend the previous example and instantiate an object app where we stick the already defined
smtp_connection resource into it:

# content of test_appsetup.py

import pytest

class App(object):
def __init__(self, smtp_connection):

self.smtp_connection = smtp_connection

@pytest.fixture(scope="module")
def app(smtp_connection):

return App(smtp_connection)

def test_smtp_connection_exists(app):
assert app.smtp_connection

38 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 4.6

Here we declare an app fixture which receives the previously defined smtp_connection fixture and instantiates
an App object with it. Let’s run it:

$ pytest -v test_appsetup.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 2 items

test_appsetup.py::test_smtp_connection_exists[smtp.gmail.com] PASSED [ 50%]
test_appsetup.py::test_smtp_connection_exists[mail.python.org] PASSED [100%]

========================= 2 passed in 0.12 seconds =========================

Due to the parametrization of smtp_connection, the test will run twice with two different App instances and
respective smtp servers. There is no need for the app fixture to be aware of the smtp_connection parametrization
because pytest will fully analyse the fixture dependency graph.

Note that the app fixture has a scope of module and uses a module-scoped smtp_connection fixture. The
example would still work if smtp_connection was cached on a session scope: it is fine for fixtures to use
“broader” scoped fixtures but not the other way round: A session-scoped fixture could not use a module-scoped one
in a meaningful way.

5.13 Automatic grouping of tests by fixture instances

pytest minimizes the number of active fixtures during test runs. If you have a parametrized fixture, then all the tests
using it will first execute with one instance and then finalizers are called before the next fixture instance is created.
Among other things, this eases testing of applications which create and use global state.

The following example uses two parametrized fixtures, one of which is scoped on a per-module basis, and all the
functions perform print calls to show the setup/teardown flow:

# content of test_module.py
import pytest

@pytest.fixture(scope="module", params=["mod1", "mod2"])
def modarg(request):

param = request.param
print(" SETUP modarg %s" % param)
yield param
print(" TEARDOWN modarg %s" % param)

@pytest.fixture(scope="function", params=[1,2])
def otherarg(request):

param = request.param
print(" SETUP otherarg %s" % param)
yield param
print(" TEARDOWN otherarg %s" % param)

def test_0(otherarg):
print(" RUN test0 with otherarg %s" % otherarg)

def test_1(modarg):
print(" RUN test1 with modarg %s" % modarg)

(continues on next page)

5.13. Automatic grouping of tests by fixture instances 39



pytest Documentation, Release 4.6

(continued from previous page)

def test_2(otherarg, modarg):
print(" RUN test2 with otherarg %s and modarg %s" % (otherarg, modarg))

Let’s run the tests in verbose mode and with looking at the print-output:

$ pytest -v -s test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 8 items

test_module.py::test_0[1] SETUP otherarg 1
RUN test0 with otherarg 1

PASSED TEARDOWN otherarg 1

test_module.py::test_0[2] SETUP otherarg 2
RUN test0 with otherarg 2

PASSED TEARDOWN otherarg 2

test_module.py::test_1[mod1] SETUP modarg mod1
RUN test1 with modarg mod1

PASSED
test_module.py::test_2[mod1-1] SETUP otherarg 1

RUN test2 with otherarg 1 and modarg mod1
PASSED TEARDOWN otherarg 1

test_module.py::test_2[mod1-2] SETUP otherarg 2
RUN test2 with otherarg 2 and modarg mod1

PASSED TEARDOWN otherarg 2

test_module.py::test_1[mod2] TEARDOWN modarg mod1
SETUP modarg mod2
RUN test1 with modarg mod2

PASSED
test_module.py::test_2[mod2-1] SETUP otherarg 1

RUN test2 with otherarg 1 and modarg mod2
PASSED TEARDOWN otherarg 1

test_module.py::test_2[mod2-2] SETUP otherarg 2
RUN test2 with otherarg 2 and modarg mod2

PASSED TEARDOWN otherarg 2
TEARDOWN modarg mod2

========================= 8 passed in 0.12 seconds =========================

You can see that the parametrized module-scoped modarg resource caused an ordering of test execution that lead
to the fewest possible “active” resources. The finalizer for the mod1 parametrized resource was executed before the
mod2 resource was setup.

In particular notice that test_0 is completely independent and finishes first. Then test_1 is executed with mod1, then
test_2 with mod1, then test_1 with mod2 and finally test_2 with mod2.

The otherarg parametrized resource (having function scope) was set up before and teared down after every test that
used it.

40 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 4.6

5.14 Using fixtures from classes, modules or projects

Sometimes test functions do not directly need access to a fixture object. For example, tests may require to operate
with an empty directory as the current working directory but otherwise do not care for the concrete directory. Here is
how you can use the standard tempfile and pytest fixtures to achieve it. We separate the creation of the fixture into a
conftest.py file:

# content of conftest.py

import pytest
import tempfile
import os

@pytest.fixture()
def cleandir():

newpath = tempfile.mkdtemp()
os.chdir(newpath)

and declare its use in a test module via a usefixtures marker:

# content of test_setenv.py
import os
import pytest

@pytest.mark.usefixtures("cleandir")
class TestDirectoryInit(object):

def test_cwd_starts_empty(self):
assert os.listdir(os.getcwd()) == []
with open("myfile", "w") as f:

f.write("hello")

def test_cwd_again_starts_empty(self):
assert os.listdir(os.getcwd()) == []

Due to the usefixtures marker, the cleandir fixture will be required for the execution of each test method, just
as if you specified a “cleandir” function argument to each of them. Let’s run it to verify our fixture is activated and the
tests pass:

$ pytest -q
.. [100%]
2 passed in 0.12 seconds

You can specify multiple fixtures like this:

@pytest.mark.usefixtures("cleandir", "anotherfixture")
def test():

...

and you may specify fixture usage at the test module level, using a generic feature of the mark mechanism:

pytestmark = pytest.mark.usefixtures("cleandir")

Note that the assigned variable must be called pytestmark, assigning e.g. foomark will not activate the fixtures.

It is also possible to put fixtures required by all tests in your project into an ini-file:

5.14. Using fixtures from classes, modules or projects 41

http://docs.python.org/library/tempfile.html


pytest Documentation, Release 4.6

# content of pytest.ini
[pytest]
usefixtures = cleandir

Warning: Note this mark has no effect in fixture functions. For example, this will not work as expected:

@pytest.mark.usefixtures("my_other_fixture")
@pytest.fixture
def my_fixture_that_sadly_wont_use_my_other_fixture():

...

Currently this will not generate any error or warning, but this is intended to be handled by #3664.

5.15 Autouse fixtures (xUnit setup on steroids)

Occasionally, you may want to have fixtures get invoked automatically without declaring a function argument ex-
plicitly or a usefixtures decorator. As a practical example, suppose we have a database fixture which has a be-
gin/rollback/commit architecture and we want to automatically surround each test method by a transaction and a
rollback. Here is a dummy self-contained implementation of this idea:

# content of test_db_transact.py

import pytest

class DB(object):
def __init__(self):

self.intransaction = []
def begin(self, name):

self.intransaction.append(name)
def rollback(self):

self.intransaction.pop()

@pytest.fixture(scope="module")
def db():

return DB()

class TestClass(object):
@pytest.fixture(autouse=True)
def transact(self, request, db):

db.begin(request.function.__name__)
yield
db.rollback()

def test_method1(self, db):
assert db.intransaction == ["test_method1"]

def test_method2(self, db):
assert db.intransaction == ["test_method2"]

The class-level transact fixture is marked with autouse=true which implies that all test methods in the class will
use this fixture without a need to state it in the test function signature or with a class-level usefixtures decorator.

If we run it, we get two passing tests:

42 Chapter 5. pytest fixtures: explicit, modular, scalable

https://github.com/pytest-dev/pytest/issues/3664


pytest Documentation, Release 4.6

$ pytest -q
.. [100%]
2 passed in 0.12 seconds

Here is how autouse fixtures work in other scopes:

• autouse fixtures obey the scope= keyword-argument: if an autouse fixture has scope='session' it will
only be run once, no matter where it is defined. scope='class' means it will be run once per class, etc.

• if an autouse fixture is defined in a test module, all its test functions automatically use it.

• if an autouse fixture is defined in a conftest.py file then all tests in all test modules below its directory will invoke
the fixture.

• lastly, and please use that with care: if you define an autouse fixture in a plugin, it will be invoked for all tests
in all projects where the plugin is installed. This can be useful if a fixture only anyway works in the presence
of certain settings e. g. in the ini-file. Such a global fixture should always quickly determine if it should do any
work and avoid otherwise expensive imports or computation.

Note that the above transact fixture may very well be a fixture that you want to make available in your project
without having it generally active. The canonical way to do that is to put the transact definition into a conftest.py file
without using autouse:

# content of conftest.py
@pytest.fixture
def transact(request, db):

db.begin()
yield
db.rollback()

and then e.g. have a TestClass using it by declaring the need:

@pytest.mark.usefixtures("transact")
class TestClass(object):

def test_method1(self):
...

All test methods in this TestClass will use the transaction fixture while other test classes or functions in the module
will not use it unless they also add a transact reference.

5.16 Overriding fixtures on various levels

In relatively large test suite, you most likely need to override a global or root fixture with a locally defined
one, keeping the test code readable and maintainable.

5.16.1 Override a fixture on a folder (conftest) level

Given the tests file structure is:

tests/
__init__.py

conftest.py
# content of tests/conftest.py
import pytest

(continues on next page)

5.16. Overriding fixtures on various levels 43



pytest Documentation, Release 4.6

(continued from previous page)

@pytest.fixture
def username():

return 'username'

test_something.py
# content of tests/test_something.py
def test_username(username):

assert username == 'username'

subfolder/
__init__.py

conftest.py
# content of tests/subfolder/conftest.py
import pytest

@pytest.fixture
def username(username):

return 'overridden-' + username

test_something.py
# content of tests/subfolder/test_something.py
def test_username(username):

assert username == 'overridden-username'

As you can see, a fixture with the same name can be overridden for certain test folder level. Note that the base or
super fixture can be accessed from the overriding fixture easily - used in the example above.

5.16.2 Override a fixture on a test module level

Given the tests file structure is:

tests/
__init__.py

conftest.py
# content of tests/conftest.py
import pytest

@pytest.fixture
def username():

return 'username'

test_something.py
# content of tests/test_something.py
import pytest

@pytest.fixture
def username(username):

return 'overridden-' + username

def test_username(username):
assert username == 'overridden-username'

(continues on next page)

44 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 4.6

(continued from previous page)

test_something_else.py
# content of tests/test_something_else.py
import pytest

@pytest.fixture
def username(username):

return 'overridden-else-' + username

def test_username(username):
assert username == 'overridden-else-username'

In the example above, a fixture with the same name can be overridden for certain test module.

5.16.3 Override a fixture with direct test parametrization

Given the tests file structure is:

tests/
__init__.py

conftest.py
# content of tests/conftest.py
import pytest

@pytest.fixture
def username():

return 'username'

@pytest.fixture
def other_username(username):

return 'other-' + username

test_something.py
# content of tests/test_something.py
import pytest

@pytest.mark.parametrize('username', ['directly-overridden-username'])
def test_username(username):

assert username == 'directly-overridden-username'

@pytest.mark.parametrize('username', ['directly-overridden-username-other'])
def test_username_other(other_username):

assert other_username == 'other-directly-overridden-username-other'

In the example above, a fixture value is overridden by the test parameter value. Note that the value of the fixture can
be overridden this way even if the test doesn’t use it directly (doesn’t mention it in the function prototype).

5.16.4 Override a parametrized fixture with non-parametrized one and vice versa

Given the tests file structure is:

tests/
__init__.py

(continues on next page)

5.16. Overriding fixtures on various levels 45



pytest Documentation, Release 4.6

(continued from previous page)

conftest.py
# content of tests/conftest.py
import pytest

@pytest.fixture(params=['one', 'two', 'three'])
def parametrized_username(request):

return request.param

@pytest.fixture
def non_parametrized_username(request):

return 'username'

test_something.py
# content of tests/test_something.py
import pytest

@pytest.fixture
def parametrized_username():

return 'overridden-username'

@pytest.fixture(params=['one', 'two', 'three'])
def non_parametrized_username(request):

return request.param

def test_username(parametrized_username):
assert parametrized_username == 'overridden-username'

def test_parametrized_username(non_parametrized_username):
assert non_parametrized_username in ['one', 'two', 'three']

test_something_else.py
# content of tests/test_something_else.py
def test_username(parametrized_username):

assert parametrized_username in ['one', 'two', 'three']

def test_username(non_parametrized_username):
assert non_parametrized_username == 'username'

In the example above, a parametrized fixture is overridden with a non-parametrized version, and a non-parametrized
fixture is overridden with a parametrized version for certain test module. The same applies for the test folder level
obviously.

46 Chapter 5. pytest fixtures: explicit, modular, scalable



CHAPTER 6

Marking test functions with attributes

By using the pytest.mark helper you can easily set metadata on your test functions. There are some builtin
markers, for example:

• skip - always skip a test function

• skipif - skip a test function if a certain condition is met

• xfail - produce an “expected failure” outcome if a certain condition is met

• parametrize to perform multiple calls to the same test function.

It’s easy to create custom markers or to apply markers to whole test classes or modules. Those markers can be used
by plugins, and also are commonly used to select tests on the command-line with the -m option.

See Working with custom markers for examples which also serve as documentation.

Note: Marks can only be applied to tests, having no effect on fixtures.

6.1 Registering marks

You can register custom marks in your pytest.ini file like this:

[pytest]
markers =

slow: marks tests as slow (deselect with '-m "not slow"')
serial

Note that everything after the : is an optional description.

Alternatively, you can register new markers programatically in a pytest_configure hook:

47



pytest Documentation, Release 4.6

def pytest_configure(config):
config.addinivalue_line(

"markers", "env(name): mark test to run only on named environment"
)

Registered marks appear in pytest’s help text and do not emit warnings (see the next section). It is recommended that
third-party plugins always register their markers.

6.2 Raising errors on unknown marks

Unregistered marks applied with the @pytest.mark.name_of_the_mark decorator will always emit a warning
in order to avoid silently doing something surprising due to mis-typed names. As described in the previous section,
you can disable the warning for custom marks by registering them in your pytest.ini file or using a custom
pytest_configure hook.

When the --strict-markers command-line flag is passed, any unknown marks applied with the @pytest.
mark.name_of_the_mark decorator will trigger an error. You can enforce this validation in your project by
adding --strict-markers to addopts:

[pytest]
addopts = --strict-markers
markers =

slow: marks tests as slow (deselect with '-m "not slow"')
serial

48 Chapter 6. Marking test functions with attributes



CHAPTER 7

Monkeypatching/mocking modules and environments

Sometimes tests need to invoke functionality which depends on global settings or which invokes code which cannot be
easily tested such as network access. The monkeypatch fixture helps you to safely set/delete an attribute, dictionary
item or environment variable or to modify sys.path for importing. See the monkeypatch blog post for some
introduction material and a discussion of its motivation.

7.1 Simple example: monkeypatching functions

If you want to pretend that os.expanduser returns a certain directory, you can use the monkeypatch.
setattr() method to patch this function before calling into a function which uses it:

# content of test_module.py
import os.path
def getssh(): # pseudo application code

return os.path.join(os.path.expanduser("~admin"), '.ssh')

def test_mytest(monkeypatch):
def mockreturn(path):

return '/abc'
monkeypatch.setattr(os.path, 'expanduser', mockreturn)
x = getssh()
assert x == '/abc/.ssh'

Here our test function monkeypatches os.path.expanduser and then calls into a function that calls it. After the
test function finishes the os.path.expanduser modification will be undone.

7.2 Global patch example: preventing “requests” from remote oper-
ations

If you want to prevent the “requests” library from performing http requests in all your tests, you can do:

49

http://tetamap.wordpress.com/2009/03/03/monkeypatching-in-unit-tests-done-right/


pytest Documentation, Release 4.6

# content of conftest.py
import pytest
@pytest.fixture(autouse=True)
def no_requests(monkeypatch):

monkeypatch.delattr("requests.sessions.Session.request")

This autouse fixture will be executed for each test function and it will delete the method request.session.
Session.request so that any attempts within tests to create http requests will fail.

Note: Be advised that it is not recommended to patch builtin functions such as open, compile, etc., because it might
break pytest’s internals. If that’s unavoidable, passing --tb=native, --assert=plain and --capture=no
might help although there’s no guarantee.

Note: Mind that patching stdlib functions and some third-party libraries used by pytest might break pytest itself,
therefore in those cases it is recommended to use MonkeyPatch.context() to limit the patching to the block
you want tested:

import functools

def test_partial(monkeypatch):
with monkeypatch.context() as m:

m.setattr(functools, "partial", 3)
assert functools.partial == 3

See issue #3290 for details.

7.3 Monkeypatching environment variables

If you are working with environment variables you often need to safely change the values or delete them from the
system for testing purposes. Monkeypatch provides a mechanism to do this using the setenv and delenv
method. Our example code to test:

# contents of our original code file e.g. code.py
import os

def get_os_user_lower():
"""Simple retrieval function.
Returns lowercase USER or raises EnvironmentError."""
username = os.getenv("USER")

if username is None:
raise EnvironmentError("USER environment is not set.")

return username.lower()

There are two potential paths. First, the USER environment variable is set to a value. Second, the USER environ-
ment variable does not exist. Using monkeypatch both paths can be safely tested without impacting the running
environment:

50 Chapter 7. Monkeypatching/mocking modules and environments

https://github.com/pytest-dev/pytest/issues/3290


pytest Documentation, Release 4.6

# contents of our test file e.g. test_code.py
import pytest

def test_upper_to_lower(monkeypatch):
"""Set the USER env var to assert the behavior."""
monkeypatch.setenv("USER", "TestingUser")
assert get_os_user_lower() == "testinguser"

def test_raise_exception(monkeypatch):
"""Remove the USER env var and assert EnvironmentError is raised."""
monkeypatch.delenv("USER", raising=False)

with pytest.raises(EnvironmentError):
_ = get_os_user_lower()

This behavior can be moved into fixture structures and shared across tests:

import pytest

@pytest.fixture
def mock_env_user(monkeypatch):

monkeypatch.setenv("USER", "TestingUser")

@pytest.fixture
def mock_env_missing(monkeypatch):

monkeypatch.delenv("USER", raising=False)

# Notice the tests reference the fixtures for mocks
def test_upper_to_lower(mock_env_user):

assert get_os_user_lower() == "testinguser"

def test_raise_exception(mock_env_missing):
with pytest.raises(EnvironmentError):

_ = get_os_user_lower()

7.4 API Reference

Consult the docs for the MonkeyPatch class.

7.4. API Reference 51



pytest Documentation, Release 4.6

52 Chapter 7. Monkeypatching/mocking modules and environments



CHAPTER 8

Temporary directories and files

8.1 The tmp_path fixture

You can use the tmp_path fixture which will provide a temporary directory unique to the test invocation, created in
the base temporary directory.

tmp_path is a pathlib/pathlib2.Path object. Here is an example test usage:

# content of test_tmp_path.py
import os

CONTENT = u"content"

def test_create_file(tmp_path):
d = tmp_path / "sub"
d.mkdir()
p = d / "hello.txt"
p.write_text(CONTENT)
assert p.read_text() == CONTENT
assert len(list(tmp_path.iterdir())) == 1
assert 0

Running this would result in a passed test except for the last assert 0 line which we use to look at values:

$ pytest test_tmp_path.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_tmp_path.py F [100%]

(continues on next page)

53



pytest Documentation, Release 4.6

(continued from previous page)

================================= FAILURES =================================
_____________________________ test_create_file _____________________________

tmp_path = PosixPath('PYTEST_TMPDIR/test_create_file0')

def test_create_file(tmp_path):
d = tmp_path / "sub"
d.mkdir()
p = d / "hello.txt"
p.write_text(CONTENT)
assert p.read_text() == CONTENT
assert len(list(tmp_path.iterdir())) == 1

> assert 0
E assert 0

test_tmp_path.py:13: AssertionError
========================= 1 failed in 0.12 seconds =========================

8.2 The tmp_path_factory fixture

The tmp_path_factory is a session-scoped fixture which can be used to create arbitrary temporary directories
from any other fixture or test.

It is intended to replace tmpdir_factory, and returns pathlib.Path instances.

See tmp_path_factory API for details.

8.3 The ‘tmpdir’ fixture

You can use the tmpdir fixture which will provide a temporary directory unique to the test invocation, created in the
base temporary directory.

tmpdir is a py.path.local object which offers os.path methods and more. Here is an example test usage:

# content of test_tmpdir.py
import os
def test_create_file(tmpdir):

p = tmpdir.mkdir("sub").join("hello.txt")
p.write("content")
assert p.read() == "content"
assert len(tmpdir.listdir()) == 1
assert 0

Running this would result in a passed test except for the last assert 0 line which we use to look at values:

$ pytest test_tmpdir.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_tmpdir.py F [100%]

(continues on next page)

54 Chapter 8. Temporary directories and files

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://py.readthedocs.io/en/latest/path.html


pytest Documentation, Release 4.6

(continued from previous page)

================================= FAILURES =================================
_____________________________ test_create_file _____________________________

tmpdir = local('PYTEST_TMPDIR/test_create_file0')

def test_create_file(tmpdir):
p = tmpdir.mkdir("sub").join("hello.txt")
p.write("content")
assert p.read() == "content"
assert len(tmpdir.listdir()) == 1

> assert 0
E assert 0

test_tmpdir.py:7: AssertionError
========================= 1 failed in 0.12 seconds =========================

8.4 The ‘tmpdir_factory’ fixture

The tmpdir_factory is a session-scoped fixture which can be used to create arbitrary temporary directories from
any other fixture or test.

For example, suppose your test suite needs a large image on disk, which is generated procedurally. Instead of com-
puting the same image for each test that uses it into its own tmpdir, you can generate it once per-session to save
time:

# contents of conftest.py
import pytest

@pytest.fixture(scope="session")
def image_file(tmpdir_factory):

img = compute_expensive_image()
fn = tmpdir_factory.mktemp("data").join("img.png")
img.save(str(fn))
return fn

# contents of test_image.py
def test_histogram(image_file):

img = load_image(image_file)
# compute and test histogram

See tmpdir_factory API for details.

8.5 The default base temporary directory

Temporary directories are by default created as sub-directories of the system temporary directory. The base name
will be pytest-NUM where NUM will be incremented with each test run. Moreover, entries older than 3 temporary
directories will be removed.

You can override the default temporary directory setting like this:

8.4. The ‘tmpdir_factory’ fixture 55



pytest Documentation, Release 4.6

pytest --basetemp=mydir

When distributing tests on the local machine, pytest takes care to configure a basetemp directory for the sub pro-
cesses such that all temporary data lands below a single per-test run basetemp directory.

56 Chapter 8. Temporary directories and files



CHAPTER 9

Capturing of the stdout/stderr output

9.1 Default stdout/stderr/stdin capturing behaviour

During test execution any output sent to stdout and stderr is captured. If a test or a setup method fails its
according captured output will usually be shown along with the failure traceback. (this behavior can be configured by
the --show-capture command-line option).

In addition, stdin is set to a “null” object which will fail on attempts to read from it because it is rarely desired to
wait for interactive input when running automated tests.

By default capturing is done by intercepting writes to low level file descriptors. This allows to capture output from
simple print statements as well as output from a subprocess started by a test.

9.2 Setting capturing methods or disabling capturing

There are two ways in which pytest can perform capturing:

• file descriptor (FD) level capturing (default): All writes going to the operating system file descriptors 1 and 2
will be captured.

• sys level capturing: Only writes to Python files sys.stdout and sys.stderr will be captured. No
capturing of writes to filedescriptors is performed.

You can influence output capturing mechanisms from the command line:

pytest -s # disable all capturing
pytest --capture=sys # replace sys.stdout/stderr with in-mem files
pytest --capture=fd # also point filedescriptors 1 and 2 to temp file

57



pytest Documentation, Release 4.6

9.3 Using print statements for debugging

One primary benefit of the default capturing of stdout/stderr output is that you can use print statements for debugging:

# content of test_module.py

def setup_function(function):
print("setting up %s" % function)

def test_func1():
assert True

def test_func2():
assert False

and running this module will show you precisely the output of the failing function and hide the other one:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .F [100%]

================================= FAILURES =================================
________________________________ test_func2 ________________________________

def test_func2():
> assert False
E assert False

test_module.py:9: AssertionError
-------------------------- Captured stdout setup ---------------------------
setting up <function test_func2 at 0xdeadbeef>
==================== 1 failed, 1 passed in 0.12 seconds ====================

9.4 Accessing captured output from a test function

The capsys, capsysbinary, capfd, and capfdbinary fixtures allow access to stdout/stderr output created
during test execution. Here is an example test function that performs some output related checks:

def test_myoutput(capsys): # or use "capfd" for fd-level
print("hello")
sys.stderr.write("world\n")
captured = capsys.readouterr()
assert captured.out == "hello\n"
assert captured.err == "world\n"
print("next")
captured = capsys.readouterr()
assert captured.out == "next\n"

The readouterr() call snapshots the output so far - and capturing will be continued. After the test function finishes
the original streams will be restored. Using capsys this way frees your test from having to care about setting/resetting

58 Chapter 9. Capturing of the stdout/stderr output



pytest Documentation, Release 4.6

output streams and also interacts well with pytest’s own per-test capturing.

If you want to capture on filedescriptor level you can use the capfd fixture which offers the exact same interface but
allows to also capture output from libraries or subprocesses that directly write to operating system level output streams
(FD1 and FD2).

The return value from readouterr changed to a namedtuple with two attributes, out and err.

If the code under test writes non-textual data, you can capture this using the capsysbinary fixture which instead
returns bytes from the readouterr method. The capfsysbinary fixture is currently only available in python
3.

If the code under test writes non-textual data, you can capture this using the capfdbinary fixture which instead
returns bytes from the readouterr method. The capfdbinary fixture operates on the filedescriptor level.

To temporarily disable capture within a test, both capsys and capfd have a disabled() method that can be used
as a context manager, disabling capture inside the with block:

def test_disabling_capturing(capsys):
print("this output is captured")
with capsys.disabled():

print("output not captured, going directly to sys.stdout")
print("this output is also captured")

9.4. Accessing captured output from a test function 59



pytest Documentation, Release 4.6

60 Chapter 9. Capturing of the stdout/stderr output



CHAPTER 10

Warnings Capture

Starting from version 3.1, pytest now automatically catches warnings during test execution and displays them at the
end of the session:

# content of test_show_warnings.py
import warnings

def api_v1():
warnings.warn(UserWarning("api v1, should use functions from v2"))
return 1

def test_one():
assert api_v1() == 1

Running pytest now produces this output:

$ pytest test_show_warnings.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_show_warnings.py . [100%]

============================= warnings summary =============================
test_show_warnings.py::test_one

$REGENDOC_TMPDIR/test_show_warnings.py:5: UserWarning: api v1, should use functions
→˓from v2

warnings.warn(UserWarning("api v1, should use functions from v2"))

-- Docs: https://docs.pytest.org/en/latest/warnings.html
=================== 1 passed, 1 warnings in 0.12 seconds ===================

61



pytest Documentation, Release 4.6

The -W flag can be passed to control which warnings will be displayed or even turn them into errors:

$ pytest -q test_show_warnings.py -W error::UserWarning
F [100%]
================================= FAILURES =================================
_________________________________ test_one _________________________________

def test_one():
> assert api_v1() == 1

test_show_warnings.py:10:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

def api_v1():
> warnings.warn(UserWarning("api v1, should use functions from v2"))
E UserWarning: api v1, should use functions from v2

test_show_warnings.py:5: UserWarning
1 failed in 0.12 seconds

The same option can be set in the pytest.ini file using the filterwarnings ini option. For example, the
configuration below will ignore all user warnings, but will transform all other warnings into errors.

[pytest]
filterwarnings =

error
ignore::UserWarning

When a warning matches more than one option in the list, the action for the last matching option is performed.

Both -W command-line option and filterwarnings ini option are based on Python’s own -W option and warn-
ings.simplefilter, so please refer to those sections in the Python documentation for other examples and advanced usage.

10.1 @pytest.mark.filterwarnings

You can use the @pytest.mark.filterwarnings to add warning filters to specific test items, allowing you to
have finer control of which warnings should be captured at test, class or even module level:

import warnings

def api_v1():
warnings.warn(UserWarning("api v1, should use functions from v2"))
return 1

@pytest.mark.filterwarnings("ignore:api v1")
def test_one():

assert api_v1() == 1

Filters applied using a mark take precedence over filters passed on the command line or configured by the
filterwarnings ini option.

You may apply a filter to all tests of a class by using the filterwarnings mark as a class decorator or to all tests
in a module by setting the pytestmark variable:

62 Chapter 10. Warnings Capture

https://docs.python.org/3/using/cmdline.html?highlight=#cmdoption-W
https://docs.python.org/3/library/warnings.html#warnings.simplefilter
https://docs.python.org/3/library/warnings.html#warnings.simplefilter


pytest Documentation, Release 4.6

# turns all warnings into errors for this module
pytestmark = pytest.mark.filterwarnings("error")

Credits go to Florian Schulze for the reference implementation in the pytest-warnings plugin.

10.2 Disabling warnings summary

Although not recommended, you can use the --disable-warnings command-line option to suppress the warning
summary entirely from the test run output.

10.3 Disabling warning capture entirely

This plugin is enabled by default but can be disabled entirely in your pytest.ini file with:

[pytest]
addopts = -p no:warnings

Or passing -p no:warnings in the command-line. This might be useful if your test suites handles warnings using
an external system.

10.4 DeprecationWarning and PendingDeprecationWarning

By default pytest will display DeprecationWarning and PendingDeprecationWarning warnings from
user code and third-party libraries, as recommended by PEP-0565. This helps users keep their code modern and avoid
breakages when deprecated warnings are effectively removed.

Sometimes it is useful to hide some specific deprecation warnings that happen in code that you have no control over
(such as third-party libraries), in which case you might use the warning filters options (ini or marks) to ignore those
warnings.

For example:

[pytest]
filterwarnings =

ignore:.*U.*mode is deprecated:DeprecationWarning

This will ignore all warnings of type DeprecationWarning where the start of the message matches the regular
expression ".*U.*mode is deprecated".

Note: If warnings are configured at the interpreter level, using the PYTHONWARNINGS environment variable or
the -W command-line option, pytest will not configure any filters by default.

Also pytest doesn’t follow PEP-0506 suggestion of resetting all warning filters because it might break test suites
that configure warning filters themselves by calling warnings.simplefilter (see issue #2430 for an example
of that).

10.2. Disabling warnings summary 63

https://github.com/fschulze/pytest-warnings
https://www.python.org/dev/peps/pep-0565
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONWARNINGS
https://github.com/pytest-dev/pytest/issues/2430


pytest Documentation, Release 4.6

10.5 Ensuring code triggers a deprecation warning

You can also call a global helper for checking that a certain function call triggers a DeprecationWarning or
PendingDeprecationWarning:

import pytest

def test_global():
pytest.deprecated_call(myfunction, 17)

By default, DeprecationWarning and PendingDeprecationWarning will not be caught when using
pytest.warns or recwarn because default Python warnings filters hide them. If you wish to record them in
your own code, use the command warnings.simplefilter('always'):

import warnings
import pytest

def test_deprecation(recwarn):
warnings.simplefilter("always")
warnings.warn("deprecated", DeprecationWarning)
assert len(recwarn) == 1
assert recwarn.pop(DeprecationWarning)

You can also use it as a contextmanager:

def test_global():
with pytest.deprecated_call():

myobject.deprecated_method()

10.6 Asserting warnings with the warns function

You can check that code raises a particular warning using pytest.warns, which works in a similar manner to
raises:

import warnings
import pytest

def test_warning():
with pytest.warns(UserWarning):

warnings.warn("my warning", UserWarning)

The test will fail if the warning in question is not raised. The keyword argument match to assert that the exception
matches a text or regex:

>>> with warns(UserWarning, match='must be 0 or None'):
... warnings.warn("value must be 0 or None", UserWarning)

>>> with warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("value must be 42", UserWarning)

>>> with warns(UserWarning, match=r'must be \d+$'):

(continues on next page)

64 Chapter 10. Warnings Capture



pytest Documentation, Release 4.6

(continued from previous page)

... warnings.warn("this is not here", UserWarning)
Traceback (most recent call last):

...
Failed: DID NOT WARN. No warnings of type ...UserWarning... was emitted...

You can also call pytest.warns on a function or code string:

pytest.warns(expected_warning, func, *args, **kwargs)
pytest.warns(expected_warning, "func(*args, **kwargs)")

The function also returns a list of all raised warnings (as warnings.WarningMessage objects), which you can
query for additional information:

with pytest.warns(RuntimeWarning) as record:
warnings.warn("another warning", RuntimeWarning)

# check that only one warning was raised
assert len(record) == 1
# check that the message matches
assert record[0].message.args[0] == "another warning"

Alternatively, you can examine raised warnings in detail using the recwarn fixture (see below).

Note: DeprecationWarning and PendingDeprecationWarning are treated differently; see Ensuring code
triggers a deprecation warning.

10.7 Recording warnings

You can record raised warnings either using pytest.warns or with the recwarn fixture.

To record with pytest.warns without asserting anything about the warnings, pass None as the expected warning
type:

with pytest.warns(None) as record:
warnings.warn("user", UserWarning)
warnings.warn("runtime", RuntimeWarning)

assert len(record) == 2
assert str(record[0].message) == "user"
assert str(record[1].message) == "runtime"

The recwarn fixture will record warnings for the whole function:

import warnings

def test_hello(recwarn):
warnings.warn("hello", UserWarning)
assert len(recwarn) == 1
w = recwarn.pop(UserWarning)
assert issubclass(w.category, UserWarning)
assert str(w.message) == "hello"

(continues on next page)

10.7. Recording warnings 65



pytest Documentation, Release 4.6

(continued from previous page)

assert w.filename
assert w.lineno

Both recwarn and pytest.warns return the same interface for recorded warnings: a WarningsRecorder instance.
To view the recorded warnings, you can iterate over this instance, call len on it to get the number of recorded
warnings, or index into it to get a particular recorded warning.

Full API: WarningsRecorder.

10.8 Custom failure messages

Recording warnings provides an opportunity to produce custom test failure messages for when no warnings are issued
or other conditions are met.

def test():
with pytest.warns(Warning) as record:

f()
if not record:

pytest.fail("Expected a warning!")

If no warnings are issued when calling f, then not record will evaluate to True. You can then call pytest.
fail with a custom error message.

10.9 Internal pytest warnings

pytest may generate its own warnings in some situations, such as improper usage or deprecated features.

For example, pytest will emit a warning if it encounters a class that matches python_classes but also defines an
__init__ constructor, as this prevents the class from being instantiated:

# content of test_pytest_warnings.py
class Test:

def __init__(self):
pass

def test_foo(self):
assert 1 == 1

$ pytest test_pytest_warnings.py -q

============================= warnings summary =============================
test_pytest_warnings.py:1

$REGENDOC_TMPDIR/test_pytest_warnings.py:1: PytestCollectionWarning: cannot collect
→˓test class 'Test' because it has a __init__ constructor (from: test_pytest_warnings.
→˓py)

class Test:

-- Docs: https://docs.pytest.org/en/latest/warnings.html
1 warnings in 0.12 seconds

These warnings might be filtered using the same builtin mechanisms used to filter other types of warnings.

66 Chapter 10. Warnings Capture



pytest Documentation, Release 4.6

Please read our Backwards Compatibility Policy to learn how we proceed about deprecating and eventually removing
features.

The following warning types ares used by pytest and are part of the public API:

class PytestWarning
Bases: UserWarning.

Base class for all warnings emitted by pytest.

class PytestAssertRewriteWarning
Bases: PytestWarning.

Warning emitted by the pytest assert rewrite module.

class PytestCacheWarning
Bases: PytestWarning.

Warning emitted by the cache plugin in various situations.

class PytestCollectionWarning
Bases: PytestWarning.

Warning emitted when pytest is not able to collect a file or symbol in a module.

class PytestConfigWarning
Bases: PytestWarning.

Warning emitted for configuration issues.

class PytestDeprecationWarning
Bases: pytest.PytestWarning, DeprecationWarning.

Warning class for features that will be removed in a future version.

class PytestExperimentalApiWarning
Bases: pytest.PytestWarning, FutureWarning.

Warning category used to denote experiments in pytest. Use sparingly as the API might change or even be
removed completely in future version

class PytestUnhandledCoroutineWarning
Bases: PytestWarning.

Warning emitted when pytest encounters a test function which is a coroutine, but it was not handled by any
async-aware plugin. Coroutine test functions are not natively supported.

class PytestUnknownMarkWarning
Bases: PytestWarning.

Warning emitted on use of unknown markers. See https://docs.pytest.org/en/latest/mark.html for details.

class RemovedInPytest4Warning
Bases: pytest.PytestDeprecationWarning.

Warning class for features scheduled to be removed in pytest 4.0.

10.9. Internal pytest warnings 67

https://docs.python.org/3/library/exceptions.html#UserWarning
https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/exceptions.html#FutureWarning
https://docs.pytest.org/en/latest/mark.html


pytest Documentation, Release 4.6

68 Chapter 10. Warnings Capture



CHAPTER 11

Doctest integration for modules and test files

By default all files matching the test*.txt pattern will be run through the python standard doctest module. You
can change the pattern by issuing:

pytest --doctest-glob='*.rst'

on the command line. --doctest-glob can be given multiple times in the command-line.

If you then have a text file like this:

# content of test_example.txt

hello this is a doctest
>>> x = 3
>>> x
3

then you can just invoke pytest directly:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_example.txt . [100%]

========================= 1 passed in 0.12 seconds =========================

By default, pytest will collect test*.txt files looking for doctest directives, but you can pass additional globs using
the --doctest-glob option (multi-allowed).

In addition to text files, you can also execute doctests directly from docstrings of your classes and functions, including
from test modules:

69



pytest Documentation, Release 4.6

# content of mymodule.py
def something():

""" a doctest in a docstring
>>> something()
42
"""
return 42

$ pytest --doctest-modules
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

mymodule.py . [ 50%]
test_example.txt . [100%]

========================= 2 passed in 0.12 seconds =========================

You can make these changes permanent in your project by putting them into a pytest.ini file like this:

# content of pytest.ini
[pytest]
addopts = --doctest-modules

Note: The builtin pytest doctest supports only doctest blocks, but if you are looking for more advanced checking
over all your documentation, including doctests, .. codeblock:: python Sphinx directive support, and any
other examples your documentation may include, you may wish to consider Sybil. It provides pytest integration out
of the box.

11.1 Encoding

The default encoding is UTF-8, but you can specify the encoding that will be used for those doctest files using the
doctest_encoding ini option:

# content of pytest.ini
[pytest]
doctest_encoding = latin1

11.2 Using ‘doctest’ options

The standard doctest module provides some options to configure the strictness of doctest tests. In pytest, you can
enable those flags using the configuration file.

For example, to make pytest ignore trailing whitespaces and ignore lengthy exception stack traces you can just write:

[pytest]
doctest_optionflags= NORMALIZE_WHITESPACE IGNORE_EXCEPTION_DETAIL

pytest also introduces new options to allow doctests to run in Python 2 and Python 3 unchanged:

70 Chapter 11. Doctest integration for modules and test files

https://sybil.readthedocs.io/en/latest/index.html
https://docs.python.org/3/library/doctest.html#option-flags


pytest Documentation, Release 4.6

• ALLOW_UNICODE: when enabled, the u prefix is stripped from unicode strings in expected doctest output.

• ALLOW_BYTES: when enabled, the b prefix is stripped from byte strings in expected doctest output.

Alternatively, options can be enabled by an inline comment in the doc test itself:

# content of example.rst
>>> get_unicode_greeting() # doctest: +ALLOW_UNICODE
'Hello'

By default, pytest would report only the first failure for a given doctest. If you want to continue the test even when
you have failures, do:

pytest --doctest-modules --doctest-continue-on-failure

11.3 Output format

You can change the diff output format on failure for your doctests by using one of standard doctest modules
format in options (see doctest.REPORT_UDIFF, doctest.REPORT_CDIFF, doctest.REPORT_NDIFF,
doctest.REPORT_ONLY_FIRST_FAILURE):

pytest --doctest-modules --doctest-report none
pytest --doctest-modules --doctest-report udiff
pytest --doctest-modules --doctest-report cdiff
pytest --doctest-modules --doctest-report ndiff
pytest --doctest-modules --doctest-report only_first_failure

11.4 pytest-specific features

Some features are provided to make writing doctests easier or with better integration with your existing test suite. Keep
in mind however that by using those features you will make your doctests incompatible with the standard doctests
module.

11.4.1 Using fixtures

It is possible to use fixtures using the getfixture helper:

# content of example.rst
>>> tmp = getfixture('tmpdir')
>>> ...
>>>

Also, Using fixtures from classes, modules or projects and Autouse fixtures (xUnit setup on steroids) fixtures are
supported when executing text doctest files.

11.4.2 ‘doctest_namespace’ fixture

The doctest_namespace fixture can be used to inject items into the namespace in which your doctests run. It is
intended to be used within your own fixtures to provide the tests that use them with context.

doctest_namespace is a standard dict object into which you place the objects you want to appear in the doctest
namespace:

11.3. Output format 71

https://docs.python.org/3/library/doctest.html#doctest.REPORT_UDIFF
https://docs.python.org/3/library/doctest.html#doctest.REPORT_CDIFF
https://docs.python.org/3/library/doctest.html#doctest.REPORT_NDIFF
https://docs.python.org/3/library/doctest.html#doctest.REPORT_ONLY_FIRST_FAILURE


pytest Documentation, Release 4.6

# content of conftest.py
import numpy
@pytest.fixture(autouse=True)
def add_np(doctest_namespace):

doctest_namespace['np'] = numpy

which can then be used in your doctests directly:

# content of numpy.py
def arange():

"""
>>> a = np.arange(10)
>>> len(a)
10
"""
pass

Note that like the normal conftest.py, the fixtures are discovered in the directory tree conftest is in. Meaning that
if you put your doctest with your source code, the relevant conftest.py needs to be in the same directory tree. Fixtures
will not be discovered in a sibling directory tree!

11.4.3 Skipping tests dynamically

New in version 4.4.

You can use pytest.skip to dynamically skip doctests. For example:

>>> import sys, pytest
>>> if sys.platform.startswith('win'):
... pytest.skip('this doctest does not work on Windows')
...

72 Chapter 11. Doctest integration for modules and test files



CHAPTER 12

Skip and xfail: dealing with tests that cannot succeed

You can mark test functions that cannot be run on certain platforms or that you expect to fail so pytest can deal with
them accordingly and present a summary of the test session, while keeping the test suite green.

A skip means that you expect your test to pass only if some conditions are met, otherwise pytest should skip running
the test altogether. Common examples are skipping windows-only tests on non-windows platforms, or skipping tests
that depend on an external resource which is not available at the moment (for example a database).

A xfail means that you expect a test to fail for some reason. A common example is a test for a feature not yet
implemented, or a bug not yet fixed. When a test passes despite being expected to fail (marked with pytest.mark.
xfail), it’s an xpass and will be reported in the test summary.

pytest counts and lists skip and xfail tests separately. Detailed information about skipped/xfailed tests is not shown
by default to avoid cluttering the output. You can use the -r option to see details corresponding to the “short” letters
shown in the test progress:

pytest -rxXs # show extra info on xfailed, xpassed, and skipped tests

More details on the -r option can be found by running pytest -h.

(See How to change command line options defaults)

12.1 Skipping test functions

The simplest way to skip a test function is to mark it with the skip decorator which may be passed an optional
reason:

@pytest.mark.skip(reason="no way of currently testing this")
def test_the_unknown():

...

Alternatively, it is also possible to skip imperatively during test execution or setup by calling the pytest.
skip(reason) function:

73



pytest Documentation, Release 4.6

def test_function():
if not valid_config():

pytest.skip("unsupported configuration")

The imperative method is useful when it is not possible to evaluate the skip condition during import time.

It is also possible to skip the whole module using pytest.skip(reason, allow_module_level=True)
at the module level:

import sys
import pytest

if not sys.platform.startswith("win"):
pytest.skip("skipping windows-only tests", allow_module_level=True)

Reference: pytest.mark.skip

12.1.1 skipif

If you wish to skip something conditionally then you can use skipif instead. Here is an example of marking a test
function to be skipped when run on an interpreter earlier than Python3.6:

import sys

@pytest.mark.skipif(sys.version_info < (3, 6), reason="requires python3.6 or higher")
def test_function():

...

If the condition evaluates to True during collection, the test function will be skipped, with the specified reason
appearing in the summary when using -rs.

You can share skipif markers between modules. Consider this test module:

# content of test_mymodule.py
import mymodule

minversion = pytest.mark.skipif(
mymodule.__versioninfo__ < (1, 1), reason="at least mymodule-1.1 required"

)

@minversion
def test_function():

...

You can import the marker and reuse it in another test module:

# test_myothermodule.py
from test_mymodule import minversion

@minversion
def test_anotherfunction():

...

74 Chapter 12. Skip and xfail: dealing with tests that cannot succeed



pytest Documentation, Release 4.6

For larger test suites it’s usually a good idea to have one file where you define the markers which you then consistently
apply throughout your test suite.

Alternatively, you can use condition strings instead of booleans, but they can’t be shared between modules easily so
they are supported mainly for backward compatibility reasons.

Reference: pytest.mark.skipif

12.1.2 Skip all test functions of a class or module

You can use the skipif marker (as any other marker) on classes:

@pytest.mark.skipif(sys.platform == "win32", reason="does not run on windows")
class TestPosixCalls(object):

def test_function(self):
"will not be setup or run under 'win32' platform"

If the condition is True, this marker will produce a skip result for each of the test methods of that class.

If you want to skip all test functions of a module, you may use the pytestmark name on the global level:

# test_module.py
pytestmark = pytest.mark.skipif(...)

If multiple skipif decorators are applied to a test function, it will be skipped if any of the skip conditions is true.

12.1.3 Skipping files or directories

Sometimes you may need to skip an entire file or directory, for example if the tests rely on Python version-specific
features or contain code that you do not wish pytest to run. In this case, you must exclude the files and directories
from collection. Refer to Customizing test collection for more information.

12.1.4 Skipping on a missing import dependency

You can use the following helper at module level or within a test or test setup function:

docutils = pytest.importorskip("docutils")

If docutils cannot be imported here, this will lead to a skip outcome of the test. You can also skip based on the
version number of a library:

docutils = pytest.importorskip("docutils", minversion="0.3")

The version will be read from the specified module’s __version__ attribute.

12.1.5 Summary

Here’s a quick guide on how to skip tests in a module in different situations:

1. Skip all tests in a module unconditionally:

pytestmark = pytest.mark.skip("all tests still WIP")

2. Skip all tests in a module based on some condition:

12.1. Skipping test functions 75



pytest Documentation, Release 4.6

pytestmark = pytest.mark.skipif(sys.platform == "win32", reason="tests for
→˓linux only")

3. Skip all tests in a module if some import is missing:

pexpect = pytest.importorskip("pexpect")

12.2 XFail: mark test functions as expected to fail

You can use the xfail marker to indicate that you expect a test to fail:

@pytest.mark.xfail
def test_function():

...

This test will be run but no traceback will be reported when it fails. Instead terminal reporting will list it in the
“expected to fail” (XFAIL) or “unexpectedly passing” (XPASS) sections.

Alternatively, you can also mark a test as XFAIL from within a test or setup function imperatively:

def test_function():
if not valid_config():

pytest.xfail("failing configuration (but should work)")

This will unconditionally make test_function XFAIL. Note that no other code is executed after pytest.
xfail call, differently from the marker. That’s because it is implemented internally by raising a known exception.

Reference: pytest.mark.xfail

12.2.1 strict parameter

Both XFAIL and XPASS don’t fail the test suite, unless the strict keyword-only parameter is passed as True:

@pytest.mark.xfail(strict=True)
def test_function():

...

This will make XPASS (“unexpectedly passing”) results from this test to fail the test suite.

You can change the default value of the strict parameter using the xfail_strict ini option:

[pytest]
xfail_strict=true

12.2.2 reason parameter

As with skipif you can also mark your expectation of a failure on a particular platform:

@pytest.mark.xfail(sys.version_info >= (3, 6), reason="python3.6 api changes")
def test_function():

...

76 Chapter 12. Skip and xfail: dealing with tests that cannot succeed



pytest Documentation, Release 4.6

12.2.3 raises parameter

If you want to be more specific as to why the test is failing, you can specify a single exception, or a tuple of exceptions,
in the raises argument.

@pytest.mark.xfail(raises=RuntimeError)
def test_function():

...

Then the test will be reported as a regular failure if it fails with an exception not mentioned in raises.

12.2.4 run parameter

If a test should be marked as xfail and reported as such but should not be even executed, use the run parameter as
False:

@pytest.mark.xfail(run=False)
def test_function():

...

This is specially useful for xfailing tests that are crashing the interpreter and should be investigated later.

12.2.5 Ignoring xfail

By specifying on the commandline:

pytest --runxfail

you can force the running and reporting of an xfail marked test as if it weren’t marked at all. This also causes
pytest.xfail to produce no effect.

12.2.6 Examples

Here is a simple test file with the several usages:

# -*- coding: utf-8 -*-
import pytest

xfail = pytest.mark.xfail

@xfail
def test_hello():

assert 0

@xfail(run=False)
def test_hello2():

assert 0

@xfail("hasattr(os, 'sep')")
def test_hello3():

(continues on next page)

12.2. XFail: mark test functions as expected to fail 77



pytest Documentation, Release 4.6

(continued from previous page)

assert 0

@xfail(reason="bug 110")
def test_hello4():

assert 0

@xfail('pytest.__version__[0] != "17"')
def test_hello5():

assert 0

def test_hello6():
pytest.xfail("reason")

@xfail(raises=IndexError)
def test_hello7():

x = []
x[1] = 1

Running it with the report-on-xfail option gives this output:

example $ pytest -rx xfail_demo.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/example
collected 7 items

xfail_demo.py xxxxxxx [100%]

========================= short test summary info ==========================
XFAIL xfail_demo.py::test_hello
XFAIL xfail_demo.py::test_hello2

reason: [NOTRUN]
XFAIL xfail_demo.py::test_hello3

condition: hasattr(os, 'sep')
XFAIL xfail_demo.py::test_hello4

bug 110
XFAIL xfail_demo.py::test_hello5

condition: pytest.__version__[0] != "17"
XFAIL xfail_demo.py::test_hello6

reason: reason
XFAIL xfail_demo.py::test_hello7
======================== 7 xfailed in 0.12 seconds =========================

12.3 Skip/xfail with parametrize

It is possible to apply markers like skip and xfail to individual test instances when using parametrize:

import pytest

(continues on next page)

78 Chapter 12. Skip and xfail: dealing with tests that cannot succeed



pytest Documentation, Release 4.6

(continued from previous page)

@pytest.mark.parametrize(
("n", "expected"),
[

(1, 2),
pytest.param(1, 0, marks=pytest.mark.xfail),
pytest.param(1, 3, marks=pytest.mark.xfail(reason="some bug")),
(2, 3),
(3, 4),
(4, 5),
pytest.param(

10, 11, marks=pytest.mark.skipif(sys.version_info >= (3, 0), reason="py2k
→˓")

),
],

)
def test_increment(n, expected):

assert n + 1 == expected

12.3. Skip/xfail with parametrize 79



pytest Documentation, Release 4.6

80 Chapter 12. Skip and xfail: dealing with tests that cannot succeed



CHAPTER 13

Parametrizing fixtures and test functions

pytest enables test parametrization at several levels:

• pytest.fixture() allows one to parametrize fixture functions.

• @pytest.mark.parametrize allows one to define multiple sets of arguments and fixtures at the test function or
class.

• pytest_generate_tests allows one to define custom parametrization schemes or extensions.

13.1 @pytest.mark.parametrize: parametrizing test functions

The builtin pytest.mark.parametrize decorator enables parametrization of arguments for a test function. Here is a
typical example of a test function that implements checking that a certain input leads to an expected output:

# content of test_expectation.py
import pytest

@pytest.mark.parametrize("test_input,expected", [("3+5", 8), ("2+4", 6), ("6*9", 42)])
def test_eval(test_input, expected):

assert eval(test_input) == expected

Here, the @parametrize decorator defines three different (test_input,expected) tuples so that the
test_eval function will run three times using them in turn:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_expectation.py ..F [100%]

(continues on next page)

81



pytest Documentation, Release 4.6

(continued from previous page)

================================= FAILURES =================================
____________________________ test_eval[6*9-42] _____________________________

test_input = '6*9', expected = 42

@pytest.mark.parametrize("test_input,expected", [("3+5", 8), ("2+4", 6), ("6*9",
→˓42)])

def test_eval(test_input, expected):
> assert eval(test_input) == expected
E AssertionError: assert 54 == 42
E + where 54 = eval('6*9')

test_expectation.py:6: AssertionError
==================== 1 failed, 2 passed in 0.12 seconds ====================

Note: pytest by default escapes any non-ascii characters used in unicode strings for the parametrization because it has
several downsides. If however you would like to use unicode strings in parametrization and see them in the terminal
as is (non-escaped), use this option in your pytest.ini:

[pytest]
disable_test_id_escaping_and_forfeit_all_rights_to_community_support = True

Keep in mind however that this might cause unwanted side effects and even bugs depending on the OS used and
plugins currently installed, so use it at your own risk.

As designed in this example, only one pair of input/output values fails the simple test function. And as usual with test
function arguments, you can see the input and output values in the traceback.

Note that you could also use the parametrize marker on a class or a module (see Marking test functions with attributes)
which would invoke several functions with the argument sets.

It is also possible to mark individual test instances within parametrize, for example with the builtin mark.xfail:

# content of test_expectation.py
import pytest

@pytest.mark.parametrize(
"test_input,expected",
[("3+5", 8), ("2+4", 6), pytest.param("6*9", 42, marks=pytest.mark.xfail)],

)
def test_eval(test_input, expected):

assert eval(test_input) == expected

Let’s run this:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_expectation.py ..x [100%]

(continues on next page)

82 Chapter 13. Parametrizing fixtures and test functions



pytest Documentation, Release 4.6

(continued from previous page)

=================== 2 passed, 1 xfailed in 0.12 seconds ====================

The one parameter set which caused a failure previously now shows up as an “xfailed (expected to fail)” test.

In case the values provided to parametrize result in an empty list - for example, if they’re dynamically generated
by some function - the behaviour of pytest is defined by the empty_parameter_set_mark option.

To get all combinations of multiple parametrized arguments you can stack parametrize decorators:

import pytest

@pytest.mark.parametrize("x", [0, 1])
@pytest.mark.parametrize("y", [2, 3])
def test_foo(x, y):

pass

This will run the test with the arguments set to x=0/y=2, x=1/y=2, x=0/y=3, and x=1/y=3 exhausting parame-
ters in the order of the decorators.

13.2 Basic pytest_generate_tests example

Sometimes you may want to implement your own parametrization scheme or implement some dynamism for deter-
mining the parameters or scope of a fixture. For this, you can use the pytest_generate_tests hook which is
called when collecting a test function. Through the passed in metafunc object you can inspect the requesting test
context and, most importantly, you can call metafunc.parametrize() to cause parametrization.

For example, let’s say we want to run a test taking string inputs which we want to set via a new pytest command
line option. Let’s first write a simple test accepting a stringinput fixture function argument:

# content of test_strings.py

def test_valid_string(stringinput):
assert stringinput.isalpha()

Now we add a conftest.py file containing the addition of a command line option and the parametrization of our
test function:

# content of conftest.py

def pytest_addoption(parser):
parser.addoption(

"--stringinput",
action="append",
default=[],
help="list of stringinputs to pass to test functions",

)

def pytest_generate_tests(metafunc):
if "stringinput" in metafunc.fixturenames:

metafunc.parametrize("stringinput", metafunc.config.getoption("stringinput"))

13.2. Basic pytest_generate_tests example 83



pytest Documentation, Release 4.6

If we now pass two stringinput values, our test will run twice:

$ pytest -q --stringinput="hello" --stringinput="world" test_strings.py
.. [100%]
2 passed in 0.12 seconds

Let’s also run with a stringinput that will lead to a failing test:

$ pytest -q --stringinput="!" test_strings.py
F [100%]
================================= FAILURES =================================
___________________________ test_valid_string[!] ___________________________

stringinput = '!'

def test_valid_string(stringinput):
> assert stringinput.isalpha()
E AssertionError: assert False
E + where False = <built-in method isalpha of str object at 0xdeadbeef>()
E + where <built-in method isalpha of str object at 0xdeadbeef> = '!'.
→˓isalpha

test_strings.py:4: AssertionError
1 failed in 0.12 seconds

As expected our test function fails.

If you don’t specify a stringinput it will be skipped because metafunc.parametrize() will be called with an
empty parameter list:

$ pytest -q -rs test_strings.py
s [100%]
========================= short test summary info ==========================
SKIPPED [1] test_strings.py: got empty parameter set ['stringinput'], function test_
→˓valid_string at $REGENDOC_TMPDIR/test_strings.py:2
1 skipped in 0.12 seconds

Note that when calling metafunc.parametrizemultiple times with different parameter sets, all parameter names
across those sets cannot be duplicated, otherwise an error will be raised.

13.3 More examples

For further examples, you might want to look at more parametrization examples.

84 Chapter 13. Parametrizing fixtures and test functions



CHAPTER 14

Cache: working with cross-testrun state

14.1 Usage

The plugin provides two command line options to rerun failures from the last pytest invocation:

• --lf, --last-failed - to only re-run the failures.

• --ff, --failed-first - to run the failures first and then the rest of the tests.

For cleanup (usually not needed), a --cache-clear option allows to remove all cross-session cache contents ahead
of a test run.

Other plugins may access the config.cache object to set/get json encodable values between pytest invocations.

Note: This plugin is enabled by default, but can be disabled if needed: see Deactivating / unregistering a plugin by
name (the internal name for this plugin is cacheprovider).

14.2 Rerunning only failures or failures first

First, let’s create 50 test invocation of which only 2 fail:

# content of test_50.py
import pytest

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
pytest.fail("bad luck")

If you run this for the first time you will see two failures:

85



pytest Documentation, Release 4.6

$ pytest -q
.................F.......F........................ [100%]
================================= FAILURES =================================
_______________________________ test_num[17] _______________________________

i = 17

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
_______________________________ test_num[25] _______________________________

i = 25

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
2 failed, 48 passed in 0.12 seconds

If you then run it with --lf:

$ pytest --lf
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 50 items / 48 deselected / 2 selected
run-last-failure: rerun previous 2 failures

test_50.py FF [100%]

================================= FAILURES =================================
_______________________________ test_num[17] _______________________________

i = 17

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
_______________________________ test_num[25] _______________________________

i = 25

@pytest.mark.parametrize("i", range(50))
def test_num(i):

(continues on next page)

86 Chapter 14. Cache: working with cross-testrun state



pytest Documentation, Release 4.6

(continued from previous page)

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
================= 2 failed, 48 deselected in 0.12 seconds ==================

You have run only the two failing test from the last run, while 48 tests have not been run (“deselected”).

Now, if you run with the --ff option, all tests will be run but the first previous failures will be executed first (as can
be seen from the series of FF and dots):

$ pytest --ff
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 50 items
run-last-failure: rerun previous 2 failures first

test_50.py FF................................................ [100%]

================================= FAILURES =================================
_______________________________ test_num[17] _______________________________

i = 17

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
_______________________________ test_num[25] _______________________________

i = 25

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:6: Failed
=================== 2 failed, 48 passed in 0.12 seconds ====================

New --nf, --new-first options: run new tests first followed by the rest of the tests, in both cases tests are also
sorted by the file modified time, with more recent files coming first.

14.3 Behavior when no tests failed in the last run

When no tests failed in the last run, or when no cached lastfailed data was found, pytest can be configured
either to run all of the tests or no tests, using the --last-failed-no-failures option, which takes one of the
following values:

14.3. Behavior when no tests failed in the last run 87



pytest Documentation, Release 4.6

pytest --last-failed --last-failed-no-failures all # run all tests (default
→˓behavior)
pytest --last-failed --last-failed-no-failures none # run no tests and exit

14.4 The new config.cache object

Plugins or conftest.py support code can get a cached value using the pytest config object. Here is a basic example
plugin which implements a pytest fixtures: explicit, modular, scalable which re-uses previously created state across
pytest invocations:

# content of test_caching.py
import pytest
import time

def expensive_computation():
print("running expensive computation...")

@pytest.fixture
def mydata(request):

val = request.config.cache.get("example/value", None)
if val is None:

expensive_computation()
val = 42
request.config.cache.set("example/value", val)

return val

def test_function(mydata):
assert mydata == 23

If you run this command for the first time, you can see the print statement:

$ pytest -q
F [100%]
================================= FAILURES =================================
______________________________ test_function _______________________________

mydata = 42

def test_function(mydata):
> assert mydata == 23
E assert 42 == 23

test_caching.py:17: AssertionError
-------------------------- Captured stdout setup ---------------------------
running expensive computation...
1 failed in 0.12 seconds

If you run it a second time the value will be retrieved from the cache and nothing will be printed:

$ pytest -q
F [100%]
================================= FAILURES =================================
______________________________ test_function _______________________________

(continues on next page)

88 Chapter 14. Cache: working with cross-testrun state



pytest Documentation, Release 4.6

(continued from previous page)

mydata = 42

def test_function(mydata):
> assert mydata == 23
E assert 42 == 23

test_caching.py:17: AssertionError
1 failed in 0.12 seconds

See the config.cache for more details.

14.5 Inspecting Cache content

You can always peek at the content of the cache using the --cache-show command line option:

$ pytest --cache-show
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
cachedir: $PYTHON_PREFIX/.pytest_cache
--------------------------- cache values for '*' ---------------------------
cache/lastfailed contains:

{'test_50.py::test_num[17]': True,
'test_50.py::test_num[25]': True,
'test_assert1.py::test_function': True,
'test_assert2.py::test_set_comparison': True,
'test_caching.py::test_function': True,
'test_foocompare.py::test_compare': True}

cache/nodeids contains:
['test_caching.py::test_function']

cache/stepwise contains:
[]

example/value contains:
42

======================= no tests ran in 0.12 seconds =======================

--cache-show takes an optional argument to specify a glob pattern for filtering:

$ pytest --cache-show example/*
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
cachedir: $PYTHON_PREFIX/.pytest_cache
----------------------- cache values for 'example/*' -----------------------
example/value contains:

42

======================= no tests ran in 0.12 seconds =======================

14.5. Inspecting Cache content 89



pytest Documentation, Release 4.6

14.6 Clearing Cache content

You can instruct pytest to clear all cache files and values by adding the --cache-clear option like this:

pytest --cache-clear

This is recommended for invocations from Continuous Integration servers where isolation and correctness is more
important than speed.

14.7 Stepwise

As an alternative to --lf -x, especially for cases where you expect a large part of the test suite will fail, --sw,
--stepwise allows you to fix them one at a time. The test suite will run until the first failure and then stop. At the
next invocation, tests will continue from the last failing test and then run until the next failing test. You may use the
--stepwise-skip option to ignore one failing test and stop the test execution on the second failing test instead.
This is useful if you get stuck on a failing test and just want to ignore it until later.

90 Chapter 14. Cache: working with cross-testrun state



CHAPTER 15

unittest.TestCase Support

pytest supports running Python unittest-based tests out of the box. It’s meant for leveraging existing
unittest-based test suites to use pytest as a test runner and also allow to incrementally adapt the test suite to
take full advantage of pytest’s features.

To run an existing unittest-style test suite using pytest, type:

pytest tests

pytest will automatically collect unittest.TestCase subclasses and their test methods in test_*.py or
*_test.py files.

Almost all unittest features are supported:

• @unittest.skip style decorators;

• setUp/tearDown;

• setUpClass/tearDownClass;

• setUpModule/tearDownModule;

Up to this point pytest does not have support for the following features:

• load_tests protocol;

• subtests;

15.1 Benefits out of the box

By running your test suite with pytest you can make use of several features, in most cases without having to modify
existing code:

• Obtain more informative tracebacks;

• stdout and stderr capturing;

• Test selection options using -k and -m flags;

91

https://docs.python.org/3/library/unittest.html#load-tests-protocol
https://docs.python.org/3/library/unittest.html#distinguishing-test-iterations-using-subtests


pytest Documentation, Release 4.6

• Stopping after the first (or N) failures;

• –pdb command-line option for debugging on test failures (see note below);

• Distribute tests to multiple CPUs using the pytest-xdist plugin;

• Use plain assert-statements instead of self.assert* functions (unittest2pytest is immensely helpful in this);

15.2 pytest features in unittest.TestCase subclasses

The following pytest features work in unittest.TestCase subclasses:

• Marks: skip, skipif , xfail;

• Auto-use fixtures;

The following pytest features do not work, and probably never will due to different design philosophies:

• Fixtures (except for autouse fixtures, see below);

• Parametrization;

• Custom hooks;

Third party plugins may or may not work well, depending on the plugin and the test suite.

15.3 Mixing pytest fixtures into unittest.TestCase subclasses us-
ing marks

Running your unittest with pytest allows you to use its fixture mechanism with unittest.TestCase style tests.
Assuming you have at least skimmed the pytest fixture features, let’s jump-start into an example that integrates a pytest
db_class fixture, setting up a class-cached database object, and then reference it from a unittest-style test:

# content of conftest.py

# we define a fixture function below and it will be "used" by
# referencing its name from tests

import pytest

@pytest.fixture(scope="class")
def db_class(request):

class DummyDB(object):
pass

# set a class attribute on the invoking test context
request.cls.db = DummyDB()

This defines a fixture function db_class which - if used - is called once for each test class and which sets the class-
level db attribute to a DummyDB instance. The fixture function achieves this by receiving a special request object
which gives access to the requesting test context such as the cls attribute, denoting the class from which the fixture is
used. This architecture de-couples fixture writing from actual test code and allows re-use of the fixture by a minimal
reference, the fixture name. So let’s write an actual unittest.TestCase class using our fixture definition:

# content of test_unittest_db.py

import unittest
(continues on next page)

92 Chapter 15. unittest.TestCase Support

https://pypi.org/project/pytest-xdist/
https://pypi.org/project/unittest2pytest/


pytest Documentation, Release 4.6

(continued from previous page)

import pytest

@pytest.mark.usefixtures("db_class")
class MyTest(unittest.TestCase):

def test_method1(self):
assert hasattr(self, "db")
assert 0, self.db # fail for demo purposes

def test_method2(self):
assert 0, self.db # fail for demo purposes

The @pytest.mark.usefixtures("db_class") class-decorator makes sure that the pytest fixture function
db_class is called once per class. Due to the deliberately failing assert statements, we can take a look at the
self.db values in the traceback:

$ pytest test_unittest_db.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_unittest_db.py FF [100%]

================================= FAILURES =================================
___________________________ MyTest.test_method1 ____________________________

self = <test_unittest_db.MyTest testMethod=test_method1>

def test_method1(self):
assert hasattr(self, "db")

> assert 0, self.db # fail for demo purposes
E AssertionError: <conftest.db_class.<locals>.DummyDB object at 0xdeadbeef>
E assert 0

test_unittest_db.py:9: AssertionError
___________________________ MyTest.test_method2 ____________________________

self = <test_unittest_db.MyTest testMethod=test_method2>

def test_method2(self):
> assert 0, self.db # fail for demo purposes
E AssertionError: <conftest.db_class.<locals>.DummyDB object at 0xdeadbeef>
E assert 0

test_unittest_db.py:12: AssertionError
========================= 2 failed in 0.12 seconds =========================

This default pytest traceback shows that the two test methods share the same self.db instance which was our
intention when writing the class-scoped fixture function above.

15.4 Using autouse fixtures and accessing other fixtures

Although it’s usually better to explicitly declare use of fixtures you need for a given test, you may sometimes want to
have fixtures that are automatically used in a given context. After all, the traditional style of unittest-setup mandates

15.4. Using autouse fixtures and accessing other fixtures 93



pytest Documentation, Release 4.6

the use of this implicit fixture writing and chances are, you are used to it or like it.

You can flag fixture functions with @pytest.fixture(autouse=True) and define the fixture function in the
context where you want it used. Let’s look at an initdir fixture which makes all test methods of a TestCase
class execute in a temporary directory with a pre-initialized samplefile.ini. Our initdir fixture itself uses
the pytest builtin tmpdir fixture to delegate the creation of a per-test temporary directory:

# content of test_unittest_cleandir.py
import pytest
import unittest

class MyTest(unittest.TestCase):

@pytest.fixture(autouse=True)
def initdir(self, tmpdir):

tmpdir.chdir() # change to pytest-provided temporary directory
tmpdir.join("samplefile.ini").write("# testdata")

def test_method(self):
with open("samplefile.ini") as f:

s = f.read()
assert "testdata" in s

Due to the autouse flag the initdir fixture function will be used for all methods of the class where it is de-
fined. This is a shortcut for using a @pytest.mark.usefixtures("initdir") marker on the class like in
the previous example.

Running this test module . . . :

$ pytest -q test_unittest_cleandir.py
. [100%]
1 passed in 0.12 seconds

. . . gives us one passed test because the initdir fixture function was executed ahead of the test_method.

Note: unittest.TestCase methods cannot directly receive fixture arguments as implementing that is likely to
inflict on the ability to run general unittest.TestCase test suites.

The above usefixtures and autouse examples should help to mix in pytest fixtures into unittest suites.

You can also gradually move away from subclassing from unittest.TestCase to plain asserts and then start to
benefit from the full pytest feature set step by step.

Note: Running tests from unittest.TestCase subclasses with --pdb will disable tearDown and cleanup
methods for the case that an Exception occurs. This allows proper post mortem debugging for all applications which
have significant logic in their tearDown machinery. However, supporting this feature has the following side effect:
If people overwrite unittest.TestCase __call__ or run, they need to to overwrite debug in the same way
(this is also true for standard unittest).

Note: Due to architectural differences between the two frameworks, setup and teardown for unittest-based tests
is performed during the call phase of testing instead of in pytest’s standard setup and teardown stages.
This can be important to understand in some situations, particularly when reasoning about errors. For example, if a
unittest-based suite exhibits errors during setup, pytest will report no errors during its setup phase and will

94 Chapter 15. unittest.TestCase Support



pytest Documentation, Release 4.6

instead raise the error during call.

15.4. Using autouse fixtures and accessing other fixtures 95



pytest Documentation, Release 4.6

96 Chapter 15. unittest.TestCase Support



CHAPTER 16

Running tests written for nose

pytest has basic support for running tests written for nose.

16.1 Usage

After Install pytest type:

python setup.py develop # make sure tests can import our package
pytest # instead of 'nosetests'

and you should be able to run your nose style tests and make use of pytest’s capabilities.

16.2 Supported nose Idioms

• setup and teardown at module/class/method level

• SkipTest exceptions and markers

• setup/teardown decorators

• yield-based tests and their setup (considered deprecated as of pytest 3.0)

• __test__ attribute on modules/classes/functions

• general usage of nose utilities

16.3 Unsupported idioms / known issues

• unittest-style setUp, tearDown, setUpClass, tearDownClass are recognized only on
unittest.TestCase classes but not on plain classes. nose supports these methods also on plain
classes but pytest deliberately does not. As nose and pytest already both support setup_class,

97

https://nose.readthedocs.io/en/latest/


pytest Documentation, Release 4.6

teardown_class, setup_method, teardown_method it doesn’t seem useful to duplicate the
unittest-API like nose does. If you however rather think pytest should support the unittest-spelling on plain
classes please post to this issue.

• nose imports test modules with the same import path (e.g. tests.test_mod) but different file system paths
(e.g. tests/test_mode.py and other/tests/test_mode.py) by extending sys.path/import seman-
tics. pytest does not do that but there is discussion in #268 for adding some support. Note that nose2 choose to
avoid this sys.path/import hackery.

If you place a conftest.py file in the root directory of your project (as determined by pytest) pytest will run tests
“nose style” against the code below that directory by adding it to your sys.path instead of running against
your installed code.

You may find yourself wanting to do this if you ran python setup.py install to set up your project,
as opposed to python setup.py develop or any of the package manager equivalents. Installing with
develop in a virtual environment like tox is recommended over this pattern.

• nose-style doctests are not collected and executed correctly, also doctest fixtures don’t work.

• no nose-configuration is recognized.

• yield-based methods don’t support setup properly because the setup method is always called in the same
class instance. There are no plans to fix this currently because yield-tests are deprecated in pytest 3.0, with
pytest.mark.parametrize being the recommended alternative.

98 Chapter 16. Running tests written for nose

https://github.com/pytest-dev/pytest/issues/377/
https://github.com/pytest-dev/pytest/issues/268
https://nose2.readthedocs.io/en/latest/differences.html#test-discovery-and-loading
https://nose2.readthedocs.io/en/latest/differences.html#test-discovery-and-loading


CHAPTER 17

classic xunit-style setup

This section describes a classic and popular way how you can implement fixtures (setup and teardown test state) on a
per-module/class/function basis.

Note: While these setup/teardown methods are simple and familiar to those coming from a unittest or nose
background, you may also consider using pytest’s more powerful fixture mechanism which leverages the concept
of dependency injection, allowing for a more modular and more scalable approach for managing test state, especially
for larger projects and for functional testing. You can mix both fixture mechanisms in the same file but test methods
of unittest.TestCase subclasses cannot receive fixture arguments.

17.1 Module level setup/teardown

If you have multiple test functions and test classes in a single module you can optionally implement the following
fixture methods which will usually be called once for all the functions:

def setup_module(module):
""" setup any state specific to the execution of the given module."""

def teardown_module(module):
""" teardown any state that was previously setup with a setup_module
method.
"""

As of pytest-3.0, the module parameter is optional.

17.2 Class level setup/teardown

Similarly, the following methods are called at class level before and after all test methods of the class are called:

99



pytest Documentation, Release 4.6

@classmethod
def setup_class(cls):

""" setup any state specific to the execution of the given class (which
usually contains tests).
"""

@classmethod
def teardown_class(cls):

""" teardown any state that was previously setup with a call to
setup_class.
"""

17.3 Method and function level setup/teardown

Similarly, the following methods are called around each method invocation:

def setup_method(self, method):
""" setup any state tied to the execution of the given method in a
class. setup_method is invoked for every test method of a class.
"""

def teardown_method(self, method):
""" teardown any state that was previously setup with a setup_method
call.
"""

As of pytest-3.0, the method parameter is optional.

If you would rather define test functions directly at module level you can also use the following functions to implement
fixtures:

def setup_function(function):
""" setup any state tied to the execution of the given function.
Invoked for every test function in the module.
"""

def teardown_function(function):
""" teardown any state that was previously setup with a setup_function
call.
"""

As of pytest-3.0, the function parameter is optional.

Remarks:

• It is possible for setup/teardown pairs to be invoked multiple times per testing process.

• teardown functions are not called if the corresponding setup function existed and failed/was skipped.

• Prior to pytest-4.2, xunit-style functions did not obey the scope rules of fixtures, so it was possible, for example,
for a setup_method to be called before a session-scoped autouse fixture.

Now the xunit-style functions are integrated with the fixture mechanism and obey the proper scope rules of
fixtures involved in the call.

100 Chapter 17. classic xunit-style setup



CHAPTER 18

Installing and Using plugins

This section talks about installing and using third party plugins. For writing your own plugins, please refer to Writing
plugins.

Installing a third party plugin can be easily done with pip:

pip install pytest-NAME
pip uninstall pytest-NAME

If a plugin is installed, pytest automatically finds and integrates it, there is no need to activate it.

Here is a little annotated list for some popular plugins:

• pytest-django: write tests for django apps, using pytest integration.

• pytest-twisted: write tests for twisted apps, starting a reactor and processing deferreds from test functions.

• pytest-cov: coverage reporting, compatible with distributed testing

• pytest-xdist: to distribute tests to CPUs and remote hosts, to run in boxed mode which allows to survive seg-
mentation faults, to run in looponfailing mode, automatically re-running failing tests on file changes.

• pytest-instafail: to report failures while the test run is happening.

• pytest-bdd and pytest-konira to write tests using behaviour-driven testing.

• pytest-timeout: to timeout tests based on function marks or global definitions.

• pytest-pep8: a --pep8 option to enable PEP8 compliance checking.

• pytest-flakes: check source code with pyflakes.

• oejskit: a plugin to run javascript unittests in live browsers.

To see a complete list of all plugins with their latest testing status against different pytest and Python versions, please
visit plugincompat.

You may also discover more plugins through a pytest- pypi.org search.

101

https://pypi.org/project/pytest-django/
https://www.djangoproject.com/
https://pypi.org/project/pytest-twisted/
http://twistedmatrix.com
https://pypi.org/project/pytest-cov/
https://pypi.org/project/pytest-xdist/
https://pypi.org/project/pytest-instafail/
https://pypi.org/project/pytest-bdd/
https://pypi.org/project/pytest-konira/
https://pypi.org/project/pytest-timeout/
https://pypi.org/project/pytest-pep8/
https://pypi.org/project/pytest-flakes/
https://pypi.org/project/oejskit/
http://plugincompat.herokuapp.com/
https://pypi.org/search/?q=pytest-


pytest Documentation, Release 4.6

18.1 Requiring/Loading plugins in a test module or conftest file

You can require plugins in a test module or a conftest file like this:

pytest_plugins = ("myapp.testsupport.myplugin",)

When the test module or conftest plugin is loaded the specified plugins will be loaded as well.

Note: Requiring plugins using a pytest_plugins variable in non-root conftest.py files is deprecated. See
full explanation in the Writing plugins section.

Note: The name pytest_plugins is reserved and should not be used as a name for a custom plugin module.

18.2 Finding out which plugins are active

If you want to find out which plugins are active in your environment you can type:

pytest --trace-config

and will get an extended test header which shows activated plugins and their names. It will also print local plugins aka
conftest.py files when they are loaded.

18.3 Deactivating / unregistering a plugin by name

You can prevent plugins from loading or unregister them:

pytest -p no:NAME

This means that any subsequent try to activate/load the named plugin will not work.

If you want to unconditionally disable a plugin for a project, you can add this option to your pytest.ini file:

[pytest]
addopts = -p no:NAME

Alternatively to disable it only in certain environments (for example in a CI server), you can set PYTEST_ADDOPTS
environment variable to -p no:name.

See Finding out which plugins are active for how to obtain the name of a plugin.

102 Chapter 18. Installing and Using plugins



CHAPTER 19

Writing plugins

It is easy to implement local conftest plugins for your own project or pip-installable plugins that can be used throughout
many projects, including third party projects. Please refer to Installing and Using plugins if you only want to use but
not write plugins.

A plugin contains one or multiple hook functions. Writing hooks explains the basics and details of how you can write a
hook function yourself. pytest implements all aspects of configuration, collection, running and reporting by calling
well specified hooks of the following plugins:

• builtin plugins: loaded from pytest’s internal _pytest directory.

• external plugins: modules discovered through setuptools entry points

• conftest.py plugins: modules auto-discovered in test directories

In principle, each hook call is a 1:N Python function call where N is the number of registered implementation functions
for a given specification. All specifications and implementations follow the pytest_ prefix naming convention,
making them easy to distinguish and find.

19.1 Plugin discovery order at tool startup

pytest loads plugin modules at tool startup in the following way:

• by loading all builtin plugins

• by loading all plugins registered through setuptools entry points.

• by pre-scanning the command line for the -p name option and loading the specified plugin before actual
command line parsing.

• by loading all conftest.py files as inferred by the command line invocation:

– if no test paths are specified use current dir as a test path

– if exists, load conftest.py and test*/conftest.py relative to the directory part of the first test
path.

103



pytest Documentation, Release 4.6

Note that pytest does not find conftest.py files in deeper nested sub directories at tool startup. It is usually
a good idea to keep your conftest.py file in the top level test or project root directory.

• by recursively loading all plugins specified by the pytest_plugins variable in conftest.py files

19.2 conftest.py: local per-directory plugins

Local conftest.py plugins contain directory-specific hook implementations. Hook Session and test running activi-
ties will invoke all hooks defined in conftest.py files closer to the root of the filesystem. Example of implementing
the pytest_runtest_setup hook so that is called for tests in the a sub directory but not for other directories:

a/conftest.py:
def pytest_runtest_setup(item):

# called for running each test in 'a' directory
print("setting up", item)

a/test_sub.py:
def test_sub():

pass

test_flat.py:
def test_flat():

pass

Here is how you might run it:

pytest test_flat.py --capture=no # will not show "setting up"
pytest a/test_sub.py --capture=no # will show "setting up"

Note: If you have conftest.py files which do not reside in a python package directory (i.e. one containing an
__init__.py) then “import conftest” can be ambiguous because there might be other conftest.py files as well
on your PYTHONPATH or sys.path. It is thus good practice for projects to either put conftest.py under a
package scope or to never import anything from a conftest.py file.

See also: pytest import mechanisms and sys.path/PYTHONPATH.

19.3 Writing your own plugin

If you want to write a plugin, there are many real-life examples you can copy from:

• a custom collection example plugin: A basic example for specifying tests in Yaml files

• builtin plugins which provide pytest’s own functionality

• many external plugins providing additional features

All of these plugins implement hooks and/or fixtures to extend and add functionality.

Note: Make sure to check out the excellent cookiecutter-pytest-plugin project, which is a cookiecutter template for
authoring plugins.

104 Chapter 19. Writing plugins

http://plugincompat.herokuapp.com
https://github.com/pytest-dev/cookiecutter-pytest-plugin
https://github.com/audreyr/cookiecutter


pytest Documentation, Release 4.6

The template provides an excellent starting point with a working plugin, tests running with tox, a comprehensive
README file as well as a pre-configured entry-point.

Also consider contributing your plugin to pytest-dev once it has some happy users other than yourself.

19.4 Making your plugin installable by others

If you want to make your plugin externally available, you may define a so-called entry point for your distribution so
that pytest finds your plugin module. Entry points are a feature that is provided by setuptools. pytest looks up
the pytest11 entrypoint to discover its plugins and you can thus make your plugin available by defining it in your
setuptools-invocation:

# sample ./setup.py file
from setuptools import setup

setup(
name="myproject",
packages=["myproject"],
# the following makes a plugin available to pytest
entry_points={"pytest11": ["name_of_plugin = myproject.pluginmodule"]},
# custom PyPI classifier for pytest plugins
classifiers=["Framework :: Pytest"],

)

If a package is installed this way, pytest will load myproject.pluginmodule as a plugin which can define
hooks.

Note: Make sure to include Framework :: Pytest in your list of PyPI classifiers to make it easy for users to
find your plugin.

19.5 Assertion Rewriting

One of the main features of pytest is the use of plain assert statements and the detailed introspection of expressions
upon assertion failures. This is provided by “assertion rewriting” which modifies the parsed AST before it gets com-
piled to bytecode. This is done via a PEP 302 import hook which gets installed early on when pytest starts up and
will perform this rewriting when modules get imported. However since we do not want to test different bytecode then
you will run in production this hook only rewrites test modules themselves as well as any modules which are part of
plugins. Any other imported module will not be rewritten and normal assertion behaviour will happen.

If you have assertion helpers in other modules where you would need assertion rewriting to be enabled you need to
ask pytest explicitly to rewrite this module before it gets imported.

register_assert_rewrite(*names)
Register one or more module names to be rewritten on import.

This function will make sure that this module or all modules inside the package will get their assert statements
rewritten. Thus you should make sure to call this before the module is actually imported, usually in your
__init__.py if you are a plugin using a package.

Raises TypeError – if the given module names are not strings.

19.4. Making your plugin installable by others 105

https://pypi.org/project/setuptools/
https://python-packaging-user-guide.readthedocs.io/distributing/#classifiers
https://www.python.org/dev/peps/pep-0302
https://docs.python.org/3/library/exceptions.html#TypeError


pytest Documentation, Release 4.6

This is especially important when you write a pytest plugin which is created using a package. The import hook only
treats conftest.py files and any modules which are listed in the pytest11 entrypoint as plugins. As an example
consider the following package:

pytest_foo/__init__.py
pytest_foo/plugin.py
pytest_foo/helper.py

With the following typical setup.py extract:

setup(..., entry_points={"pytest11": ["foo = pytest_foo.plugin"]}, ...)

In this case only pytest_foo/plugin.py will be rewritten. If the helper module also contains assert statements
which need to be rewritten it needs to be marked as such, before it gets imported. This is easiest by marking it
for rewriting inside the __init__.py module, which will always be imported first when a module inside a pack-
age is imported. This way plugin.py can still import helper.py normally. The contents of pytest_foo/
__init__.py will then need to look like this:

import pytest

pytest.register_assert_rewrite("pytest_foo.helper")

19.6 Requiring/Loading plugins in a test module or conftest file

You can require plugins in a test module or a conftest.py file like this:

pytest_plugins = ["name1", "name2"]

When the test module or conftest plugin is loaded the specified plugins will be loaded as well. Any module can be
blessed as a plugin, including internal application modules:

pytest_plugins = "myapp.testsupport.myplugin"

pytest_plugins variables are processed recursively, so note that in the example above if myapp.
testsupport.myplugin also declares pytest_plugins, the contents of the variable will also be loaded as
plugins, and so on.

Note: Requiring plugins using a pytest_plugins variable in non-root conftest.py files is deprecated.

This is important because conftest.py files implement per-directory hook implementations, but once a plugin is
imported, it will affect the entire directory tree. In order to avoid confusion, defining pytest_plugins in any
conftest.py file which is not located in the tests root directory is deprecated, and will raise a warning.

This mechanism makes it easy to share fixtures within applications or even external applications without the need to
create external plugins using the setuptools’s entry point technique.

Plugins imported by pytest_plugins will also automatically be marked for assertion rewriting (see pytest.
register_assert_rewrite()). However for this to have any effect the module must not be imported already; if
it was already imported at the time the pytest_plugins statement is processed, a warning will result and assertions
inside the plugin will not be rewritten. To fix this you can either call pytest.register_assert_rewrite()
yourself before the module is imported, or you can arrange the code to delay the importing until after the plugin is
registered.

106 Chapter 19. Writing plugins



pytest Documentation, Release 4.6

19.7 Accessing another plugin by name

If a plugin wants to collaborate with code from another plugin it can obtain a reference through the plugin manager
like this:

plugin = config.pluginmanager.get_plugin("name_of_plugin")

If you want to look at the names of existing plugins, use the --trace-config option.

19.8 Registering custom markers

If your plugin uses any markers, you should register them so that they appear in pytest’s help text and do not cause
spurious warnings. For example, the following plugin would register cool_marker and mark_with for all users:

def pytest_configure(config):
config.addinivalue_line("markers", "cool_marker: this one is for cool tests.")
config.addinivalue_line(

"markers", "mark_with(arg, arg2): this marker takes arguments."
)

19.9 Testing plugins

pytest comes with a plugin named pytester that helps you write tests for your plugin code. The plugin is disabled
by default, so you will have to enable it before you can use it.

You can do so by adding the following line to a conftest.py file in your testing directory:

# content of conftest.py

pytest_plugins = ["pytester"]

Alternatively you can invoke pytest with the -p pytester command line option.

This will allow you to use the testdir fixture for testing your plugin code.

Let’s demonstrate what you can do with the plugin with an example. Imagine we developed a plugin that provides a
fixture hello which yields a function and we can invoke this function with one optional parameter. It will return a
string value of Hello World! if we do not supply a value or Hello {value}! if we do supply a string value.

# -*- coding: utf-8 -*-

import pytest

def pytest_addoption(parser):
group = parser.getgroup("helloworld")
group.addoption(

"--name",
action="store",
dest="name",
default="World",
help='Default "name" for hello().',

)

(continues on next page)

19.7. Accessing another plugin by name 107



pytest Documentation, Release 4.6

(continued from previous page)

@pytest.fixture
def hello(request):

name = request.config.getoption("name")

def _hello(name=None):
if not name:

name = request.config.getoption("name")
return "Hello {name}!".format(name=name)

return _hello

Now the testdir fixture provides a convenient API for creating temporary conftest.py files and test files. It
also allows us to run the tests and return a result object, with which we can assert the tests’ outcomes.

def test_hello(testdir):
"""Make sure that our plugin works."""

# create a temporary conftest.py file
testdir.makeconftest(

"""
import pytest

@pytest.fixture(params=[
"Brianna",
"Andreas",
"Floris",

])
def name(request):

return request.param
"""
)

# create a temporary pytest test file
testdir.makepyfile(

"""
def test_hello_default(hello):

assert hello() == "Hello World!"

def test_hello_name(hello, name):
assert hello(name) == "Hello {0}!".format(name)

"""
)

# run all tests with pytest
result = testdir.runpytest()

# check that all 4 tests passed
result.assert_outcomes(passed=4)

additionally it is possible to copy examples for an example folder before running pytest on it

# content of pytest.ini
[pytest]
pytester_example_dir = .

108 Chapter 19. Writing plugins



pytest Documentation, Release 4.6

# content of test_example.py

def test_plugin(testdir):
testdir.copy_example("test_example.py")
testdir.runpytest("-k", "test_example")

def test_example():
pass

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 2 items

test_example.py .. [100%]

============================= warnings summary =============================
test_example.py::test_plugin

$REGENDOC_TMPDIR/test_example.py:4: PytestExperimentalApiWarning: testdir.copy_
→˓example is an experimental api that may change over time

testdir.copy_example("test_example.py")

-- Docs: https://docs.pytest.org/en/latest/warnings.html
=================== 2 passed, 1 warnings in 0.12 seconds ===================

For more information about the result object that runpytest() returns, and the methods that it provides please
check out the RunResult documentation.

19.9. Testing plugins 109



pytest Documentation, Release 4.6

110 Chapter 19. Writing plugins



CHAPTER 20

Writing hook functions

20.1 hook function validation and execution

pytest calls hook functions from registered plugins for any given hook specification. Let’s look at a typical hook func-
tion for the pytest_collection_modifyitems(session, config, items) hook which pytest calls
after collection of all test items is completed.

When we implement a pytest_collection_modifyitems function in our plugin pytest will during registra-
tion verify that you use argument names which match the specification and bail out if not.

Let’s look at a possible implementation:

def pytest_collection_modifyitems(config, items):
# called after collection is completed
# you can modify the ``items`` list
...

Here, pytest will pass in config (the pytest config object) and items (the list of collected test items) but will
not pass in the session argument because we didn’t list it in the function signature. This dynamic “pruning” of
arguments allows pytest to be “future-compatible”: we can introduce new hook named parameters without breaking
the signatures of existing hook implementations. It is one of the reasons for the general long-lived compatibility of
pytest plugins.

Note that hook functions other than pytest_runtest_* are not allowed to raise exceptions. Doing so will break
the pytest run.

20.2 firstresult: stop at first non-None result

Most calls to pytest hooks result in a list of results which contains all non-None results of the called hook functions.

Some hook specifications use the firstresult=True option so that the hook call only executes until the first of
N registered functions returns a non-None result which is then taken as result of the overall hook call. The remaining
hook functions will not be called in this case.

111



pytest Documentation, Release 4.6

20.3 hookwrapper: executing around other hooks

pytest plugins can implement hook wrappers which wrap the execution of other hook implementations. A hook
wrapper is a generator function which yields exactly once. When pytest invokes hooks it first executes hook wrappers
and passes the same arguments as to the regular hooks.

At the yield point of the hook wrapper pytest will execute the next hook implementations and return their result to the
yield point in the form of a Result instance which encapsulates a result or exception info. The yield point itself will
thus typically not raise exceptions (unless there are bugs).

Here is an example definition of a hook wrapper:

import pytest

@pytest.hookimpl(hookwrapper=True)
def pytest_pyfunc_call(pyfuncitem):

do_something_before_next_hook_executes()

outcome = yield
# outcome.excinfo may be None or a (cls, val, tb) tuple

res = outcome.get_result() # will raise if outcome was exception

post_process_result(res)

outcome.force_result(new_res) # to override the return value to the plugin system

Note that hook wrappers don’t return results themselves, they merely perform tracing or other side effects around the
actual hook implementations. If the result of the underlying hook is a mutable object, they may modify that result but
it’s probably better to avoid it.

For more information, consult the pluggy documentation.

20.4 Hook function ordering / call example

For any given hook specification there may be more than one implementation and we thus generally view hook
execution as a 1:N function call where N is the number of registered functions. There are ways to influence if a hook
implementation comes before or after others, i.e. the position in the N-sized list of functions:

# Plugin 1
@pytest.hookimpl(tryfirst=True)
def pytest_collection_modifyitems(items):

# will execute as early as possible
...

# Plugin 2
@pytest.hookimpl(trylast=True)
def pytest_collection_modifyitems(items):

# will execute as late as possible
...

# Plugin 3

(continues on next page)

112 Chapter 20. Writing hook functions

http://pluggy.readthedocs.io/en/latest/#wrappers


pytest Documentation, Release 4.6

(continued from previous page)

@pytest.hookimpl(hookwrapper=True)
def pytest_collection_modifyitems(items):

# will execute even before the tryfirst one above!
outcome = yield
# will execute after all non-hookwrappers executed

Here is the order of execution:

1. Plugin3’s pytest_collection_modifyitems called until the yield point because it is a hook wrapper.

2. Plugin1’s pytest_collection_modifyitems is called because it is marked with tryfirst=True.

3. Plugin2’s pytest_collection_modifyitems is called because it is marked with trylast=True (but even without
this mark it would come after Plugin1).

4. Plugin3’s pytest_collection_modifyitems then executing the code after the yield point. The yield receives a
Result instance which encapsulates the result from calling the non-wrappers. Wrappers shall not modify the
result.

It’s possible to use tryfirst and trylast also in conjunction with hookwrapper=True in which case it will
influence the ordering of hookwrappers among each other.

20.5 Declaring new hooks

Plugins and conftest.py files may declare new hooks that can then be implemented by other plugins in order to
alter behaviour or interact with the new plugin:

pytest_addhooks(pluginmanager)
called at plugin registration time to allow adding new hooks via a call to pluginmanager.
add_hookspecs(module_or_class, prefix).

Parameters pluginmanager (_pytest.config.PytestPluginManager) – pytest plu-
gin manager

Note: This hook is incompatible with hookwrapper=True.

Hooks are usually declared as do-nothing functions that contain only documentation describing when the hook will be
called and what return values are expected.

For an example, see newhooks.py from xdist.

20.6 Optionally using hooks from 3rd party plugins

Using new hooks from plugins as explained above might be a little tricky because of the standard validation mecha-
nism: if you depend on a plugin that is not installed, validation will fail and the error message will not make much
sense to your users.

One approach is to defer the hook implementation to a new plugin instead of declaring the hook functions directly in
your plugin module, for example:

# contents of myplugin.py

(continues on next page)

20.5. Declaring new hooks 113

https://github.com/pytest-dev/pytest-xdist/blob/974bd566c599dc6a9ea291838c6f226197208b46/xdist/newhooks.py
https://github.com/pytest-dev/pytest-xdist


pytest Documentation, Release 4.6

(continued from previous page)

class DeferPlugin(object):
"""Simple plugin to defer pytest-xdist hook functions."""

def pytest_testnodedown(self, node, error):
"""standard xdist hook function.
"""

def pytest_configure(config):
if config.pluginmanager.hasplugin("xdist"):

config.pluginmanager.register(DeferPlugin())

This has the added benefit of allowing you to conditionally install hooks depending on which plugins are installed.

114 Chapter 20. Writing hook functions



CHAPTER 21

Logging

pytest captures log messages of level WARNING or above automatically and displays them in their own section for
each failed test in the same manner as captured stdout and stderr.

Running without options:

pytest

Shows failed tests like so:

----------------------- Captured stdlog call ----------------------
test_reporting.py 26 WARNING text going to logger
----------------------- Captured stdout call ----------------------
text going to stdout
----------------------- Captured stderr call ----------------------
text going to stderr
==================== 2 failed in 0.02 seconds =====================

By default each captured log message shows the module, line number, log level and message.

If desired the log and date format can be specified to anything that the logging module supports by passing specific
formatting options:

pytest --log-format="%(asctime)s %(levelname)s %(message)s" \
--log-date-format="%Y-%m-%d %H:%M:%S"

Shows failed tests like so:

----------------------- Captured stdlog call ----------------------
2010-04-10 14:48:44 WARNING text going to logger
----------------------- Captured stdout call ----------------------
text going to stdout
----------------------- Captured stderr call ----------------------
text going to stderr
==================== 2 failed in 0.02 seconds =====================

115



pytest Documentation, Release 4.6

These options can also be customized through pytest.ini file:

[pytest]
log_format = %(asctime)s %(levelname)s %(message)s
log_date_format = %Y-%m-%d %H:%M:%S

Further it is possible to disable reporting of captured content (stdout, stderr and logs) on failed tests completely with:

pytest --show-capture=no

21.1 caplog fixture

Inside tests it is possible to change the log level for the captured log messages. This is supported by the caplog
fixture:

def test_foo(caplog):
caplog.set_level(logging.INFO)
pass

By default the level is set on the root logger, however as a convenience it is also possible to set the log level of any
logger:

def test_foo(caplog):
caplog.set_level(logging.CRITICAL, logger='root.baz')
pass

The log levels set are restored automatically at the end of the test.

It is also possible to use a context manager to temporarily change the log level inside a with block:

def test_bar(caplog):
with caplog.at_level(logging.INFO):

pass

Again, by default the level of the root logger is affected but the level of any logger can be changed instead with:

def test_bar(caplog):
with caplog.at_level(logging.CRITICAL, logger='root.baz'):

pass

Lastly all the logs sent to the logger during the test run are made available on the fixture in the form of both the
logging.LogRecord instances and the final log text. This is useful for when you want to assert on the contents of
a message:

def test_baz(caplog):
func_under_test()
for record in caplog.records:

assert record.levelname != 'CRITICAL'
assert 'wally' not in caplog.text

For all the available attributes of the log records see the logging.LogRecord class.

You can also resort to record_tuples if all you want to do is to ensure, that certain messages have been logged
under a given logger name with a given severity and message:

116 Chapter 21. Logging



pytest Documentation, Release 4.6

def test_foo(caplog):
logging.getLogger().info('boo %s', 'arg')

assert caplog.record_tuples == [
('root', logging.INFO, 'boo arg'),

]

You can call caplog.clear() to reset the captured log records in a test:

def test_something_with_clearing_records(caplog):
some_method_that_creates_log_records()
caplog.clear()
your_test_method()
assert ['Foo'] == [rec.message for rec in caplog.records]

The caplog.records attribute contains records from the current stage only, so inside the setup phase it contains
only setup logs, same with the call and teardown phases.

To access logs from other stages, use the caplog.get_records(when) method. As an example, if you want to
make sure that tests which use a certain fixture never log any warnings, you can inspect the records for the setup and
call stages during teardown like so:

@pytest.fixture
def window(caplog):

window = create_window()
yield window
for when in ("setup", "call"):

messages = [
x.message for x in caplog.get_records(when) if x.level == logging.WARNING

]
if messages:

pytest.fail(
"warning messages encountered during testing: {}".format(messages)

)

The full API is available at _pytest.logging.LogCaptureFixture.

21.2 Live Logs

By setting the log_cli configuration option to true, pytest will output logging records as they are emitted directly
into the console.

You can specify the logging level for which log records with equal or higher level are printed to the console by passing
--log-cli-level. This setting accepts the logging level names as seen in python’s documentation or an integer
as the logging level num.

Additionally, you can also specify --log-cli-format and --log-cli-date-format which mirror and de-
fault to --log-format and --log-date-format if not provided, but are applied only to the console logging
handler.

All of the CLI log options can also be set in the configuration INI file. The option names are:

• log_cli_level

• log_cli_format

• log_cli_date_format

21.2. Live Logs 117



pytest Documentation, Release 4.6

If you need to record the whole test suite logging calls to a file, you can pass --log-file=/path/to/log/file.
This log file is opened in write mode which means that it will be overwritten at each run tests session.

You can also specify the logging level for the log file by passing --log-file-level. This setting accepts the
logging level names as seen in python’s documentation(ie, uppercased level names) or an integer as the logging level
num.

Additionally, you can also specify --log-file-format and --log-file-date-format which are equal to
--log-format and --log-date-format but are applied to the log file logging handler.

All of the log file options can also be set in the configuration INI file. The option names are:

• log_file

• log_file_level

• log_file_format

• log_file_date_format

You can call set_log_path() to customize the log_file path dynamically. This functionality is considered exper-
imental.

21.3 Release notes

This feature was introduced as a drop-in replacement for the pytest-catchlog plugin and they conflict with each other.
The backward compatibility API with pytest-capturelog has been dropped when this feature was introduced, so
if for that reason you still need pytest-catchlog you can disable the internal feature by adding to your pytest.
ini:

[pytest]
addopts=-p no:logging

21.4 Incompatible changes in pytest 3.4

This feature was introduced in 3.3 and some incompatible changes have been made in 3.4 after community feed-
back:

• Log levels are no longer changed unless explicitly requested by the log_level configuration or
--log-level command-line options. This allows users to configure logger objects themselves.

• Live Logs is now disabled by default and can be enabled setting the log_cli configuration option to true.
When enabled, the verbosity is increased so logging for each test is visible.

• Live Logs are now sent to sys.stdout and no longer require the -s command-line option to work.

If you want to partially restore the logging behavior of version 3.3, you can add this options to your ini file:

[pytest]
log_cli=true
log_level=NOTSET

More details about the discussion that lead to this changes can be read in issue #3013.

118 Chapter 21. Logging

https://pypi.org/project/pytest-catchlog/
https://github.com/pytest-dev/pytest/issues/3013


CHAPTER 22

Reference

This page contains the full reference to pytest’s API.

• Functions

– pytest.approx

– pytest.fail

– pytest.skip

– pytest.importorskip

– pytest.xfail

– pytest.exit

– pytest.main

– pytest.param

– pytest.raises

– pytest.deprecated_call

– pytest.register_assert_rewrite

– pytest.warns

– pytest.freeze_includes

• Marks

– pytest.mark.filterwarnings

– pytest.mark.parametrize

– pytest.mark.skip

– pytest.mark.skipif

119



pytest Documentation, Release 4.6

– pytest.mark.usefixtures

– pytest.mark.xfail

– custom marks

• Fixtures

– @pytest.fixture

– config.cache

– capsys

– capsysbinary

– capfd

– capfdbinary

– doctest_namespace

– request

– pytestconfig

– record_property

– record_testsuite_property

– caplog

– monkeypatch

– testdir

– recwarn

– tmp_path

– tmp_path_factory

– tmpdir

– tmpdir_factory

• Hooks

– Bootstrapping hooks

– Initialization hooks

– Test running hooks

– Collection hooks

– Reporting hooks

– Debugging/Interaction hooks

• Objects

– CallInfo

– Class

– Collector

– Config

120 Chapter 22. Reference



pytest Documentation, Release 4.6

– ExceptionInfo

– FixtureDef

– FSCollector

– Function

– Item

– MarkDecorator

– MarkGenerator

– Mark

– Metafunc

– Module

– Node

– Parser

– PluginManager

– PytestPluginManager

– Session

– TestReport

– _Result

• Special Variables

– collect_ignore

– collect_ignore_glob

– pytest_plugins

– pytest_mark

– PYTEST_DONT_REWRITE (module docstring)

• Environment Variables

– PYTEST_ADDOPTS

– PYTEST_DEBUG

– PYTEST_PLUGINS

– PYTEST_DISABLE_PLUGIN_AUTOLOAD

– PYTEST_CURRENT_TEST

• Configuration Options

121



pytest Documentation, Release 4.6

22.1 Functions

22.1.1 pytest.approx

approx(expected, rel=None, abs=None, nan_ok=False)
Assert that two numbers (or two sets of numbers) are equal to each other within some tolerance.

Due to the intricacies of floating-point arithmetic, numbers that we would intuitively expect to be equal are not
always so:

>>> 0.1 + 0.2 == 0.3
False

This problem is commonly encountered when writing tests, e.g. when making sure that floating-point values are
what you expect them to be. One way to deal with this problem is to assert that two floating-point numbers are
equal to within some appropriate tolerance:

>>> abs((0.1 + 0.2) - 0.3) < 1e-6
True

However, comparisons like this are tedious to write and difficult to understand. Furthermore, absolute compar-
isons like the one above are usually discouraged because there’s no tolerance that works well for all situations.
1e-6 is good for numbers around 1, but too small for very big numbers and too big for very small ones. It’s
better to express the tolerance as a fraction of the expected value, but relative comparisons like that are even
more difficult to write correctly and concisely.

The approx class performs floating-point comparisons using a syntax that’s as intuitive as possible:

>>> from pytest import approx
>>> 0.1 + 0.2 == approx(0.3)
True

The same syntax also works for sequences of numbers:

>>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
True

Dictionary values:

>>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
True

numpy arrays:

>>> import numpy as np
>>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6]))
True

And for a numpy array against a scalar:

>>> import numpy as np
>>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3)
True

By default, approx considers numbers within a relative tolerance of 1e-6 (i.e. one part in a million) of its
expected value to be equal. This treatment would lead to surprising results if the expected value was 0.0,
because nothing but 0.0 itself is relatively close to 0.0. To handle this case less surprisingly, approx also

122 Chapter 22. Reference

https://docs.python.org/3/tutorial/floatingpoint.html


pytest Documentation, Release 4.6

considers numbers within an absolute tolerance of 1e-12 of its expected value to be equal. Infinity and NaN
are special cases. Infinity is only considered equal to itself, regardless of the relative tolerance. NaN is not
considered equal to anything by default, but you can make it be equal to itself by setting the nan_ok argument
to True. (This is meant to facilitate comparing arrays that use NaN to mean “no data”.)

Both the relative and absolute tolerances can be changed by passing arguments to the approx constructor:

>>> 1.0001 == approx(1)
False
>>> 1.0001 == approx(1, rel=1e-3)
True
>>> 1.0001 == approx(1, abs=1e-3)
True

If you specify abs but not rel, the comparison will not consider the relative tolerance at all. In other words,
two numbers that are within the default relative tolerance of 1e-6 will still be considered unequal if they exceed
the specified absolute tolerance. If you specify both abs and rel, the numbers will be considered equal if either
tolerance is met:

>>> 1 + 1e-8 == approx(1)
True
>>> 1 + 1e-8 == approx(1, abs=1e-12)
False
>>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
True

If you’re thinking about using approx, then you might want to know how it compares to other good ways of
comparing floating-point numbers. All of these algorithms are based on relative and absolute tolerances and
should agree for the most part, but they do have meaningful differences:

• math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0): True if the relative tolerance is met
w.r.t. either a or b or if the absolute tolerance is met. Because the relative tolerance is calculated w.r.t.
both a and b, this test is symmetric (i.e. neither a nor b is a “reference value”). You have to specify an
absolute tolerance if you want to compare to 0.0 because there is no tolerance by default. Only available
in python>=3.5. More information. . .

• numpy.isclose(a, b, rtol=1e-5, atol=1e-8): True if the difference between a and b is
less that the sum of the relative tolerance w.r.t. b and the absolute tolerance. Because the relative tolerance
is only calculated w.r.t. b, this test is asymmetric and you can think of b as the reference value. Support
for comparing sequences is provided by numpy.allclose. More information. . .

• unittest.TestCase.assertAlmostEqual(a, b): True if a and b are within an absolute tol-
erance of 1e-7. No relative tolerance is considered and the absolute tolerance cannot be changed, so this
function is not appropriate for very large or very small numbers. Also, it’s only available in subclasses of
unittest.TestCase and it’s ugly because it doesn’t follow PEP8. More information. . .

• a == pytest.approx(b, rel=1e-6, abs=1e-12): True if the relative tolerance is met w.r.t.
b or if the absolute tolerance is met. Because the relative tolerance is only calculated w.r.t. b, this test is
asymmetric and you can think of b as the reference value. In the special case that you explicitly specify
an absolute tolerance but not a relative tolerance, only the absolute tolerance is considered.

Warning: Changed in version 3.2.

In order to avoid inconsistent behavior, TypeError is raised for >, >=, < and <= comparisons. The
example below illustrates the problem:

assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10)
assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10)

22.1. Functions 123

https://docs.python.org/3/library/math.html#math.isclose
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.isclose.html
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual


pytest Documentation, Release 4.6

In the second example one expects approx(0.1).__le__(0.1 + 1e-10) to be called. But instead,
approx(0.1).__lt__(0.1 + 1e-10) is used to comparison. This is because the call hierarchy of
rich comparisons follows a fixed behavior. More information. . .

22.1.2 pytest.fail

Tutorial: Skip and xfail: dealing with tests that cannot succeed

fail(msg=”, pytrace=True)
Explicitly fail an executing test with the given message.

Parameters

• msg (str) – the message to show the user as reason for the failure.

• pytrace (bool) – if false the msg represents the full failure information and no python
traceback will be reported.

22.1.3 pytest.skip

skip(msg[, allow_module_level=False])
Skip an executing test with the given message.

This function should be called only during testing (setup, call or teardown) or during collection by using the
allow_module_level flag. This function can be called in doctests as well.

Parameters allow_module_level (bool) – allows this function to be called at module level,
skipping the rest of the module. Default to False.

Note: It is better to use the pytest.mark.skipif marker when possible to declare a test to be skipped under certain
conditions like mismatching platforms or dependencies. Similarly, use the # doctest: +SKIP directive
(see doctest.SKIP) to skip a doctest statically.

22.1.4 pytest.importorskip

importorskip(modname, minversion=None, reason=None)
Imports and returns the requested module modname, or skip the current test if the module cannot be imported.

Parameters

• modname (str) – the name of the module to import

• minversion (str) – if given, the imported module __version__ attribute must be at
least this minimal version, otherwise the test is still skipped.

• reason (str) – if given, this reason is shown as the message when the module cannot be
imported.

22.1.5 pytest.xfail

xfail(reason=”)
Imperatively xfail an executing test or setup functions with the given reason.

124 Chapter 22. Reference

https://docs.python.org/3/reference/datamodel.html#object.__ge__
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/doctest.html#doctest.SKIP
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 4.6

This function should be called only during testing (setup, call or teardown).

Note: It is better to use the pytest.mark.xfail marker when possible to declare a test to be xfailed under certain
conditions like known bugs or missing features.

22.1.6 pytest.exit

exit(msg, returncode=None)
Exit testing process.

Parameters

• msg (str) – message to display upon exit.

• returncode (int) – return code to be used when exiting pytest.

22.1.7 pytest.main

main(args=None, plugins=None)
return exit code, after performing an in-process test run.

Parameters

• args – list of command line arguments.

• plugins – list of plugin objects to be auto-registered during initialization.

22.1.8 pytest.param

param(*values[, id ][, marks])
Specify a parameter in pytest.mark.parametrize calls or parametrized fixtures.

@pytest.mark.parametrize("test_input,expected", [
("3+5", 8),
pytest.param("6*9", 42, marks=pytest.mark.xfail),

])
def test_eval(test_input, expected):

assert eval(test_input) == expected

Parameters

• values – variable args of the values of the parameter set, in order.

• marks – a single mark or a list of marks to be applied to this parameter set.

• id (str) – the id to attribute to this parameter set.

22.1.9 pytest.raises

Tutorial: Assertions about expected exceptions.

with raises(expected_exception: Exception[, match][, message]) as excinfo
Assert that a code block/function call raises expected_exception or raise a failure exception otherwise.

22.1. Functions 125

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 4.6

Parameters match – if specified, a string containing a regular expression, or a regular expression
object, that is tested against the string representation of the exception using re.search. To
match a literal string that may contain special characters, the pattern can first be escaped with
re.escape.

Parameters message – (deprecated since 4.1) if specified, provides a custom failure message if
the exception is not raised. See the deprecation docs for a workaround.

Use pytest.raises as a context manager, which will capture the exception of the given type:

>>> with raises(ZeroDivisionError):
... 1/0

If the code block does not raise the expected exception (ZeroDivisionError in the example above), or no
exception at all, the check will fail instead.

You can also use the keyword argument match to assert that the exception matches a text or regex:

>>> with raises(ValueError, match='must be 0 or None'):
... raise ValueError("value must be 0 or None")

>>> with raises(ValueError, match=r'must be \d+$'):
... raise ValueError("value must be 42")

The context manager produces an ExceptionInfo object which can be used to inspect the details of the
captured exception:

>>> with raises(ValueError) as exc_info:
... raise ValueError("value must be 42")
>>> assert exc_info.type is ValueError
>>> assert exc_info.value.args[0] == "value must be 42"

Deprecated since version 4.1: In the context manager form you may use the keyword argument message to
specify a custom failure message that will be displayed in case the pytest.raises check fails. This has
been deprecated as it is considered error prone as users often mean to use match instead. See the deprecation
docs for a workaround.

Note: When using pytest.raises as a context manager, it’s worthwhile to note that normal context
manager rules apply and that the exception raised must be the final line in the scope of the context manager.
Lines of code after that, within the scope of the context manager will not be executed. For example:

>>> value = 15
>>> with raises(ValueError) as exc_info:
... if value > 10:
... raise ValueError("value must be <= 10")
... assert exc_info.type is ValueError # this will not execute

Instead, the following approach must be taken (note the difference in scope):

>>> with raises(ValueError) as exc_info:
... if value > 10:
... raise ValueError("value must be <= 10")
...
>>> assert exc_info.type is ValueError

Using with pytest.mark.parametrize

126 Chapter 22. Reference

https://docs.python.org/3/library/re.html#regular-expression-syntax


pytest Documentation, Release 4.6

When using pytest.mark.parametrize it is possible to parametrize tests such that some runs raise an exception
and others do not.

See Parametrizing conditional raising for an example.

Legacy form

It is possible to specify a callable by passing a to-be-called lambda:

>>> raises(ZeroDivisionError, lambda: 1/0)
<ExceptionInfo ...>

or you can specify an arbitrary callable with arguments:

>>> def f(x): return 1/x
...
>>> raises(ZeroDivisionError, f, 0)
<ExceptionInfo ...>
>>> raises(ZeroDivisionError, f, x=0)
<ExceptionInfo ...>

The form above is fully supported but discouraged for new code because the context manager form is regarded
as more readable and less error-prone.

Note: Similar to caught exception objects in Python, explicitly clearing local references to returned
ExceptionInfo objects can help the Python interpreter speed up its garbage collection.

Clearing those references breaks a reference cycle (ExceptionInfo –> caught exception –> frame stack
raising the exception –> current frame stack –> local variables –> ExceptionInfo) which makes Python
keep all objects referenced from that cycle (including all local variables in the current frame) alive until the
next cyclic garbage collection run. See the official Python try statement documentation for more detailed
information.

22.1.10 pytest.deprecated_call

Tutorial: Ensuring code triggers a deprecation warning.

with deprecated_call()
context manager that can be used to ensure a block of code triggers a DeprecationWarning or
PendingDeprecationWarning:

>>> import warnings
>>> def api_call_v2():
... warnings.warn('use v3 of this api', DeprecationWarning)
... return 200

>>> with deprecated_call():
... assert api_call_v2() == 200

deprecated_call can also be used by passing a function and *args and *kwargs, in which case it will
ensure calling func(*args, **kwargs) produces one of the warnings types above.

22.1.11 pytest.register_assert_rewrite

Tutorial: Assertion Rewriting.

22.1. Functions 127



pytest Documentation, Release 4.6

register_assert_rewrite(*names)
Register one or more module names to be rewritten on import.

This function will make sure that this module or all modules inside the package will get their assert statements
rewritten. Thus you should make sure to call this before the module is actually imported, usually in your
__init__.py if you are a plugin using a package.

Raises TypeError – if the given module names are not strings.

22.1.12 pytest.warns

Tutorial: Asserting warnings with the warns function

with warns(expected_warning: Exception[, match])
Assert that code raises a particular class of warning.

Specifically, the parameter expected_warning can be a warning class or sequence of warning classes, and
the inside the with block must issue a warning of that class or classes.

This helper produces a list of warnings.WarningMessage objects, one for each warning raised.

This function can be used as a context manager, or any of the other ways pytest.raises can be used:

>>> with warns(RuntimeWarning):
... warnings.warn("my warning", RuntimeWarning)

In the context manager form you may use the keyword argument match to assert that the exception matches a
text or regex:

>>> with warns(UserWarning, match='must be 0 or None'):
... warnings.warn("value must be 0 or None", UserWarning)

>>> with warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("value must be 42", UserWarning)

>>> with warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("this is not here", UserWarning)
Traceback (most recent call last):
...

Failed: DID NOT WARN. No warnings of type ...UserWarning... was emitted...

22.1.13 pytest.freeze_includes

Tutorial: Freezing pytest.

freeze_includes()
Returns a list of module names used by pytest that should be included by cx_freeze.

22.2 Marks

Marks can be used apply meta data to test functions (but not fixtures), which can then be accessed by fixtures or
plugins.

128 Chapter 22. Reference

https://docs.python.org/3/library/exceptions.html#TypeError


pytest Documentation, Release 4.6

22.2.1 pytest.mark.filterwarnings

Tutorial: @pytest.mark.filterwarnings.

Add warning filters to marked test items.

pytest.mark.filterwarnings(filter)

Parameters filter (str) – A warning specification string, which is composed of contents of
the tuple (action, message, category, module, lineno) as specified in The
Warnings filter section of the Python documentation, separated by ":". Optional fields can
be omitted. Module names passed for filtering are not regex-escaped.

For example:

@pytest.mark.warnings("ignore:.*usage will be deprecated.
→˓*:DeprecationWarning")
def test_foo():

...

22.2.2 pytest.mark.parametrize

Tutorial: Parametrizing fixtures and test functions.

Metafunc.parametrize(argnames, argvalues, indirect=False, ids=None, scope=None)
Add new invocations to the underlying test function using the list of argvalues for the given argnames.
Parametrization is performed during the collection phase. If you need to setup expensive resources see about
setting indirect to do it rather at test setup time.

Parameters

• argnames – a comma-separated string denoting one or more argument names, or a
list/tuple of argument strings.

• argvalues – The list of argvalues determines how often a test is invoked with different
argument values. If only one argname was specified argvalues is a list of values. If N
argnames were specified, argvalues must be a list of N-tuples, where each tuple-element
specifies a value for its respective argname.

• indirect – The list of argnames or boolean. A list of arguments’ names (subset of
argnames). If True the list contains all names from the argnames. Each argvalue corre-
sponding to an argname in this list will be passed as request.param to its respective argname
fixture function so that it can perform more expensive setups during the setup phase of a test
rather than at collection time.

• ids – list of string ids, or a callable. If strings, each is corresponding to the argvalues so that
they are part of the test id. If None is given as id of specific test, the automatically generated
id for that argument will be used. If callable, it should take one argument (a single argvalue)
and return a string or return None. If None, the automatically generated id for that argument
will be used. If no ids are provided they will be generated automatically from the argvalues.

• scope – if specified it denotes the scope of the parameters. The scope is used for group-
ing tests by parameter instances. It will also override any fixture-function defined scope,
allowing to set a dynamic scope using test context or configuration.

22.2.3 pytest.mark.skip

Tutorial: Skipping test functions.

22.2. Marks 129

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/warnings.html#warning-filter
https://docs.python.org/3/library/warnings.html#warning-filter


pytest Documentation, Release 4.6

Unconditionally skip a test function.

pytest.mark.skip(*, reason=None)

Parameters reason (str) – Reason why the test function is being skipped.

22.2.4 pytest.mark.skipif

Tutorial: Skipping test functions.

Skip a test function if a condition is True.

pytest.mark.skipif(condition, *, reason=None)

Parameters

• condition (bool or str) – True/False if the condition should be skipped or a
condition string.

• reason (str) – Reason why the test function is being skipped.

22.2.5 pytest.mark.usefixtures

Tutorial: Using fixtures from classes, modules or projects.

Mark a test function as using the given fixture names.

Warning: This mark has no effect when applied to a fixture function.

pytest.mark.usefixtures(*names)

Parameters args – the names of the fixture to use, as strings

22.2.6 pytest.mark.xfail

Tutorial: XFail: mark test functions as expected to fail.

Marks a test function as expected to fail.

pytest.mark.xfail(condition=None, *, reason=None, raises=None, run=True, strict=False)

Parameters

• condition (bool or str) – Condition for marking the test function as xfail (True/
False or a condition string).

• reason (str) – Reason why the test function is marked as xfail.

• raises (Exception) – Exception subclass expected to be raised by the test function;
other exceptions will fail the test.

• run (bool) – If the test function should actually be executed. If False, the function will
always xfail and will not be executed (useful if a function is segfaulting).

• strict (bool) –

130 Chapter 22. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


pytest Documentation, Release 4.6

– If False (the default) the function will be shown in the terminal output as xfailed if
it fails and as xpass if it passes. In both cases this will not cause the test suite to fail
as a whole. This is particularly useful to mark flaky tests (tests that fail at random) to be
tackled later.

– If True, the function will be shown in the terminal output as xfailed if it fails, but if it
unexpectedly passes then it will fail the test suite. This is particularly useful to mark func-
tions that are always failing and there should be a clear indication if they unexpectedly
start to pass (for example a new release of a library fixes a known bug).

22.2.7 custom marks

Marks are created dynamically using the factory object pytest.mark and applied as a decorator.

For example:

@pytest.mark.timeout(10, "slow", method="thread")
def test_function():

...

Will create and attach a Mark object to the collected Item, which can then be accessed by fixtures or hooks with
Node.iter_markers. The mark object will have the following attributes:

mark.args == (10, "slow")
mark.kwargs == {"method": "thread"}

22.3 Fixtures

Tutorial: pytest fixtures: explicit, modular, scalable.

Fixtures are requested by test functions or other fixtures by declaring them as argument names.

Example of a test requiring a fixture:

def test_output(capsys):
print("hello")
out, err = capsys.readouterr()
assert out == "hello\n"

Example of a fixture requiring another fixture:

@pytest.fixture
def db_session(tmpdir):

fn = tmpdir / "db.file"
return connect(str(fn))

For more details, consult the full fixtures docs.

22.3.1 @pytest.fixture

@fixture(scope=’function’, params=None, autouse=False, ids=None, name=None)
Decorator to mark a fixture factory function.

This decorator can be used, with or without parameters, to define a fixture function.

22.3. Fixtures 131



pytest Documentation, Release 4.6

The name of the fixture function can later be referenced to cause its invocation ahead of running tests: test
modules or classes can use the pytest.mark.usefixtures(fixturename) marker.

Test functions can directly use fixture names as input arguments in which case the fixture instance returned from
the fixture function will be injected.

Fixtures can provide their values to test functions using return or yield statements. When using yield
the code block after the yield statement is executed as teardown code regardless of the test outcome, and must
yield exactly once.

Parameters

• scope – the scope for which this fixture is shared, one of "function" (default),
"class", "module", "package" or "session".

"package" is considered experimental at this time.

• params – an optional list of parameters which will cause multiple invocations of the fixture
function and all of the tests using it. The current parameter is available in request.
param.

• autouse – if True, the fixture func is activated for all tests that can see it. If False (the
default) then an explicit reference is needed to activate the fixture.

• ids – list of string ids each corresponding to the params so that they are part of the test id.
If no ids are provided they will be generated automatically from the params.

• name – the name of the fixture. This defaults to the name of the decorated function. If a
fixture is used in the same module in which it is defined, the function name of the fixture
will be shadowed by the function arg that requests the fixture; one way to resolve this is
to name the decorated function fixture_<fixturename> and then use @pytest.
fixture(name='<fixturename>').

22.3.2 config.cache

Tutorial: Cache: working with cross-testrun state.

The config.cache object allows other plugins and fixtures to store and retrieve values across test runs. To access
it from fixtures request pytestconfig into your fixture and get it with pytestconfig.cache.

Under the hood, the cache plugin uses the simple dumps/loads API of the json stdlib module.

Cache.get(key, default)
return cached value for the given key. If no value was yet cached or the value cannot be read, the specified
default is returned.

Parameters

• key – must be a / separated value. Usually the first name is the name of your plugin or
your application.

• default – must be provided in case of a cache-miss or invalid cache values.

Cache.set(key, value)
save value for the given key.

Parameters

• key – must be a / separated value. Usually the first name is the name of your plugin or
your application.

• value – must be of any combination of basic python types, including nested types like e.
g. lists of dictionaries.

132 Chapter 22. Reference

https://docs.python.org/3/library/json.html#module-json


pytest Documentation, Release 4.6

Cache.makedir(name)
return a directory path object with the given name. If the directory does not yet exist, it will be created. You can
use it to manage files likes e. g. store/retrieve database dumps across test sessions.

Parameters name – must be a string not containing a / separator. Make sure the name contains
your plugin or application identifiers to prevent clashes with other cache users.

22.3.3 capsys

Tutorial: Capturing of the stdout/stderr output.

capsys()
Enable text capturing of writes to sys.stdout and sys.stderr.

The captured output is made available via capsys.readouterr() method calls, which return a (out,
err) namedtuple. out and err will be text objects.

Returns an instance of CaptureFixture.

Example:

def test_output(capsys):
print("hello")
captured = capsys.readouterr()
assert captured.out == "hello\n"

class CaptureFixture
Object returned by capsys(), capsysbinary(), capfd() and capfdbinary() fixtures.

readouterr()
Read and return the captured output so far, resetting the internal buffer.

Returns captured content as a namedtuple with out and err string attributes

with disabled()
Temporarily disables capture while inside the ‘with’ block.

22.3.4 capsysbinary

Tutorial: Capturing of the stdout/stderr output.

capsysbinary()
Enable bytes capturing of writes to sys.stdout and sys.stderr.

The captured output is made available via capsysbinary.readouterr() method calls, which return a
(out, err) namedtuple. out and err will be bytes objects.

Returns an instance of CaptureFixture.

Example:

def test_output(capsysbinary):
print("hello")
captured = capsysbinary.readouterr()
assert captured.out == b"hello\n"

22.3. Fixtures 133



pytest Documentation, Release 4.6

22.3.5 capfd

Tutorial: Capturing of the stdout/stderr output.

capfd()
Enable text capturing of writes to file descriptors 1 and 2.

The captured output is made available via capfd.readouterr() method calls, which return a (out,
err) namedtuple. out and err will be text objects.

Returns an instance of CaptureFixture.

Example:

def test_system_echo(capfd):
os.system('echo "hello"')
captured = capsys.readouterr()
assert captured.out == "hello\n"

22.3.6 capfdbinary

Tutorial: Capturing of the stdout/stderr output.

capfdbinary()
Enable bytes capturing of writes to file descriptors 1 and 2.

The captured output is made available via capfd.readouterr() method calls, which return a (out,
err) namedtuple. out and err will be byte objects.

Returns an instance of CaptureFixture.

Example:

def test_system_echo(capfdbinary):
os.system('echo "hello"')
captured = capfdbinary.readouterr()
assert captured.out == b"hello\n"

22.3.7 doctest_namespace

Tutorial: Doctest integration for modules and test files.

doctest_namespace()
Fixture that returns a dict that will be injected into the namespace of doctests.

Usually this fixture is used in conjunction with another autouse fixture:

@pytest.fixture(autouse=True)
def add_np(doctest_namespace):

doctest_namespace["np"] = numpy

For more details: ‘doctest_namespace’ fixture.

22.3.8 request

Tutorial: Pass different values to a test function, depending on command line options.

The request fixture is a special fixture providing information of the requesting test function.

134 Chapter 22. Reference

https://docs.python.org/3/library/stdtypes.html#dict


pytest Documentation, Release 4.6

class FixtureRequest
A request for a fixture from a test or fixture function.

A request object gives access to the requesting test context and has an optional param attribute in case the
fixture is parametrized indirectly.

fixturename = None
fixture for which this request is being performed

scope = None
Scope string, one of “function”, “class”, “module”, “session”

fixturenames
names of all active fixtures in this request

node
underlying collection node (depends on current request scope)

config
the pytest config object associated with this request.

function
test function object if the request has a per-function scope.

cls
class (can be None) where the test function was collected.

instance
instance (can be None) on which test function was collected.

module
python module object where the test function was collected.

fspath
the file system path of the test module which collected this test.

keywords
keywords/markers dictionary for the underlying node.

session
pytest session object.

addfinalizer(finalizer)
add finalizer/teardown function to be called after the last test within the requesting test context finished
execution.

applymarker(marker)
Apply a marker to a single test function invocation. This method is useful if you don’t want to have a
keyword/marker on all function invocations.

Parameters marker – a _pytest.mark.MarkDecorator object created by a call to
pytest.mark.NAME(...).

raiseerror(msg)
raise a FixtureLookupError with the given message.

getfixturevalue(argname)
Dynamically run a named fixture function.

Declaring fixtures via function argument is recommended where possible. But if you can only decide
whether to use another fixture at test setup time, you may use this function to retrieve it inside a fixture or
test function body.

22.3. Fixtures 135



pytest Documentation, Release 4.6

getfuncargvalue(argname)
Deprecated, use getfixturevalue.

22.3.9 pytestconfig

pytestconfig()
Session-scoped fixture that returns the _pytest.config.Config object.

Example:

def test_foo(pytestconfig):
if pytestconfig.getoption("verbose") > 0:

...

22.3.10 record_property

Tutorial: record_property.

record_property()
Add an extra properties the calling test. User properties become part of the test report and are available to
the configured reporters, like JUnit XML. The fixture is callable with (name, value), with value being
automatically xml-encoded.

Example:

def test_function(record_property):
record_property("example_key", 1)

22.3.11 record_testsuite_property

Tutorial: record_testsuite_property.

record_testsuite_property()
Records a new <property> tag as child of the root <testsuite>. This is suitable to writing global infor-
mation regarding the entire test suite, and is compatible with xunit2 JUnit family.

This is a session-scoped fixture which is called with (name, value). Example:

def test_foo(record_testsuite_property):
record_testsuite_property("ARCH", "PPC")
record_testsuite_property("STORAGE_TYPE", "CEPH")

name must be a string, value will be converted to a string and properly xml-escaped.

22.3.12 caplog

Tutorial: Logging.

caplog()
Access and control log capturing.

Captured logs are available through the following properties/methods:

136 Chapter 22. Reference



pytest Documentation, Release 4.6

* caplog.text -> string containing formatted log output

* caplog.records -> list of logging.LogRecord instances

* caplog.record_tuples -> list of (logger_name, level, message) tuples

* caplog.clear() -> clear captured records and formatted log output string

This returns a _pytest.logging.LogCaptureFixture instance.

class LogCaptureFixture(item)
Provides access and control of log capturing.

handler

Return type LogCaptureHandler

get_records(when)
Get the logging records for one of the possible test phases.

Parameters when (str) – Which test phase to obtain the records from. Valid values are:
“setup”, “call” and “teardown”.

Return type List[logging.LogRecord]

Returns the list of captured records at the given stage

New in version 3.4.

text
Returns the formatted log text.

records
Returns the list of log records.

record_tuples
Returns a list of a stripped down version of log records intended for use in assertion comparison.

The format of the tuple is:

(logger_name, log_level, message)

messages
Returns a list of format-interpolated log messages.

Unlike ‘records’, which contains the format string and parameters for interpolation, log messages in this
list are all interpolated. Unlike ‘text’, which contains the output from the handler, log messages in this list
are unadorned with levels, timestamps, etc, making exact comparisons more reliable.

Note that traceback or stack info (from logging.exception() or the exc_info or stack_info argu-
ments to the logging functions) is not included, as this is added by the formatter in the handler.

New in version 3.7.

clear()
Reset the list of log records and the captured log text.

set_level(level, logger=None)
Sets the level for capturing of logs. The level will be restored to its previous value at the end of the test.

Parameters

• level (int) – the logger to level.

• logger (str) – the logger to update the level. If not given, the root logger level is
updated.

22.3. Fixtures 137

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#logging.exception
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 4.6

Changed in version 3.4: The levels of the loggers changed by this function will be restored to their initial
values at the end of the test.

with at_level(level, logger=None)
Context manager that sets the level for capturing of logs. After the end of the ‘with’ statement the level is
restored to its original value.

Parameters

• level (int) – the logger to level.

• logger (str) – the logger to update the level. If not given, the root logger level is
updated.

22.3.13 monkeypatch

Tutorial: Monkeypatching/mocking modules and environments.

monkeypatch()
The returned monkeypatch fixture provides these helper methods to modify objects, dictionaries or
os.environ:

monkeypatch.setattr(obj, name, value, raising=True)
monkeypatch.delattr(obj, name, raising=True)
monkeypatch.setitem(mapping, name, value)
monkeypatch.delitem(obj, name, raising=True)
monkeypatch.setenv(name, value, prepend=False)
monkeypatch.delenv(name, raising=True)
monkeypatch.syspath_prepend(path)
monkeypatch.chdir(path)

All modifications will be undone after the requesting test function or fixture has finished. The raising pa-
rameter determines if a KeyError or AttributeError will be raised if the set/deletion operation has no target.

This returns a MonkeyPatch instance.

class MonkeyPatch
Object returned by the monkeypatch fixture keeping a record of setattr/item/env/syspath changes.

with context()
Context manager that returns a new MonkeyPatch object which undoes any patching done inside the
with block upon exit:

import functools
def test_partial(monkeypatch):

with monkeypatch.context() as m:
m.setattr(functools, "partial", 3)

Useful in situations where it is desired to undo some patches before the test ends, such as mocking stdlib
functions that might break pytest itself if mocked (for examples of this see #3290.

setattr(target, name, value=<notset>, raising=True)
Set attribute value on target, memorizing the old value. By default raise AttributeError if the attribute did
not exist.

For convenience you can specify a string as target which will be interpreted as a dotted import path,
with the last part being the attribute name. Example: monkeypatch.setattr("os.getcwd",
lambda: "/") would set the getcwd function of the os module.

138 Chapter 22. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/pytest-dev/pytest/issues/3290


pytest Documentation, Release 4.6

The raising value determines if the setattr should fail if the attribute is not already present (defaults to
True which means it will raise).

delattr(target, name=<notset>, raising=True)
Delete attribute name from target, by default raise AttributeError it the attribute did not previously
exist.

If no name is specified and target is a string it will be interpreted as a dotted import path with the last
part being the attribute name.

If raising is set to False, no exception will be raised if the attribute is missing.

setitem(dic, name, value)
Set dictionary entry name to value.

delitem(dic, name, raising=True)
Delete name from dict. Raise KeyError if it doesn’t exist.

If raising is set to False, no exception will be raised if the key is missing.

setenv(name, value, prepend=None)
Set environment variable name to value. If prepend is a character, read the current environment
variable value and prepend the value adjoined with the prepend character.

delenv(name, raising=True)
Delete name from the environment. Raise KeyError if it does not exist.

If raising is set to False, no exception will be raised if the environment variable is missing.

syspath_prepend(path)
Prepend path to sys.path list of import locations.

chdir(path)
Change the current working directory to the specified path. Path can be a string or a py.path.local object.

undo()
Undo previous changes. This call consumes the undo stack. Calling it a second time has no effect unless
you do more monkeypatching after the undo call.

There is generally no need to call undo(), since it is called automatically during tear-down.

Note that the same monkeypatch fixture is used across a single test function invocation. If monkeypatch is
used both by the test function itself and one of the test fixtures, calling undo() will undo all of the changes
made in both functions.

22.3.14 testdir

This fixture provides a Testdir instance useful for black-box testing of test files, making it ideal to test plugins.

To use it, include in your top-most conftest.py file:

pytest_plugins = 'pytester'

class Testdir
Temporary test directory with tools to test/run pytest itself.

This is based on the tmpdir fixture but provides a number of methods which aid with testing pytest itself.
Unless chdir() is used all methods will use tmpdir as their current working directory.

Attributes:

Tmpdir The py.path.local instance of the temporary directory.

22.3. Fixtures 139



pytest Documentation, Release 4.6

Plugins A list of plugins to use with parseconfig() and runpytest(). Initially this is an
empty list but plugins can be added to the list. The type of items to add to the list depends on
the method using them so refer to them for details.

CLOSE_STDIN
alias of builtins.object

exception TimeoutExpired

finalize()
Clean up global state artifacts.

Some methods modify the global interpreter state and this tries to clean this up. It does not remove the
temporary directory however so it can be looked at after the test run has finished.

make_hook_recorder(pluginmanager)
Create a new HookRecorder for a PluginManager.

chdir()
Cd into the temporary directory.

This is done automatically upon instantiation.

makefile(ext, *args, **kwargs)
Create new file(s) in the testdir.

Parameters

• ext (str) – The extension the file(s) should use, including the dot, e.g. .py.

• args (list[str]) – All args will be treated as strings and joined using newlines. The
result will be written as contents to the file. The name of the file will be based on the test
function requesting this fixture.

• kwargs – Each keyword is the name of a file, while the value of it will be written as
contents of the file.

Examples:

testdir.makefile(".txt", "line1", "line2")

testdir.makefile(".ini", pytest="[pytest]\naddopts=-rs\n")

makeconftest(source)
Write a contest.py file with ‘source’ as contents.

makeini(source)
Write a tox.ini file with ‘source’ as contents.

getinicfg(source)
Return the pytest section from the tox.ini config file.

makepyfile(*args, **kwargs)
Shortcut for .makefile() with a .py extension.

maketxtfile(*args, **kwargs)
Shortcut for .makefile() with a .txt extension.

syspathinsert(path=None)
Prepend a directory to sys.path, defaults to tmpdir.

This is undone automatically when this object dies at the end of each test.

140 Chapter 22. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 4.6

mkdir(name)
Create a new (sub)directory.

mkpydir(name)
Create a new python package.

This creates a (sub)directory with an empty __init__.py file so it gets recognised as a python package.

class Session(config)

exception Failed
signals a stop as failed test run.

exception Interrupted
signals an interrupted test run.

for ... in collect()
returns a list of children (items and collectors) for this collection node.

getnode(config, arg)
Return the collection node of a file.

Parameters

• config – _pytest.config.Config instance, see parseconfig() and
parseconfigure() to create the configuration

• arg – a py.path.local instance of the file

getpathnode(path)
Return the collection node of a file.

This is like getnode() but uses parseconfigure() to create the (configured) pytest Config in-
stance.

Parameters path – a py.path.local instance of the file

genitems(colitems)
Generate all test items from a collection node.

This recurses into the collection node and returns a list of all the test items contained within.

runitem(source)
Run the “test_func” Item.

The calling test instance (class containing the test method) must provide a .getrunner() method
which should return a runner which can run the test protocol for a single item, e.g. _pytest.runner.
runtestprotocol().

inline_runsource(source, *cmdlineargs)
Run a test module in process using pytest.main().

This run writes “source” into a temporary file and runs pytest.main() on it, returning a
HookRecorder instance for the result.

Parameters

• source – the source code of the test module

• cmdlineargs – any extra command line arguments to use

Returns HookRecorder instance of the result

22.3. Fixtures 141



pytest Documentation, Release 4.6

inline_genitems(*args)
Run pytest.main(['--collectonly']) in-process.

Runs the pytest.main() function to run all of pytest inside the test process itself like
inline_run(), but returns a tuple of the collected items and a HookRecorder instance.

inline_run(*args, **kwargs)
Run pytest.main() in-process, returning a HookRecorder.

Runs the pytest.main() function to run all of pytest inside the test process itself. This means it can
return a HookRecorder instance which gives more detailed results from that run than can be done by
matching stdout/stderr from runpytest().

Parameters

• args – command line arguments to pass to pytest.main()

• plugins – (keyword-only) extra plugin instances the pytest.main() instance should
use

Returns a HookRecorder instance

runpytest_inprocess(*args, **kwargs)
Return result of running pytest in-process, providing a similar interface to what self.runpytest() provides.

runpytest(*args, **kwargs)
Run pytest inline or in a subprocess, depending on the command line option “–runpytest” and return a
RunResult.

parseconfig(*args)
Return a new pytest Config instance from given commandline args.

This invokes the pytest bootstrapping code in _pytest.config to create a new _pytest.core.
PluginManager and call the pytest_cmdline_parse hook to create a new _pytest.config.
Config instance.

If plugins has been populated they should be plugin modules to be registered with the PluginManager.

parseconfigure(*args)
Return a new pytest configured Config instance.

This returns a new _pytest.config.Config instance like parseconfig(), but also calls the
pytest_configure hook.

getitem(source, funcname=’test_func’)
Return the test item for a test function.

This writes the source to a python file and runs pytest’s collection on the resulting module, returning the
test item for the requested function name.

Parameters

• source – the module source

• funcname – the name of the test function for which to return a test item

getitems(source)
Return all test items collected from the module.

This writes the source to a python file and runs pytest’s collection on the resulting module, returning all
test items contained within.

getmodulecol(source, configargs=(), withinit=False)
Return the module collection node for source.

142 Chapter 22. Reference



pytest Documentation, Release 4.6

This writes source to a file using makepyfile() and then runs the pytest collection on it, returning
the collection node for the test module.

Parameters

• source – the source code of the module to collect

• configargs – any extra arguments to pass to parseconfigure()

• withinit – whether to also write an __init__.py file to the same directory to ensure
it is a package

collect_by_name(modcol, name)
Return the collection node for name from the module collection.

This will search a module collection node for a collection node matching the given name.

Parameters

• modcol – a module collection node; see getmodulecol()

• name – the name of the node to return

popen(cmdargs, stdout=-1, stderr=-1, stdin=<class ’object’>, **kw)
Invoke subprocess.Popen.

This calls subprocess.Popen making sure the current working directory is in the PYTHONPATH.

You probably want to use run() instead.

run(*cmdargs, **kwargs)
Run a command with arguments.

Run a process using subprocess.Popen saving the stdout and stderr.

Parameters

• args – the sequence of arguments to pass to subprocess.Popen()

• timeout – the period in seconds after which to timeout and raise Testdir.
TimeoutExpired

• stdin – optional standard input. Bytes are being send, closing the pipe, otherwise it is
passed through to popen. Defaults to CLOSE_STDIN, which translates to using a pipe
(subprocess.PIPE) that gets closed.

Returns a RunResult.

runpython(script)
Run a python script using sys.executable as interpreter.

Returns a RunResult.

runpython_c(command)
Run python -c “command”, return a RunResult.

runpytest_subprocess(*args, **kwargs)
Run pytest as a subprocess with given arguments.

Any plugins added to the plugins list will be added using the -p command line option. Additionally
--basetemp is used to put any temporary files and directories in a numbered directory prefixed with
“runpytest-” to not conflict with the normal numbered pytest location for temporary files and directories.

Parameters

• args – the sequence of arguments to pass to the pytest subprocess

22.3. Fixtures 143



pytest Documentation, Release 4.6

• timeout – the period in seconds after which to timeout and raise Testdir.
TimeoutExpired

Returns a RunResult.

spawn_pytest(string, expect_timeout=10.0)
Run pytest using pexpect.

This makes sure to use the right pytest and sets up the temporary directory locations.

The pexpect child is returned.

spawn(cmd, expect_timeout=10.0)
Run a command using pexpect.

The pexpect child is returned.

class RunResult
The result of running a command.

Attributes:

Ret the return value

Outlines list of lines captured from stdout

Errlines list of lines captures from stderr

Stdout LineMatcher of stdout, use stdout.str() to reconstruct stdout or the commonly used
stdout.fnmatch_lines() method

Stderr LineMatcher of stderr

Duration duration in seconds

parseoutcomes()
Return a dictionary of outcomestring->num from parsing the terminal output that the test process produced.

assert_outcomes(passed=0, skipped=0, failed=0, error=0, xpassed=0, xfailed=0)
Assert that the specified outcomes appear with the respective numbers (0 means it didn’t occur) in the text
output from a test run.

class LineMatcher
Flexible matching of text.

This is a convenience class to test large texts like the output of commands.

The constructor takes a list of lines without their trailing newlines, i.e. text.splitlines().

str()
Return the entire original text.

fnmatch_lines_random(lines2)
Check lines exist in the output using in any order.

Lines are checked using fnmatch.fnmatch. The argument is a list of lines which have to occur in the
output, in any order.

re_match_lines_random(lines2)
Check lines exist in the output using re.match, in any order.

The argument is a list of lines which have to occur in the output, in any order.

get_lines_after(fnline)
Return all lines following the given line in the text.

The given line can contain glob wildcards.

144 Chapter 22. Reference



pytest Documentation, Release 4.6

fnmatch_lines(lines2)
Search captured text for matching lines using fnmatch.fnmatch.

The argument is a list of lines which have to match and can use glob wildcards. If they do not match a
pytest.fail() is called. The matches and non-matches are also printed on stdout.

re_match_lines(lines2)
Search captured text for matching lines using re.match.

The argument is a list of lines which have to match using re.match. If they do not match a pytest.fail()
is called.

The matches and non-matches are also printed on stdout.

22.3.15 recwarn

Tutorial: Asserting warnings with the warns function

recwarn()
Return a WarningsRecorder instance that records all warnings emitted by test functions.

See http://docs.python.org/library/warnings.html for information on warning categories.

class WarningsRecorder
A context manager to record raised warnings.

Adapted from warnings.catch_warnings.

list
The list of recorded warnings.

pop(cls=<class ’Warning’>)
Pop the first recorded warning, raise exception if not exists.

clear()
Clear the list of recorded warnings.

Each recorded warning is an instance of warnings.WarningMessage.

Note: RecordedWarning was changed from a plain class to a namedtuple in pytest 3.1

Note: DeprecationWarning and PendingDeprecationWarning are treated differently; see Ensuring code
triggers a deprecation warning.

22.3.16 tmp_path

Tutorial: Temporary directories and files

tmp_path()
Return a temporary directory path object which is unique to each test function invocation, created as a sub
directory of the base temporary directory. The returned object is a pathlib.Path object.

Note: in python < 3.6 this is a pathlib2.Path

22.3. Fixtures 145

http://docs.python.org/library/warnings.html
https://docs.python.org/3/library/pathlib.html#pathlib.Path


pytest Documentation, Release 4.6

22.3.17 tmp_path_factory

Tutorial: The tmp_path_factory fixture

tmp_path_factory instances have the following methods:

TempPathFactory.mktemp(basename, numbered=True)
makes a temporary directory managed by the factory

TempPathFactory.getbasetemp()
return base temporary directory.

22.3.18 tmpdir

Tutorial: Temporary directories and files

tmpdir()
Return a temporary directory path object which is unique to each test function invocation, created as a sub
directory of the base temporary directory. The returned object is a py.path.local path object.

22.3.19 tmpdir_factory

Tutorial: The ‘tmpdir_factory’ fixture

tmpdir_factory instances have the following methods:

TempdirFactory.mktemp(basename, numbered=True)
Create a subdirectory of the base temporary directory and return it. If numbered, ensure the directory is unique
by adding a number prefix greater than any existing one.

TempdirFactory.getbasetemp()
backward compat wrapper for _tmppath_factory.getbasetemp

22.4 Hooks

Tutorial: Writing plugins.

Reference to all hooks which can be implemented by conftest.py files and plugins.

22.4.1 Bootstrapping hooks

Bootstrapping hooks called for plugins registered early enough (internal and setuptools plugins).

pytest_load_initial_conftests(early_config, parser, args)
implements the loading of initial conftest files ahead of command line option parsing.

Note: This hook will not be called for conftest.py files, only for setuptools plugins.

Parameters

• early_config (_pytest.config.Config) – pytest config object

• args (list[str]) – list of arguments passed on the command line

146 Chapter 22. Reference

https://py.readthedocs.io/en/latest/path.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 4.6

• parser (_pytest.config.Parser) – to add command line options

pytest_cmdline_preparse(config, args)
(Deprecated) modify command line arguments before option parsing.

This hook is considered deprecated and will be removed in a future pytest version. Consider using
pytest_load_initial_conftests() instead.

Note: This hook will not be called for conftest.py files, only for setuptools plugins.

Parameters

• config (_pytest.config.Config) – pytest config object

• args (list[str]) – list of arguments passed on the command line

pytest_cmdline_parse(pluginmanager, args)
return initialized config object, parsing the specified args.

Stops at first non-None result, see firstresult: stop at first non-None result

Note: This hook will only be called for plugin classes passed to the plugins arg when using pytest.main to
perform an in-process test run.

Parameters

• pluginmanager (_pytest.config.PytestPluginManager) – pytest plugin
manager

• args (list[str]) – list of arguments passed on the command line

pytest_cmdline_main(config)
called for performing the main command line action. The default implementation will invoke the configure
hooks and runtest_mainloop.

Note: This hook will not be called for conftest.py files, only for setuptools plugins.

Stops at first non-None result, see firstresult: stop at first non-None result

Parameters config (_pytest.config.Config) – pytest config object

22.4.2 Initialization hooks

Initialization hooks called for plugins and conftest.py files.

pytest_addoption(parser)
register argparse-style options and ini-style config values, called once at the beginning of a test run.

Note: This function should be implemented only in plugins or conftest.py files situated at the tests root
directory due to how pytest discovers plugins during startup.

22.4. Hooks 147

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 4.6

Parameters parser (_pytest.config.Parser) – To add command line options, call
parser.addoption(...). To add ini-file values call parser.addini(...).

Options can later be accessed through the config object, respectively:

• config.getoption(name) to retrieve the value of a command line option.

• config.getini(name) to retrieve a value read from an ini-style file.

The config object is passed around on many internal objects via the .config attribute or can be retrieved as
the pytestconfig fixture.

Note: This hook is incompatible with hookwrapper=True.

pytest_addhooks(pluginmanager)
called at plugin registration time to allow adding new hooks via a call to pluginmanager.
add_hookspecs(module_or_class, prefix).

Parameters pluginmanager (_pytest.config.PytestPluginManager) – pytest plu-
gin manager

Note: This hook is incompatible with hookwrapper=True.

pytest_configure(config)
Allows plugins and conftest files to perform initial configuration.

This hook is called for every plugin and initial conftest file after command line options have been parsed.

After that, the hook is called for other conftest files as they are imported.

Note: This hook is incompatible with hookwrapper=True.

Parameters config (_pytest.config.Config) – pytest config object

pytest_unconfigure(config)
called before test process is exited.

Parameters config (_pytest.config.Config) – pytest config object

pytest_sessionstart(session)
called after the Session object has been created and before performing collection and entering the run test
loop.

Parameters session (_pytest.main.Session) – the pytest session object

pytest_sessionfinish(session, exitstatus)
called after whole test run finished, right before returning the exit status to the system.

Parameters

• session (_pytest.main.Session) – the pytest session object

• exitstatus (int) – the status which pytest will return to the system

pytest_plugin_registered(plugin, manager)
a new pytest plugin got registered.

Parameters

148 Chapter 22. Reference

https://docs.python.org/3/library/functions.html#int


pytest Documentation, Release 4.6

• plugin – the plugin module or instance

• manager (_pytest.config.PytestPluginManager) – pytest plugin manager

Note: This hook is incompatible with hookwrapper=True.

22.4.3 Test running hooks

All runtest related hooks receive a pytest.Item object.

pytest_runtestloop(session)
called for performing the main runtest loop (after collection finished).

Stops at first non-None result, see firstresult: stop at first non-None result

Parameters session (_pytest.main.Session) – the pytest session object

pytest_runtest_protocol(item, nextitem)
implements the runtest_setup/call/teardown protocol for the given test item, including capturing exceptions and
calling reporting hooks.

Parameters

• item – test item for which the runtest protocol is performed.

• nextitem – the scheduled-to-be-next test item (or None if this is the end my friend). This
argument is passed on to pytest_runtest_teardown().

Return boolean True if no further hook implementations should be invoked.

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_runtest_logstart(nodeid, location)
signal the start of running a single test item.

This hook will be called before pytest_runtest_setup(), pytest_runtest_call() and
pytest_runtest_teardown() hooks.

Parameters

• nodeid (str) – full id of the item

• location – a triple of (filename, linenum, testname)

pytest_runtest_logfinish(nodeid, location)
signal the complete finish of running a single test item.

This hook will be called after pytest_runtest_setup(), pytest_runtest_call() and
pytest_runtest_teardown() hooks.

Parameters

• nodeid (str) – full id of the item

• location – a triple of (filename, linenum, testname)

pytest_runtest_setup(item)
called before pytest_runtest_call(item).

pytest_runtest_call(item)
called to execute the test item.

22.4. Hooks 149

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 4.6

pytest_runtest_teardown(item, nextitem)
called after pytest_runtest_call.

Parameters nextitem – the scheduled-to-be-next test item (None if no further test item is sched-
uled). This argument can be used to perform exact teardowns, i.e. calling just enough finalizers
so that nextitem only needs to call setup-functions.

pytest_runtest_makereport(item, call)
return a _pytest.runner.TestReport object for the given pytest.Item and _pytest.runner.
CallInfo.

Stops at first non-None result, see firstresult: stop at first non-None result

For deeper understanding you may look at the default implementation of these hooks in _pytest.runner and
maybe also in _pytest.pdb which interacts with _pytest.capture and its input/output capturing in order to
immediately drop into interactive debugging when a test failure occurs.

The _pytest.terminal reported specifically uses the reporting hook to print information about a test run.

pytest_pyfunc_call(pyfuncitem)
call underlying test function.

Stops at first non-None result, see firstresult: stop at first non-None result

22.4.4 Collection hooks

pytest calls the following hooks for collecting files and directories:

pytest_collection(session)
Perform the collection protocol for the given session.

Stops at first non-None result, see firstresult: stop at first non-None result.

Parameters session (_pytest.main.Session) – the pytest session object

pytest_ignore_collect(path, config)
return True to prevent considering this path for collection. This hook is consulted for all files and directories
prior to calling more specific hooks.

Stops at first non-None result, see firstresult: stop at first non-None result

Parameters

• path – a py.path.local - the path to analyze

• config (_pytest.config.Config) – pytest config object

pytest_collect_directory(path, parent)
called before traversing a directory for collection files.

Stops at first non-None result, see firstresult: stop at first non-None result

Parameters path – a py.path.local - the path to analyze

pytest_collect_file(path, parent)
return collection Node or None for the given path. Any new node needs to have the specified parent as a
parent.

Parameters path – a py.path.local - the path to collect

pytest_pycollect_makemodule(path, parent)
return a Module collector or None for the given path. This hook will be called for each matching test module
path. The pytest_collect_file hook needs to be used if you want to create test modules for files that do not match
as a test module.

150 Chapter 22. Reference



pytest Documentation, Release 4.6

Stops at first non-None result, see firstresult: stop at first non-None result

Parameters path – a py.path.local - the path of module to collect

For influencing the collection of objects in Python modules you can use the following hook:

pytest_pycollect_makeitem(collector, name, obj)
return custom item/collector for a python object in a module, or None.

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_generate_tests(metafunc)
generate (multiple) parametrized calls to a test function.

pytest_make_parametrize_id(config, val, argname)
Return a user-friendly string representation of the given val that will be used by @pytest.mark.parametrize
calls. Return None if the hook doesn’t know about val. The parameter name is available as argname, if
required.

Stops at first non-None result, see firstresult: stop at first non-None result

Parameters

• config (_pytest.config.Config) – pytest config object

• val – the parametrized value

• argname (str) – the automatic parameter name produced by pytest

After collection is complete, you can modify the order of items, delete or otherwise amend the test items:

pytest_collection_modifyitems(session, config, items)
called after collection has been performed, may filter or re-order the items in-place.

Parameters

• session (_pytest.main.Session) – the pytest session object

• config (_pytest.config.Config) – pytest config object

• items (List[_pytest.nodes.Item]) – list of item objects

pytest_collection_finish(session)
called after collection has been performed and modified.

Parameters session (_pytest.main.Session) – the pytest session object

22.4.5 Reporting hooks

Session related reporting hooks:

pytest_collectstart(collector)
collector starts collecting.

pytest_make_collect_report(collector)
perform collector.collect() and return a CollectReport.

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_itemcollected(item)
we just collected a test item.

pytest_collectreport(report)
collector finished collecting.

22.4. Hooks 151

https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 4.6

pytest_deselected(items)
called for test items deselected, e.g. by keyword.

pytest_report_header(config, startdir)
return a string or list of strings to be displayed as header info for terminal reporting.

Parameters

• config (_pytest.config.Config) – pytest config object

• startdir – py.path object with the starting dir

Note: This function should be implemented only in plugins or conftest.py files situated at the tests root
directory due to how pytest discovers plugins during startup.

pytest_report_collectionfinish(config, startdir, items)
New in version 3.2.

return a string or list of strings to be displayed after collection has finished successfully.

This strings will be displayed after the standard “collected X items” message.

Parameters

• config (_pytest.config.Config) – pytest config object

• startdir – py.path object with the starting dir

• items – list of pytest items that are going to be executed; this list should not be modified.

pytest_report_teststatus(report, config)
return result-category, shortletter and verbose word for reporting.

Parameters config (_pytest.config.Config) – pytest config object

Stops at first non-None result, see firstresult: stop at first non-None result

pytest_terminal_summary(terminalreporter, exitstatus, config)
Add a section to terminal summary reporting.

Parameters

• terminalreporter (_pytest.terminal.TerminalReporter) – the internal
terminal reporter object

• exitstatus (int) – the exit status that will be reported back to the OS

• config (_pytest.config.Config) – pytest config object

New in version 4.2: The config parameter.

pytest_fixture_setup(fixturedef, request)
performs fixture setup execution.

Returns The return value of the call to the fixture function

Stops at first non-None result, see firstresult: stop at first non-None result

Note: If the fixture function returns None, other implementations of this hook function will continue to be
called, according to the behavior of the firstresult: stop at first non-None result option.

152 Chapter 22. Reference

https://docs.python.org/3/library/functions.html#int


pytest Documentation, Release 4.6

pytest_fixture_post_finalizer(fixturedef, request)
called after fixture teardown, but before the cache is cleared so the fixture result cache fixturedef.
cached_result can still be accessed.

pytest_warning_captured(warning_message, when, item)
Process a warning captured by the internal pytest warnings plugin.

Parameters

• warning_message (warnings.WarningMessage) – The captured warning. This is
the same object produced by warnings.catch_warnings(), and contains the same
attributes as the parameters of warnings.showwarning().

• when (str) – Indicates when the warning was captured. Possible values:

– "config": during pytest configuration/initialization stage.

– "collect": during test collection.

– "runtest": during test execution.

• item (pytest.Item|None) – DEPRECATED: This parameter is incompatible with
pytest-xdist, and will always receive None in a future release.

The item being executed if when is "runtest", otherwise None.

And here is the central hook for reporting about test execution:

pytest_runtest_logreport(report)
process a test setup/call/teardown report relating to the respective phase of executing a test.

You can also use this hook to customize assertion representation for some types:

pytest_assertrepr_compare(config, op, left, right)
return explanation for comparisons in failing assert expressions.

Return None for no custom explanation, otherwise return a list of strings. The strings will be joined by newlines
but any newlines in a string will be escaped. Note that all but the first line will be indented slightly, the intention
is for the first line to be a summary.

Parameters config (_pytest.config.Config) – pytest config object

22.4.6 Debugging/Interaction hooks

There are few hooks which can be used for special reporting or interaction with exceptions:

pytest_internalerror(excrepr, excinfo)
called for internal errors.

pytest_keyboard_interrupt(excinfo)
called for keyboard interrupt.

pytest_exception_interact(node, call, report)
called when an exception was raised which can potentially be interactively handled.

This hook is only called if an exception was raised that is not an internal exception like skip.Exception.

pytest_enter_pdb(config, pdb)
called upon pdb.set_trace(), can be used by plugins to take special action just before the python debugger enters
in interactive mode.

Parameters

• config (_pytest.config.Config) – pytest config object

22.4. Hooks 153

https://docs.python.org/3/library/warnings.html#warnings.showwarning
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 4.6

• pdb (pdb.Pdb) – Pdb instance

22.5 Objects

Full reference to objects accessible from fixtures or hooks.

22.5.1 CallInfo

class CallInfo
Result/Exception info a function invocation.

22.5.2 Class

class Class
Bases: _pytest.python.PyCollector

Collector for test methods.

collect()
returns a list of children (items and collectors) for this collection node.

22.5.3 Collector

class Collector
Bases: _pytest.nodes.Node

Collector instances create children through collect() and thus iteratively build a tree.

exception CollectError
Bases: Exception

an error during collection, contains a custom message.

collect()
returns a list of children (items and collectors) for this collection node.

repr_failure(excinfo)
represent a collection failure.

22.5.4 Config

class Config
Access to configuration values, pluginmanager and plugin hooks.

Variables

• pluginmanager (PytestPluginManager) – the plugin manager handles plugin reg-
istration and hook invocation.

• option (argparse.Namespace) – access to command line option as attributes.

154 Chapter 22. Reference

https://docs.python.org/3/library/pdb.html#pdb.Pdb
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/argparse.html#argparse.Namespace


pytest Documentation, Release 4.6

• invocation_params (InvocationParams) – Object containing the parameters re-
garding the pytest.main invocation. Contains the followinig read-only attributes: *
args: list of command-line arguments as passed to pytest.main(). * plugins: list
of extra plugins, might be None * dir: directory where pytest.main() was invoked
from.

class InvocationParams(args, plugins, dir)
Holds parameters passed during pytest.main()

Note: Currently the environment variable PYTEST_ADDOPTS is also handled by pytest implicitly, not
being part of the invocation.

Plugins accessing InvocationParams must be aware of that.

option = None
access to command line option as attributes. (deprecated), use getoption() instead

pluginmanager = None
a pluginmanager instance

invocation_dir
Backward compatibility

add_cleanup(func)
Add a function to be called when the config object gets out of use (usually coninciding with
pytest_unconfigure).

classmethod fromdictargs(option_dict, args)
constructor useable for subprocesses.

addinivalue_line(name, line)
add a line to an ini-file option. The option must have been declared but might not yet be set in which case
the line becomes the the first line in its value.

getini(name)
return configuration value from an ini file. If the specified name hasn’t been registered through a prior
parser.addini call (usually from a plugin), a ValueError is raised.

getoption(name, default=<NOTSET>, skip=False)
return command line option value.

Parameters

• name – name of the option. You may also specify the literal --OPT option instead of the
“dest” option name.

• default – default value if no option of that name exists.

• skip – if True raise pytest.skip if option does not exists or has a None value.

getvalue(name, path=None)
(deprecated, use getoption())

getvalueorskip(name, path=None)
(deprecated, use getoption(skip=True))

22.5.5 ExceptionInfo

class ExceptionInfo(excinfo, striptext=”, traceback=None)
wraps sys.exc_info() objects and offers help for navigating the traceback.

22.5. Objects 155



pytest Documentation, Release 4.6

classmethod from_current(exprinfo=None)
returns an ExceptionInfo matching the current traceback

Warning: Experimental API

Parameters exprinfo – a text string helping to determine if we should strip
AssertionError from the output, defaults to the exception message/__str__()

classmethod for_later()
return an unfilled ExceptionInfo

type
the exception class

value
the exception value

tb
the exception raw traceback

typename
the type name of the exception

traceback
the traceback

exconly(tryshort=False)
return the exception as a string

when ‘tryshort’ resolves to True, and the exception is a _pytest._code._AssertionError, only the actual
exception part of the exception representation is returned (so ‘AssertionError: ‘ is removed from the be-
ginning)

errisinstance(exc)
return True if the exception is an instance of exc

getrepr(showlocals=False, style=’long’, abspath=False, tbfilter=True, funcargs=False, trun-
cate_locals=True, chain=True)

Return str()able representation of this exception info.

Parameters

• showlocals (bool) – Show locals per traceback entry. Ignored if
style=="native".

• style (str) – long|short|no|native traceback style

• abspath (bool) – If paths should be changed to absolute or left unchanged.

• tbfilter (bool) – Hide entries that contain a local variable
__tracebackhide__==True. Ignored if style=="native".

• funcargs (bool) – Show fixtures (“funcargs” for legacy purposes) per traceback entry.

• truncate_locals (bool) – With showlocals==True, make sure locals can be
safely represented as strings.

• chain (bool) – if chained exceptions in Python 3 should be shown.

Changed in version 3.9: Added the chain parameter.

156 Chapter 22. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


pytest Documentation, Release 4.6

match(regexp)
Check whether the regular expression ‘regexp’ is found in the string representation of the exception using
re.search. If it matches then True is returned (so that it is possible to write assert excinfo.
match()). If it doesn’t match an AssertionError is raised.

22.5.6 FixtureDef

class FixtureDef
Bases: object

A container for a factory definition.

22.5.7 FSCollector

class FSCollector
Bases: _pytest.nodes.Collector

22.5.8 Function

class Function
Bases: _pytest.python.FunctionMixin, _pytest.nodes.Item, _pytest.compat.
FuncargnamesCompatAttr

a Function Item is responsible for setting up and executing a Python test function.

originalname = None
original function name, without any decorations (for example parametrization adds a "[...]" suffix to
function names).

New in version 3.0.

function
underlying python ‘function’ object

runtest()
execute the underlying test function.

setup()
perform setup for this test function.

22.5.9 Item

class Item
Bases: _pytest.nodes.Node

a basic test invocation item. Note that for a single function there might be multiple test invocation items.

user_properties = None
user properties is a list of tuples (name, value) that holds user defined properties for this test.

add_report_section(when, key, content)
Adds a new report section, similar to what’s done internally to add stdout and stderr captured output:

item.add_report_section("call", "stdout", "report section contents")

22.5. Objects 157

https://docs.python.org/3/library/functions.html#object


pytest Documentation, Release 4.6

Parameters

• when (str) – One of the possible capture states, "setup", "call", "teardown".

• key (str) – Name of the section, can be customized at will. Pytest uses "stdout" and
"stderr" internally.

• content (str) – The full contents as a string.

22.5.10 MarkDecorator

class MarkDecorator(mark)
A decorator for test functions and test classes. When applied it will create MarkInfo objects which may be
retrieved by hooks as item keywords. MarkDecorator instances are often created like this:

mark1 = pytest.mark.NAME # simple MarkDecorator
mark2 = pytest.mark.NAME(name1=value) # parametrized MarkDecorator

and can then be applied as decorators to test functions:

@mark2
def test_function():

pass

When a MarkDecorator instance is called it does the following:

1. If called with a single class as its only positional argument and no additional keyword arguments, it
attaches itself to the class so it gets applied automatically to all test cases found in that class.

2. If called with a single function as its only positional argument and no additional keyword arguments,
it attaches a MarkInfo object to the function, containing all the arguments already stored internally in
the MarkDecorator.

3. When called in any other case, it performs a ‘fake construction’ call, i.e. it returns a new MarkDec-
orator instance with the original MarkDecorator’s content updated with the arguments passed to this
call.

Note: The rules above prevent MarkDecorator objects from storing only a single function or class reference as
their positional argument with no additional keyword or positional arguments.

name
alias for mark.name

args
alias for mark.args

kwargs
alias for mark.kwargs

with_args(*args, **kwargs)
return a MarkDecorator with extra arguments added

unlike call this can be used even if the sole argument is a callable/class

Returns MarkDecorator

158 Chapter 22. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 4.6

22.5.11 MarkGenerator

class MarkGenerator
Factory for MarkDecorator objects - exposed as a pytest.mark singleton instance. Example:

import pytest
@pytest.mark.slowtest
def test_function():

pass

will set a ‘slowtest’ MarkInfo object on the test_function object.

22.5.12 Mark

class Mark(name: str, args, kwargs)

name = None
name of the mark

args = None
positional arguments of the mark decorator

kwargs = None
keyword arguments of the mark decorator

combined_with(other)

Parameters other (Mark) – the mark to combine with

Return type Mark

combines by appending args and merging the mappings

22.5.13 Metafunc

class Metafunc(definition, fixtureinfo, config, cls=None, module=None)
Metafunc objects are passed to the pytest_generate_tests hook. They help to inspect a test function
and to generate tests according to test configuration or values specified in the class or module where a test
function is defined.

config = None
access to the _pytest.config.Config object for the test session

module = None
the module object where the test function is defined in.

function = None
underlying python test function

fixturenames = None
set of fixture names required by the test function

cls = None
class object where the test function is defined in or None.

parametrize(argnames, argvalues, indirect=False, ids=None, scope=None)
Add new invocations to the underlying test function using the list of argvalues for the given argnames.

22.5. Objects 159



pytest Documentation, Release 4.6

Parametrization is performed during the collection phase. If you need to setup expensive resources see
about setting indirect to do it rather at test setup time.

Parameters

• argnames – a comma-separated string denoting one or more argument names, or a
list/tuple of argument strings.

• argvalues – The list of argvalues determines how often a test is invoked with different
argument values. If only one argname was specified argvalues is a list of values. If N
argnames were specified, argvalues must be a list of N-tuples, where each tuple-element
specifies a value for its respective argname.

• indirect – The list of argnames or boolean. A list of arguments’ names (subset of
argnames). If True the list contains all names from the argnames. Each argvalue cor-
responding to an argname in this list will be passed as request.param to its respective
argname fixture function so that it can perform more expensive setups during the setup
phase of a test rather than at collection time.

• ids – list of string ids, or a callable. If strings, each is corresponding to the argvalues so
that they are part of the test id. If None is given as id of specific test, the automatically
generated id for that argument will be used. If callable, it should take one argument (a
single argvalue) and return a string or return None. If None, the automatically generated id
for that argument will be used. If no ids are provided they will be generated automatically
from the argvalues.

• scope – if specified it denotes the scope of the parameters. The scope is used for group-
ing tests by parameter instances. It will also override any fixture-function defined scope,
allowing to set a dynamic scope using test context or configuration.

22.5.14 Module

class Module
Bases: _pytest.nodes.File, _pytest.python.PyCollector

Collector for test classes and functions.

collect()
returns a list of children (items and collectors) for this collection node.

22.5.15 Node

class Node
base class for Collector and Item the test collection tree. Collector subclasses have children, Items are terminal
nodes.

name = None
a unique name within the scope of the parent node

parent = None
the parent collector node.

config = None
the pytest config object

session = None
the session this node is part of

160 Chapter 22. Reference



pytest Documentation, Release 4.6

fspath = None
filesystem path where this node was collected from (can be None)

keywords = None
keywords/markers collected from all scopes

own_markers = None
the marker objects belonging to this node

extra_keyword_matches = None
allow adding of extra keywords to use for matching

ihook
fspath sensitive hook proxy used to call pytest hooks

warn(warning)
Issue a warning for this item.

Warnings will be displayed after the test session, unless explicitly suppressed

Parameters warning (Warning) – the warning instance to issue. Must be a subclass of
PytestWarning.

Raises ValueError – if warning instance is not a subclass of PytestWarning.

Example usage:

node.warn(PytestWarning("some message"))

nodeid
a ::-separated string denoting its collection tree address.

listchain()
return list of all parent collectors up to self, starting from root of collection tree.

add_marker(marker, append=True)
dynamically add a marker object to the node.

Parameters marker (str or pytest.mark.* object) – append=True whether to append
the marker, if False insert at position 0.

iter_markers(name=None)

Parameters name – if given, filter the results by the name attribute

iterate over all markers of the node

for ... in iter_markers_with_node(name=None)

Parameters name – if given, filter the results by the name attribute

iterate over all markers of the node returns sequence of tuples (node, mark)

get_closest_marker(name, default=None)
return the first marker matching the name, from closest (for example function) to farther level (for example
module level).

Parameters

• default – fallback return value of no marker was found

• name – name to filter by

listextrakeywords()
Return a set of all extra keywords in self and any parents.

22.5. Objects 161

https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/exceptions.html#ValueError


pytest Documentation, Release 4.6

addfinalizer(fin)
register a function to be called when this node is finalized.

This method can only be called when this node is active in a setup chain, for example during self.setup().

getparent(cls)
get the next parent node (including ourself) which is an instance of the given class

22.5.16 Parser

class Parser
Parser for command line arguments and ini-file values.

Variables extra_info – dict of generic param -> value to display in case there’s an error pro-
cessing the command line arguments.

getgroup(name, description=”, after=None)
get (or create) a named option Group.

Name name of the option group.

Description long description for –help output.

After name of other group, used for ordering –help output.

The returned group object has an addoption method with the same signature as parser.addoption
but will be shown in the respective group in the output of pytest. --help.

addoption(*opts, **attrs)
register a command line option.

Opts option names, can be short or long options.

Attrs same attributes which the add_option() function of the argparse library accepts.

After command line parsing options are available on the pytest config object via config.option.
NAME where NAME is usually set by passing a dest attribute, for example addoption("--long",
dest="NAME", ...).

parse_known_args(args, namespace=None)
parses and returns a namespace object with known arguments at this point.

parse_known_and_unknown_args(args, namespace=None)
parses and returns a namespace object with known arguments, and the remaining arguments unknown at
this point.

addini(name, help, type=None, default=None)
register an ini-file option.

Name name of the ini-variable

Type type of the variable, can be pathlist, args, linelist or bool.

Default default value if no ini-file option exists but is queried.

The value of ini-variables can be retrieved via a call to config.getini(name).

22.5.17 PluginManager

class PluginManager
Core PluginManager class which manages registration of plugin objects and 1:N hook calling.

162 Chapter 22. Reference

http://docs.python.org/2/library/argparse.html


pytest Documentation, Release 4.6

You can register new hooks by calling add_hookspecs(module_or_class). You can register plugin
objects (which contain hooks) by calling register(plugin). The PluginManager is initialized with a
prefix that is searched for in the names of the dict of registered plugin objects.

For debugging purposes you can call PluginManager.enable_tracing()which will subsequently send
debug information to the trace helper.

register(plugin, name=None)
Register a plugin and return its canonical name or None if the name is blocked from registering. Raise a
ValueError if the plugin is already registered.

unregister(plugin=None, name=None)
unregister a plugin object and all its contained hook implementations from internal data structures.

set_blocked(name)
block registrations of the given name, unregister if already registered.

is_blocked(name)
return True if the given plugin name is blocked.

add_hookspecs(module_or_class)
add new hook specifications defined in the given module_or_class. Functions are recognized if they
have been decorated accordingly.

get_plugins()
return the set of registered plugins.

is_registered(plugin)
Return True if the plugin is already registered.

get_canonical_name(plugin)
Return canonical name for a plugin object. Note that a plugin may be registered under a different name
which was specified by the caller of register(plugin, name). To obtain the name of an registered
plugin use get_name(plugin) instead.

get_plugin(name)
Return a plugin or None for the given name.

has_plugin(name)
Return True if a plugin with the given name is registered.

get_name(plugin)
Return name for registered plugin or None if not registered.

check_pending()
Verify that all hooks which have not been verified against a hook specification are optional, otherwise raise
PluginValidationError.

load_setuptools_entrypoints(group, name=None)
Load modules from querying the specified setuptools group.

Parameters

• group (str) – entry point group to load plugins

• name (str) – if given, loads only plugins with the given name.

Return type int

Returns return the number of loaded plugins by this call.

list_plugin_distinfo()
return list of distinfo/plugin tuples for all setuptools registered plugins.

22.5. Objects 163

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


pytest Documentation, Release 4.6

list_name_plugin()
return list of name/plugin pairs.

get_hookcallers(plugin)
get all hook callers for the specified plugin.

add_hookcall_monitoring(before, after)
add before/after tracing functions for all hooks and return an undo function which, when called, will
remove the added tracers.

before(hook_name, hook_impls, kwargs) will be called ahead of all hook calls and receive
a hookcaller instance, a list of HookImpl instances and the keyword arguments for the hook call.

after(outcome, hook_name, hook_impls, kwargs) receives the same arguments as
before but also a pluggy.callers._Result object which represents the result of the overall hook
call.

enable_tracing()
enable tracing of hook calls and return an undo function.

subset_hook_caller(name, remove_plugins)
Return a new hooks._HookCaller instance for the named method which manages calls to all regis-
tered plugins except the ones from remove_plugins.

22.5.18 PytestPluginManager

class PytestPluginManager
Bases: pluggy.manager.PluginManager

Overwrites pluggy.PluginManager to add pytest-specific functionality:

• loading plugins from the command line, PYTEST_PLUGINS env variable and pytest_plugins global
variables found in plugins being loaded;

• conftest.py loading during start-up;

addhooks(module_or_class)
Deprecated since version 2.8.

Use pluggy.PluginManager.add_hookspecs instead.

parse_hookimpl_opts(plugin, name)

parse_hookspec_opts(module_or_class, name)

register(plugin, name=None)
Register a plugin and return its canonical name or None if the name is blocked from registering. Raise a
ValueError if the plugin is already registered.

getplugin(name)

hasplugin(name)
Return True if the plugin with the given name is registered.

pytest_configure(config)

consider_preparse(args)

consider_pluginarg(arg)

consider_conftest(conftestmodule)

consider_env()

164 Chapter 22. Reference

https://docs.python.org/3/library/exceptions.html#ValueError


pytest Documentation, Release 4.6

consider_module(mod)

import_plugin(modname, consider_entry_points=False)
Imports a plugin with modname. If consider_entry_points is True, entry point names are also
considered to find a plugin.

22.5.19 Session

class Session
Bases: _pytest.nodes.FSCollector

exception Interrupted
Bases: KeyboardInterrupt

signals an interrupted test run.

exception Failed
Bases: Exception

signals a stop as failed test run.

for ... in collect()
returns a list of children (items and collectors) for this collection node.

22.5.20 TestReport

class TestReport
Basic test report object (also used for setup and teardown calls if they fail).

nodeid = None
normalized collection node id

location = None
a (filesystempath, lineno, domaininfo) tuple indicating the actual location of a test item - it might be
different from the collected one e.g. if a method is inherited from a different module.

keywords = None
a name -> value dictionary containing all keywords and markers associated with a test invocation.

outcome = None
test outcome, always one of “passed”, “failed”, “skipped”.

longrepr = None
None or a failure representation.

when = None
one of ‘setup’, ‘call’, ‘teardown’ to indicate runtest phase.

user_properties = None
user properties is a list of tuples (name, value) that holds user defined properties of the test

sections = None
list of pairs (str, str) of extra information which needs to marshallable. Used by pytest to add
captured text from stdout and stderr, but may be used by other plugins to add arbitrary information
to reports.

duration = None
time it took to run just the test

22.5. Objects 165

https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/library/exceptions.html#Exception


pytest Documentation, Release 4.6

classmethod from_item_and_call(item, call)
Factory method to create and fill a TestReport with standard item and call info.

caplog
Return captured log lines, if log capturing is enabled

New in version 3.5.

capstderr
Return captured text from stderr, if capturing is enabled

New in version 3.0.

capstdout
Return captured text from stdout, if capturing is enabled

New in version 3.0.

count_towards_summary
Experimental

Returns True if this report should be counted towards the totals shown at the end of the test session: “1
passed, 1 failure, etc”.

Note: This function is considered experimental, so beware that it is subject to changes even in patch
releases.

head_line
Experimental

Returns the head line shown with longrepr output for this report, more commonly during traceback repre-
sentation during failures:

________ Test.foo ________

In the example above, the head_line is “Test.foo”.

Note: This function is considered experimental, so beware that it is subject to changes even in patch
releases.

longreprtext
Read-only property that returns the full string representation of longrepr.

New in version 3.0.

22.5.21 _Result

class _Result(result, excinfo)

result
Get the result(s) for this hook call (DEPRECATED in favor of get_result()).

force_result(result)
Force the result(s) to result.

If the hook was marked as a firstresult a single value should be set otherwise set a (modified) list of
results. Any exceptions found during invocation will be deleted.

166 Chapter 22. Reference



pytest Documentation, Release 4.6

get_result()
Get the result(s) for this hook call.

If the hook was marked as a firstresult only a single value will be returned otherwise a list of results.

22.6 Special Variables

pytest treats some global variables in a special manner when defined in a test module.

22.6.1 collect_ignore

Tutorial: Customizing test collection

Can be declared in conftest.py files to exclude test directories or modules. Needs to be list[str].

collect_ignore = ["setup.py"]

22.6.2 collect_ignore_glob

Tutorial: Customizing test collection

Can be declared in conftest.py files to exclude test directories or modules with Unix shell-style wildcards. Needs to be
list[str] where str can contain glob patterns.

collect_ignore_glob = ["*_ignore.py"]

22.6.3 pytest_plugins

Tutorial: Requiring/Loading plugins in a test module or conftest file

Can be declared at the global level in test modules and conftest.py files to register additional plugins. Can be either a
str or Sequence[str].

pytest_plugins = "myapp.testsupport.myplugin"

pytest_plugins = ("myapp.testsupport.tools", "myapp.testsupport.regression")

22.6.4 pytest_mark

Tutorial: Marking whole classes or modules

Can be declared at the global level in test modules to apply one or more marks to all test functions and methods. Can
be either a single mark or a list of marks.

import pytest

pytestmark = pytest.mark.webtest

import pytest

pytestmark = [pytest.mark.integration, pytest.mark.slow]

22.6. Special Variables 167



pytest Documentation, Release 4.6

22.6.5 PYTEST_DONT_REWRITE (module docstring)

The text PYTEST_DONT_REWRITE can be add to any module docstring to disable assertion rewriting for that
module.

22.7 Environment Variables

Environment variables that can be used to change pytest’s behavior.

22.7.1 PYTEST_ADDOPTS

This contains a command-line (parsed by the py:mod:shlex module) that will be prepended to the command line given
by the user, see How to change command line options defaults for more information.

22.7.2 PYTEST_DEBUG

When set, pytest will print tracing and debug information.

22.7.3 PYTEST_PLUGINS

Contains comma-separated list of modules that should be loaded as plugins:

export PYTEST_PLUGINS=mymodule.plugin,xdist

22.7.4 PYTEST_DISABLE_PLUGIN_AUTOLOAD

When set, disables plugin auto-loading through setuptools entrypoints. Only explicitly specified plugins will be loaded.

22.7.5 PYTEST_CURRENT_TEST

This is not meant to be set by users, but is set by pytest internally with the name of the current test so other processes
can inspect it, see PYTEST_CURRENT_TEST environment variable for more information.

22.8 Configuration Options

Here is a list of builtin configuration options that may be written in a pytest.ini, tox.ini or setup.cfg file,
usually located at the root of your repository. All options must be under a [pytest] section ([tool:pytest] for
setup.cfg files).

Warning: Usage of setup.cfg is not recommended unless for very simple use cases. .cfg files use a different
parser than pytest.ini and tox.ini which might cause hard to track down problems. When possible, it is
recommended to use the latter files to hold your pytest configuration.

Configuration file options may be overwritten in the command-line by using -o/--override, which can also be
passed multiple times. The expected format is name=value. For example:

168 Chapter 22. Reference



pytest Documentation, Release 4.6

pytest -o console_output_style=classic -o cache_dir=/tmp/mycache

addopts
Add the specified OPTS to the set of command line arguments as if they had been specified by the user. Example:
if you have this ini file content:

# content of pytest.ini
[pytest]
addopts = --maxfail=2 -rf # exit after 2 failures, report fail info

issuing pytest test_hello.py actually means:

pytest --maxfail=2 -rf test_hello.py

Default is to add no options.

cache_dir
Sets a directory where stores content of cache plugin. Default directory is .pytest_cache which is created
in rootdir. Directory may be relative or absolute path. If setting relative path, then directory is created relative
to rootdir. Additionally path may contain environment variables, that will be expanded. For more information
about cache plugin please refer to Cache: working with cross-testrun state.

confcutdir
Sets a directory where search upwards for conftest.py files stops. By default, pytest will stop searching for
conftest.py files upwards from pytest.ini/tox.ini/setup.cfg of the project if any, or up to the
file-system root.

console_output_style
Sets the console output style while running tests:

• classic: classic pytest output.

• progress: like classic pytest output, but with a progress indicator.

• count: like progress, but shows progress as the number of tests completed instead of a percent.

The default is progress, but you can fallback to classic if you prefer or the new mode is causing unex-
pected problems:

# content of pytest.ini
[pytest]
console_output_style = classic

doctest_encoding
Default encoding to use to decode text files with docstrings. See how pytest handles doctests.

doctest_optionflags
One or more doctest flag names from the standard doctest module. See how pytest handles doctests.

empty_parameter_set_mark
Allows to pick the action for empty parametersets in parameterization

• skip skips tests with an empty parameterset (default)

• xfail marks tests with an empty parameterset as xfail(run=False)

• fail_at_collect raises an exception if parametrize collects an empty parameter set

# content of pytest.ini
[pytest]
empty_parameter_set_mark = xfail

22.8. Configuration Options 169



pytest Documentation, Release 4.6

Note: The default value of this option is planned to change to xfail in future releases as this is considered
less error prone, see #3155 for more details.

filterwarnings
Sets a list of filters and actions that should be taken for matched warnings. By default all warnings emitted
during the test session will be displayed in a summary at the end of the test session.

# content of pytest.ini
[pytest]
filterwarnings =

error
ignore::DeprecationWarning

This tells pytest to ignore deprecation warnings and turn all other warnings into errors. For more information
please refer to Warnings Capture.

junit_duration_report
New in version 4.1.

Configures how durations are recorded into the JUnit XML report:

• total (the default): duration times reported include setup, call, and teardown times.

• call: duration times reported include only call times, excluding setup and teardown.

[pytest]
junit_duration_report = call

junit_family
New in version 4.2.

Configures the format of the generated JUnit XML file. The possible options are:

• xunit1 (or legacy): produces old style output, compatible with the xunit 1.0 format. This is the
default.

• xunit2: produces xunit 2.0 style output, which should be more compatible with latest Jenkins ver-
sions.

[pytest]
junit_family = xunit2

junit_logging
New in version 3.5.

Configures if stdout/stderr should be written to the JUnit XML file. Valid values are system-out,
system-err, and no (the default).

[pytest]
junit_logging = system-out

junit_log_passing_tests
New in version 4.6.

If junit_logging != "no", configures if the captured output should be written to the JUnit XML file for
passing tests. Default is True.

[pytest]
junit_log_passing_tests = False

170 Chapter 22. Reference

https://github.com/pytest-dev/pytest/issues/3155
https://github.com/jenkinsci/xunit-plugin/blob/xunit-2.3.2/src/main/resources/org/jenkinsci/plugins/xunit/types/model/xsd/junit-10.xsd


pytest Documentation, Release 4.6

junit_suite_name
To set the name of the root test suite xml item, you can configure the junit_suite_name option in your
config file:

[pytest]
junit_suite_name = my_suite

log_cli_date_format
Sets a time.strftime()-compatible string that will be used when formatting dates for live logging.

[pytest]
log_cli_date_format = %Y-%m-%d %H:%M:%S

For more information, see Live Logs.

log_cli_format
Sets a logging-compatible string used to format live logging messages.

[pytest]
log_cli_format = %(asctime)s %(levelname)s %(message)s

For more information, see Live Logs.

log_cli_level
Sets the minimum log message level that should be captured for live logging. The integer value or the names of
the levels can be used.

[pytest]
log_cli_level = INFO

For more information, see Live Logs.

log_date_format
Sets a time.strftime()-compatible string that will be used when formatting dates for logging capture.

[pytest]
log_date_format = %Y-%m-%d %H:%M:%S

For more information, see Logging.

log_file
Sets a file name relative to the pytest.ini file where log messages should be written to, in addition to the
other logging facilities that are active.

[pytest]
log_file = logs/pytest-logs.txt

For more information, see Logging.

log_file_date_format
Sets a time.strftime()-compatible string that will be used when formatting dates for the logging file.

[pytest]
log_file_date_format = %Y-%m-%d %H:%M:%S

For more information, see Logging.

log_file_format
Sets a logging-compatible string used to format logging messages redirected to the logging file.

22.8. Configuration Options 171

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/logging.html#module-logging


pytest Documentation, Release 4.6

[pytest]
log_file_format = %(asctime)s %(levelname)s %(message)s

For more information, see Logging.

log_file_level
Sets the minimum log message level that should be captured for the logging file. The integer value or the names
of the levels can be used.

[pytest]
log_file_level = INFO

For more information, see Logging.

log_format
Sets a logging-compatible string used to format captured logging messages.

[pytest]
log_format = %(asctime)s %(levelname)s %(message)s

For more information, see Logging.

log_level
Sets the minimum log message level that should be captured for logging capture. The integer value or the names
of the levels can be used.

[pytest]
log_level = INFO

For more information, see Logging.

log_print
If set to False, will disable displaying captured logging messages for failed tests.

[pytest]
log_print = False

For more information, see Logging.

markers
When the --strict-markers or --strict command-line arguments are used, only known markers -
defined in code by core pytest or some plugin - are allowed.

You can list additional markers in this setting to add them to the whitelist, in which case you probably want to
add --strict-markers to addopts to avoid future regressions:

[pytest]
addopts = --strict-markers
markers =

slow
serial

minversion
Specifies a minimal pytest version required for running tests.

# content of pytest.ini
[pytest]
minversion = 3.0 # will fail if we run with pytest-2.8

172 Chapter 22. Reference

https://docs.python.org/3/library/logging.html#module-logging


pytest Documentation, Release 4.6

norecursedirs
Set the directory basename patterns to avoid when recursing for test discovery. The individual (fnmatch-style)
patterns are applied to the basename of a directory to decide if to recurse into it. Pattern matching characters:

* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any char not in seq

Default patterns are '.*', 'build', 'dist', 'CVS', '_darcs', '{arch}', '*.egg',
'venv'. Setting a norecursedirs replaces the default. Here is an example of how to avoid certain di-
rectories:

[pytest]
norecursedirs = .svn _build tmp*

This would tell pytest to not look into typical subversion or sphinx-build directories or into any tmp prefixed
directory.

Additionally, pytest will attempt to intelligently identify and ignore a virtualenv by the presence of an activa-
tion script. Any directory deemed to be the root of a virtual environment will not be considered during test col-
lection unless --collect-in-virtualenv is given. Note also that norecursedirs takes precedence
over --collect-in-virtualenv; e.g. if you intend to run tests in a virtualenv with a base directory that
matches '.*' you must override norecursedirs in addition to using the --collect-in-virtualenv
flag.

python_classes
One or more name prefixes or glob-style patterns determining which classes are considered for test collection.
Search for multiple glob patterns by adding a space between patterns. By default, pytest will consider any class
prefixed with Test as a test collection. Here is an example of how to collect tests from classes that end in
Suite:

[pytest]
python_classes = *Suite

Note that unittest.TestCase derived classes are always collected regardless of this option, as
unittest’s own collection framework is used to collect those tests.

python_files
One or more Glob-style file patterns determining which python files are considered as test modules. Search for
multiple glob patterns by adding a space between patterns:

[pytest]
python_files = test_*.py check_*.py example_*.py

Or one per line:

[pytest]
python_files =

test_*.py
check_*.py
example_*.py

By default, files matching test_*.py and *_test.py will be considered test modules.

python_functions
One or more name prefixes or glob-patterns determining which test functions and methods are considered tests.
Search for multiple glob patterns by adding a space between patterns. By default, pytest will consider any

22.8. Configuration Options 173



pytest Documentation, Release 4.6

function prefixed with test as a test. Here is an example of how to collect test functions and methods that end
in _test:

[pytest]
python_functions = *_test

Note that this has no effect on methods that live on a unittest .TestCase derived class, as unittest’s
own collection framework is used to collect those tests.

See Changing naming conventions for more detailed examples.

testpaths
Sets list of directories that should be searched for tests when no specific directories, files or test ids are given in
the command line when executing pytest from the rootdir directory. Useful when all project tests are in a known
location to speed up test collection and to avoid picking up undesired tests by accident.

[pytest]
testpaths = testing doc

This tells pytest to only look for tests in testing and doc directories when executing from the root directory.

usefixtures
List of fixtures that will be applied to all test functions; this is semantically the same to apply the @pytest.
mark.usefixtures marker to all test functions.

[pytest]
usefixtures =

clean_db

xfail_strict
If set to True, tests marked with @pytest.mark.xfail that actually succeed will by default fail the test
suite. For more information, see strict parameter.

[pytest]
xfail_strict = True

174 Chapter 22. Reference



CHAPTER 23

Good Integration Practices

23.1 Install package with pip

For development, we recommend you use venv for virtual environments (or virtualenv for Python 2.7) and pip for
installing your application and any dependencies, as well as the pytest package itself. This ensures your code and
dependencies are isolated from your system Python installation.

Next, place a setup.py file in the root of your package with the following minimum content:

from setuptools import setup, find_packages

setup(name="PACKAGENAME", packages=find_packages())

Where PACKAGENAME is the name of your package. You can then install your package in “editable” mode by running
from the same directory:

pip install -e .

which lets you change your source code (both tests and application) and rerun tests at will. This is similar to run-
ning python setup.py develop or conda develop in that it installs your package using a symlink to your
development code.

23.2 Conventions for Python test discovery

pytest implements the following standard test discovery:

• If no arguments are specified then collection starts from testpaths (if configured) or the current directory.
Alternatively, command line arguments can be used in any combination of directories, file names or node ids.

• Recurse into directories, unless they match norecursedirs.

• In those directories, search for test_*.py or *_test.py files, imported by their test package name.

• From those files, collect test items:

175

https://docs.python.org/3/library/venv.html/
https://pypi.org/project/virtualenv/
https://pypi.org/project/pip/


pytest Documentation, Release 4.6

– test prefixed test functions or methods outside of class

– test prefixed test functions or methods inside Test prefixed test classes (without an __init__
method)

For examples of how to customize your test discovery Changing standard (Python) test discovery.

Within Python modules, pytest also discovers tests using the standard unittest.TestCase subclassing technique.

23.3 Choosing a test layout / import rules

pytest supports two common test layouts:

23.3.1 Tests outside application code

Putting tests into an extra directory outside your actual application code might be useful if you have many functional
tests or for other reasons want to keep tests separate from actual application code (often a good idea):

setup.py
mypkg/

__init__.py
app.py
view.py

tests/
test_app.py
test_view.py
...

This has the following benefits:

• Your tests can run against an installed version after executing pip install ..

• Your tests can run against the local copy with an editable install after executing pip install --editable
..

• If you don’t have a setup.py file and are relying on the fact that Python by default puts the current directory
in sys.path to import your package, you can execute python -m pytest to execute the tests against the
local copy directly, without using pip.

Note: See pytest import mechanisms and sys.path/PYTHONPATH for more information about the difference between
calling pytest and python -m pytest.

Note that using this scheme your test files must have unique names, because pytest will import them as top-level
modules since there are no packages to derive a full package name from. In other words, the test files in the example
above will be imported as test_app and test_view top-level modules by adding tests/ to sys.path.

If you need to have test modules with the same name, you might add __init__.py files to your tests folder and
subfolders, changing them to packages:

setup.py
mypkg/

...
tests/

__init__.py
foo/

(continues on next page)

176 Chapter 23. Good Integration Practices



pytest Documentation, Release 4.6

(continued from previous page)

__init__.py
test_view.py

bar/
__init__.py
test_view.py

Now pytest will load the modules as tests.foo.test_view and tests.bar.test_view, allowing you to
have modules with the same name. But now this introduces a subtle problem: in order to load the test modules from the
tests directory, pytest prepends the root of the repository to sys.path, which adds the side-effect that now mypkg
is also importable. This is problematic if you are using a tool like tox to test your package in a virtual environment,
because you want to test the installed version of your package, not the local code from the repository.

In this situation, it is strongly suggested to use a src layout where application root package resides in a sub-directory
of your root:

setup.py
src/

mypkg/
__init__.py
app.py
view.py

tests/
__init__.py
foo/

__init__.py
test_view.py

bar/
__init__.py
test_view.py

This layout prevents a lot of common pitfalls and has many benefits, which are better explained in this excellent blog
post by Ionel Cristian Măries, .

23.3.2 Tests as part of application code

Inlining test directories into your application package is useful if you have direct relation between tests and application
modules and want to distribute them along with your application:

setup.py
mypkg/

__init__.py
app.py
view.py
test/

__init__.py
test_app.py
test_view.py
...

In this scheme, it is easy to run your tests using the --pyargs option:

pytest --pyargs mypkg

pytest will discover where mypkg is installed and collect tests from there.

Note that this layout also works in conjunction with the src layout mentioned in the previous section.

23.3. Choosing a test layout / import rules 177

http://testrun.org/tox
https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure
https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure


pytest Documentation, Release 4.6

Note: You can use Python3 namespace packages (PEP420) for your application but pytest will still perform test
package name discovery based on the presence of __init__.py files. If you use one of the two recommended file
system layouts above but leave away the __init__.py files from your directories it should just work on Python3.3
and above. From “inlined tests”, however, you will need to use absolute imports for getting at your application code.

Note: If pytest finds an “a/b/test_module.py” test file while recursing into the filesystem it determines the import
name as follows:

• determine basedir: this is the first “upward” (towards the root) directory not containing an __init__.py.
If e.g. both a and b contain an __init__.py file then the parent directory of a will become the basedir.

• perform sys.path.insert(0, basedir) to make the test module importable under the fully qualified
import name.

• import a.b.test_module where the path is determined by converting path separators / into “.” charac-
ters. This means you must follow the convention of having directory and file names map directly to the import
names.

The reason for this somewhat evolved importing technique is that in larger projects multiple test modules might import
from each other and thus deriving a canonical import name helps to avoid surprises such as a test module getting
imported twice.

23.4 tox

Once you are done with your work and want to make sure that your actual package passes all tests you may want to
look into tox, the virtualenv test automation tool and its pytest support. tox helps you to setup virtualenv environments
with pre-defined dependencies and then executing a pre-configured test command with options. It will run tests against
the installed package and not against your source code checkout, helping to detect packaging glitches.

23.5 Integrating with setuptools / python setup.py test /
pytest-runner

You can integrate test runs into your setuptools based project with the pytest-runner plugin.

Add this to setup.py file:

from setuptools import setup

setup(
# ...,
setup_requires=["pytest-runner", ...],
tests_require=["pytest", ...],
# ...,

)

And create an alias into setup.cfg file:

[aliases]
test=pytest

178 Chapter 23. Good Integration Practices

http://testrun.org/tox
https://tox.readthedocs.io/en/latest/example/pytest.html
https://pypi.org/project/pytest-runner/


pytest Documentation, Release 4.6

If you now type:

python setup.py test

this will execute your tests using pytest-runner. As this is a standalone version of pytest no prior installation
whatsoever is required for calling the test command. You can also pass additional arguments to pytest such as your
test directory or other options using --addopts.

You can also specify other pytest-ini options in your setup.cfg file by putting them into a [tool:pytest]
section:

[tool:pytest]
addopts = --verbose
python_files = testing/*/*.py

23.5.1 Manual Integration

If for some reason you don’t want/can’t use pytest-runner, you can write your own setuptools Test command for
invoking pytest.

import sys

from setuptools.command.test import test as TestCommand

class PyTest(TestCommand):
user_options = [("pytest-args=", "a", "Arguments to pass to pytest")]

def initialize_options(self):
TestCommand.initialize_options(self)
self.pytest_args = ""

def run_tests(self):
import shlex

# import here, cause outside the eggs aren't loaded
import pytest

errno = pytest.main(shlex.split(self.pytest_args))
sys.exit(errno)

setup(
# ...,
tests_require=["pytest"],
cmdclass={"pytest": PyTest},

)

Now if you run:

python setup.py test

this will download pytest if needed and then run your tests as you would expect it to. You can pass a single string
of arguments using the --pytest-args or -a command-line option. For example:

python setup.py test -a "--durations=5"

23.5. Integrating with setuptools / python setup.py test / pytest-runner 179



pytest Documentation, Release 4.6

is equivalent to running pytest --durations=5.

180 Chapter 23. Good Integration Practices



CHAPTER 24

Flaky tests

A “flaky” test is one that exhibits intermittent or sporadic failure, that seems to have non-deterministic behaviour.
Sometimes it passes, sometimes it fails, and it’s not clear why. This page discusses pytest features that can help and
other general strategies for identifying, fixing or mitigating them.

24.1 Why flaky tests are a problem

Flaky tests are particularly troublesome when a continuous integration (CI) server is being used, so that all tests must
pass before a new code change can be merged. If the test result is not a reliable signal – that a test failure means
the code change broke the test – developers can become mistrustful of the test results, which can lead to overlooking
genuine failures. It is also a source of wasted time as developers must re-run test suites and investigate spurious
failures.

24.2 Potential root causes

24.2.1 System state

Broadly speaking, a flaky test indicates that the test relies on some system state that is not being appropriately con-
trolled - the test environment is not sufficiently isolated. Higher level tests are more likely to be flaky as they rely on
more state.

Flaky tests sometimes appear when a test suite is run in parallel (such as use of pytest-xdist). This can indicate a test
is reliant on test ordering.

• Perhaps a different test is failing to clean up after itself and leaving behind data which causes the flaky test to
fail.

• The flaky test is reliant on data from a previous test that doesn’t clean up after itself, and in parallel runs that
previous test is not always present

• Tests that modify global state typically cannot be run in parallel.

181



pytest Documentation, Release 4.6

24.2.2 Overly strict assertion

Overly strict assertions can cause problems with floating point comparison as well as timing issues. pytest.approx is
useful here.

24.3 Pytest features

24.3.1 Xfail strict

pytest.mark.xfail with strict=False can be used to mark a test so that its failure does not cause the whole build to
break. This could be considered like a manual quarantine, and is rather dangerous to use permanently.

24.3.2 PYTEST_CURRENT_TEST

PYTEST_CURRENT_TEST environment variable may be useful for figuring out “which test got stuck”.

24.3.3 Plugins

Rerunning any failed tests can mitigate the negative effects of flaky tests by giving them additional chances to pass, so
that the overall build does not fail. Several pytest plugins support this:

• flaky

• pytest-flakefinder - blog post

• pytest-rerunfailures

• pytest-replay: This plugin helps to reproduce locally crashes or flaky tests observed during CI runs.

Plugins to deliberately randomize tests can help expose tests with state problems:

• pytest-random-order

• pytest-randomly

24.4 Other general strategies

24.4.1 Split up test suites

It can be common to split a single test suite into two, such as unit vs integration, and only use the unit test suite as a
CI gate. This also helps keep build times manageable as high level tests tend to be slower. However, it means it does
become possible for code that breaks the build to be merged, so extra vigilance is needed for monitoring the integration
test results.

24.4.2 Video/screenshot on failure

For UI tests these are important for understanding what the state of the UI was when the test failed. pytest-splinter can
be used with plugins like pytest-bdd and can save a screenshot on test failure, which can help to isolate the cause.

182 Chapter 24. Flaky tests

https://docs.pytest.org/en/latest/reference.html#pytest-approx
https://github.com/box/flaky
https://github.com/dropbox/pytest-flakefinder
https://blogs.dropbox.com/tech/2016/03/open-sourcing-pytest-tools/
https://github.com/pytest-dev/pytest-rerunfailures
https://github.com/ESSS/pytest-replay
https://github.com/jbasko/pytest-random-order
https://github.com/pytest-dev/pytest-randomly
https://pytest-splinter.readthedocs.io/en/latest/#automatic-screenshots-on-test-failure


pytest Documentation, Release 4.6

24.4.3 Delete or rewrite the test

If the functionality is covered by other tests, perhaps the test can be removed. If not, perhaps it can be rewritten at a
lower level which will remove the flakiness or make its source more apparent.

24.4.4 Quarantine

Mark Lapierre discusses the Pros and Cons of Quarantined Tests in a post from 2018.

24.4.5 CI tools that rerun on failure

Azure Pipelines (the Azure cloud CI/CD tool, formerly Visual Studio Team Services or VSTS) has a feature to identify
flaky tests and rerun failed tests.

24.5 Research

This is a limited list, please submit an issue or pull request to expand it!

• Gao, Zebao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. “Making system user interactive
tests repeatable: When and what should we control?.” In Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, vol. 1, pp. 55-65. IEEE, 2015. PDF

• Palomba, Fabio, and Andy Zaidman. “Does refactoring of test smells induce fixing flaky tests?.” In Software
Maintenance and Evolution (ICSME), 2017 IEEE International Conference on, pp. 1-12. IEEE, 2017. PDF in
Google Drive

• Bell, Jonathan, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and Darko Marinov. “De-
Flaker: Automatically detecting flaky tests.” In Proceedings of the 2018 International Conference on Software
Engineering. 2018. PDF

24.6 Resources

• Eradicating Non-Determinism in Tests by Martin Fowler, 2011

• No more flaky tests on the Go team by Pavan Sudarshan, 2012

• The Build That Cried Broken: Building Trust in your Continuous Integration Tests talk (video) by Angie Jones
at SeleniumConf Austin 2017

• Test and Code Podcast: Flaky Tests and How to Deal with Them by Brian Okken and Anthony Shaw, 2018

• Microsoft:

– How we approach testing VSTS to enable continuous delivery by Brian Harry MS, 2017

– Eliminating Flaky Tests blog and talk (video) by Munil Shah, 2017

• Google:

– Flaky Tests at Google and How We Mitigate Them by John Micco, 2016

– Where do Google’s flaky tests come from? by Jeff Listfield, 2017

24.5. Research 183

https://dev.to/mlapierre/pros-and-cons-of-quarantined-tests-2emj
https://docs.microsoft.com/en-us/azure/devops/release-notes/2017/dec-11-vsts#identify-flaky-tests
https://docs.microsoft.com/en-us/azure/devops/release-notes/2017/dec-11-vsts#identify-flaky-tests
http://www.cs.umd.edu/~atif/pubs/gao-icse15.pdf
https://drive.google.com/file/d/10HdcCQiuQVgW3yYUJD-TSTq1NbYEprl0/view
https://drive.google.com/file/d/10HdcCQiuQVgW3yYUJD-TSTq1NbYEprl0/view
https://www.jonbell.net/icse18-deflaker.pdf
https://martinfowler.com/articles/nonDeterminism.html
https://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team
https://www.youtube.com/embed/VotJqV4n8ig
http://angiejones.tech/
https://testandcode.com/50
https://blogs.msdn.microsoft.com/bharry/2017/06/28/testing-in-a-cloud-delivery-cadence/
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/eliminating-flaky-tests
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://docs.google.com/document/d/1mZ0-Kc97DI_F3tf_GBW_NB_aqka-P1jVOsFfufxqUUM/edit#heading=h.ec0r4fypsleh


pytest Documentation, Release 4.6

184 Chapter 24. Flaky tests



CHAPTER 25

pytest import mechanisms and sys.path/PYTHONPATH

Here’s a list of scenarios where pytest may need to change sys.path in order to import test modules or conftest.
py files.

25.1 Test modules / conftest.py files inside packages

Consider this file and directory layout:

root/
|- foo/

|- __init__.py
|- conftest.py
|- bar/

|- __init__.py
|- tests/

|- __init__.py
|- test_foo.py

When executing:

pytest root/

pytest will find foo/bar/tests/test_foo.py and realize it is part of a package given that there’s an
__init__.py file in the same folder. It will then search upwards until it can find the last folder which still contains
an __init__.py file in order to find the package root (in this case foo/). To load the module, it will insert root/
to the front of sys.path (if not there already) in order to load test_foo.py as the module foo.bar.tests.
test_foo.

The same logic applies to the conftest.py file: it will be imported as foo.conftest module.

Preserving the full package name is important when tests live in a package to avoid problems and allow test modules
to have duplicated names. This is also discussed in details in Conventions for Python test discovery.

185



pytest Documentation, Release 4.6

25.2 Standalone test modules / conftest.py files

Consider this file and directory layout:

root/
|- foo/

|- conftest.py
|- bar/

|- tests/
|- test_foo.py

When executing:

pytest root/

pytest will find foo/bar/tests/test_foo.py and realize it is NOT part of a package given that there’s no
__init__.py file in the same folder. It will then add root/foo/bar/tests to sys.path in order to import
test_foo.py as the module test_foo. The same is done with the conftest.py file by adding root/foo to
sys.path to import it as conftest.

For this reason this layout cannot have test modules with the same name, as they all will be imported in the global
import namespace.

This is also discussed in details in Conventions for Python test discovery.

25.3 Invoking pytest versus python -m pytest

Running pytest with python -m pytest [...] instead of pytest [...] yields nearly equivalent behaviour,
except that the former call will add the current directory to sys.path. See also Calling pytest through python -m
pytest.

186 Chapter 25. pytest import mechanisms and sys.path/PYTHONPATH



CHAPTER 26

Configuration

26.1 Command line options and configuration file settings

You can get help on command line options and values in INI-style configurations files by using the general help option:

pytest -h # prints options _and_ config file settings

This will display command line and configuration file settings which were registered by installed plugins.

26.2 Initialization: determining rootdir and inifile

pytest determines a rootdir for each test run which depends on the command line arguments (specified test files,
paths) and on the existence of ini-files. The determined rootdir and ini-file are printed as part of the pytest header
during startup.

Here’s a summary what pytest uses rootdir for:

• Construct nodeids during collection; each test is assigned a unique nodeid which is rooted at the rootdir and
takes in account full path, class name, function name and parametrization (if any).

• Is used by plugins as a stable location to store project/test run specific information; for example, the internal
cache plugin creates a .pytest_cache subdirectory in rootdir to store its cross-test run state.

Important to emphasize that rootdir is NOT used to modify sys.path/PYTHONPATH or influence how modules
are imported. See pytest import mechanisms and sys.path/PYTHONPATH for more details.

--rootdir=path command-line option can be used to force a specific directory. The directory passed may contain
environment variables when it is used in conjunction with addopts in a pytest.ini file.

26.2.1 Finding the rootdir

Here is the algorithm which finds the rootdir from args:

187



pytest Documentation, Release 4.6

• determine the common ancestor directory for the specified args that are recognised as paths that exist in the
file system. If no such paths are found, the common ancestor directory is set to the current working directory.

• look for pytest.ini, tox.ini and setup.cfg files in the ancestor directory and upwards. If one is
matched, it becomes the ini-file and its directory becomes the rootdir.

• if no ini-file was found, look for setup.py upwards from the common ancestor directory to determine the
rootdir.

• if no setup.py was found, look for pytest.ini, tox.ini and setup.cfg in each of the specified
args and upwards. If one is matched, it becomes the ini-file and its directory becomes the rootdir.

• if no ini-file was found, use the already determined common ancestor as root directory. This allows the use of
pytest in structures that are not part of a package and don’t have any particular ini-file configuration.

If no args are given, pytest collects test below the current working directory and also starts determining the rootdir
from there.

warning custom pytest plugin commandline arguments may include a path, as in pytest
--log-output ../../test.log args. Then args is mandatory, otherwise pytest uses
the folder of test.log for rootdir determination (see also issue 1435). A dot . for referencing to the
current working directory is also possible.

Note that an existing pytest.ini file will always be considered a match, whereas tox.ini and setup.cfg will
only match if they contain a [pytest] or [tool:pytest] section, respectively. Options from multiple ini-files
candidates are never merged - the first one wins (pytest.ini always wins, even if it does not contain a [pytest]
section).

The config object will subsequently carry these attributes:

• config.rootdir: the determined root directory, guaranteed to exist.

• config.inifile: the determined ini-file, may be None.

The rootdir is used as a reference directory for constructing test addresses (“nodeids”) and can be used also by plugins
for storing per-testrun information.

Example:

pytest path/to/testdir path/other/

will determine the common ancestor as path and then check for ini-files as follows:

# first look for pytest.ini files
path/pytest.ini
path/setup.cfg # must also contain [tool:pytest] section to match
path/tox.ini # must also contain [pytest] section to match
pytest.ini
... # all the way down to the root

# now look for setup.py
path/setup.py
setup.py
... # all the way down to the root

26.3 How to change command line options defaults

It can be tedious to type the same series of command line options every time you use pytest. For example, if you
always want to see detailed info on skipped and xfailed tests, as well as have terser “dot” progress output, you can

188 Chapter 26. Configuration

https://github.com/pytest-dev/pytest/issues/1435


pytest Documentation, Release 4.6

write it into a configuration file:

# content of pytest.ini or tox.ini
# setup.cfg files should use [tool:pytest] section instead
[pytest]
addopts = -ra -q

Alternatively, you can set a PYTEST_ADDOPTS environment variable to add command line options while the envi-
ronment is in use:

export PYTEST_ADDOPTS="-v"

Here’s how the command-line is built in the presence of addopts or the environment variable:

<pytest.ini:addopts> $PYTEST_ADDOPTS <extra command-line arguments>

So if the user executes in the command-line:

pytest -m slow

The actual command line executed is:

pytest -ra -q -v -m slow

Note that as usual for other command-line applications, in case of conflicting options the last one wins, so the example
above will show verbose output because -v overwrites -q.

26.4 Builtin configuration file options

For the full list of options consult the reference documentation.

26.4. Builtin configuration file options 189



pytest Documentation, Release 4.6

190 Chapter 26. Configuration



CHAPTER 27

Examples and customization tricks

Here is a (growing) list of examples. Contact us if you need more examples or have questions. Also take a look at
the comprehensive documentation which contains many example snippets as well. Also, pytest on stackoverflow.com
often comes with example answers.

For basic examples, see

• Installation and Getting Started for basic introductory examples

• Asserting with the assert statement for basic assertion examples

• pytest fixtures: explicit, modular, scalable for basic fixture/setup examples

• Parametrizing fixtures and test functions for basic test function parametrization

• unittest.TestCase Support for basic unittest integration

• Running tests written for nose for basic nosetests integration

The following examples aim at various use cases you might encounter.

27.1 Demo of Python failure reports with pytest

Here is a nice run of several failures and how pytest presents things:

assertion $ pytest failure_demo.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/assertion
collected 44 items

failure_demo.py FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF [100%]

================================= FAILURES =================================
___________________________ test_generative[3-6] ___________________________

(continues on next page)

191

http://stackoverflow.com/search?q=pytest


pytest Documentation, Release 4.6

(continued from previous page)

param1 = 3, param2 = 6

@pytest.mark.parametrize("param1, param2", [(3, 6)])
def test_generative(param1, param2):

> assert param1 * 2 < param2
E assert (3 * 2) < 6

failure_demo.py:21: AssertionError
_________________________ TestFailing.test_simple __________________________

self = <failure_demo.TestFailing object at 0xdeadbeef>

def test_simple(self):
def f():

return 42

def g():
return 43

> assert f() == g()
E assert 42 == 43
E + where 42 = <function TestFailing.test_simple.<locals>.f at 0xdeadbeef>()
E + and 43 = <function TestFailing.test_simple.<locals>.g at 0xdeadbeef>()

failure_demo.py:32: AssertionError
____________________ TestFailing.test_simple_multiline _____________________

self = <failure_demo.TestFailing object at 0xdeadbeef>

def test_simple_multiline(self):
> otherfunc_multi(42, 6 * 9)

failure_demo.py:35:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a = 42, b = 54

def otherfunc_multi(a, b):
> assert a == b
E assert 42 == 54

failure_demo.py:16: AssertionError
___________________________ TestFailing.test_not ___________________________

self = <failure_demo.TestFailing object at 0xdeadbeef>

def test_not(self):
def f():

return 42

> assert not f()
E assert not 42
E + where 42 = <function TestFailing.test_not.<locals>.f at 0xdeadbeef>()

failure_demo.py:41: AssertionError
_________________ TestSpecialisedExplanations.test_eq_text _________________

(continues on next page)

192 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_text(self):
> assert "spam" == "eggs"
E AssertionError: assert 'spam' == 'eggs'
E - spam
E + eggs

failure_demo.py:46: AssertionError
_____________ TestSpecialisedExplanations.test_eq_similar_text _____________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_similar_text(self):
> assert "foo 1 bar" == "foo 2 bar"
E AssertionError: assert 'foo 1 bar' == 'foo 2 bar'
E - foo 1 bar
E ? ^
E + foo 2 bar
E ? ^

failure_demo.py:49: AssertionError
____________ TestSpecialisedExplanations.test_eq_multiline_text ____________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_multiline_text(self):
> assert "foo\nspam\nbar" == "foo\neggs\nbar"
E AssertionError: assert 'foo\nspam\nbar' == 'foo\neggs\nbar'
E foo
E - spam
E + eggs
E bar

failure_demo.py:52: AssertionError
______________ TestSpecialisedExplanations.test_eq_long_text _______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_long_text(self):
a = "1" * 100 + "a" + "2" * 100
b = "1" * 100 + "b" + "2" * 100

> assert a == b
E AssertionError: assert '111111111111...2222222222222' == '1111111111111...
→˓2222222222222'
E Skipping 90 identical leading characters in diff, use -v to show
E Skipping 91 identical trailing characters in diff, use -v to show
E - 1111111111a222222222
E ? ^
E + 1111111111b222222222
E ? ^

failure_demo.py:57: AssertionError
_________ TestSpecialisedExplanations.test_eq_long_text_multiline __________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>
(continues on next page)

27.1. Demo of Python failure reports with pytest 193



pytest Documentation, Release 4.6

(continued from previous page)

def test_eq_long_text_multiline(self):
a = "1\n" * 100 + "a" + "2\n" * 100
b = "1\n" * 100 + "b" + "2\n" * 100

> assert a == b
E AssertionError: assert '1\n1\n1\n1\n...n2\n2\n2\n2\n' == '1\n1\n1\n1\n1...
→˓n2\n2\n2\n2\n'
E Skipping 190 identical leading characters in diff, use -v to show
E Skipping 191 identical trailing characters in diff, use -v to show
E 1
E 1
E 1
E 1
E 1...
E
E ...Full output truncated (7 lines hidden), use '-vv' to show

failure_demo.py:62: AssertionError
_________________ TestSpecialisedExplanations.test_eq_list _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_list(self):
> assert [0, 1, 2] == [0, 1, 3]
E assert [0, 1, 2] == [0, 1, 3]
E At index 2 diff: 2 != 3
E Use -v to get the full diff

failure_demo.py:65: AssertionError
______________ TestSpecialisedExplanations.test_eq_list_long _______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_list_long(self):
a = [0] * 100 + [1] + [3] * 100
b = [0] * 100 + [2] + [3] * 100

> assert a == b
E assert [0, 0, 0, 0, 0, 0, ...] == [0, 0, 0, 0, 0, 0, ...]
E At index 100 diff: 1 != 2
E Use -v to get the full diff

failure_demo.py:70: AssertionError
_________________ TestSpecialisedExplanations.test_eq_dict _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_dict(self):
> assert {"a": 0, "b": 1, "c": 0} == {"a": 0, "b": 2, "d": 0}
E AssertionError: assert {'a': 0, 'b': 1, 'c': 0} == {'a': 0, 'b': 2, 'd': 0}
E Omitting 1 identical items, use -vv to show
E Differing items:
E {'b': 1} != {'b': 2}
E Left contains 1 more item:
E {'c': 0}
E Right contains 1 more item:
E {'d': 0}...
E

(continues on next page)

194 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:73: AssertionError
_________________ TestSpecialisedExplanations.test_eq_set __________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_set(self):
> assert {0, 10, 11, 12} == {0, 20, 21}
E AssertionError: assert {0, 10, 11, 12} == {0, 20, 21}
E Extra items in the left set:
E 10
E 11
E 12
E Extra items in the right set:
E 20
E 21...
E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:76: AssertionError
_____________ TestSpecialisedExplanations.test_eq_longer_list ______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_longer_list(self):
> assert [1, 2] == [1, 2, 3]
E assert [1, 2] == [1, 2, 3]
E Right contains one more item: 3
E Use -v to get the full diff

failure_demo.py:79: AssertionError
_________________ TestSpecialisedExplanations.test_in_list _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_in_list(self):
> assert 1 in [0, 2, 3, 4, 5]
E assert 1 in [0, 2, 3, 4, 5]

failure_demo.py:82: AssertionError
__________ TestSpecialisedExplanations.test_not_in_text_multiline __________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_multiline(self):
text = "some multiline\ntext\nwhich\nincludes foo\nand a\ntail"

> assert "foo" not in text
E AssertionError: assert 'foo' not in 'some multiline\ntext\nw...ncludes
→˓foo\nand a\ntail'
E 'foo' is contained here:
E some multiline
E text
E which
E includes foo
E ? +++
E and a...

(continues on next page)

27.1. Demo of Python failure reports with pytest 195



pytest Documentation, Release 4.6

(continued from previous page)

E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:86: AssertionError
___________ TestSpecialisedExplanations.test_not_in_text_single ____________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_single(self):
text = "single foo line"

> assert "foo" not in text
E AssertionError: assert 'foo' not in 'single foo line'
E 'foo' is contained here:
E single foo line
E ? +++

failure_demo.py:90: AssertionError
_________ TestSpecialisedExplanations.test_not_in_text_single_long _________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_single_long(self):
text = "head " * 50 + "foo " + "tail " * 20

> assert "foo" not in text
E AssertionError: assert 'foo' not in 'head head head head hea...ail tail tail
→˓tail tail '
E 'foo' is contained here:
E head head foo tail tail tail tail tail tail tail tail tail tail tail tail
→˓tail tail tail tail tail tail tail tail
E ? +++

failure_demo.py:94: AssertionError
______ TestSpecialisedExplanations.test_not_in_text_single_long_term _______

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_single_long_term(self):
text = "head " * 50 + "f" * 70 + "tail " * 20

> assert "f" * 70 not in text
E AssertionError: assert 'fffffffffff...ffffffffffff' not in 'head head he...l
→˓tail tail '
E 'ffffffffffffffffff...fffffffffffffffffff' is contained here:
E head head
→˓fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffftail tail
→˓tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail
→˓tail tail
E ?
→˓++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

failure_demo.py:98: AssertionError
______________ TestSpecialisedExplanations.test_eq_dataclass _______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_dataclass(self):
from dataclasses import dataclass

(continues on next page)

196 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

@dataclass
class Foo(object):

a: int
b: str

left = Foo(1, "b")
right = Foo(1, "c")

> assert left == right
E AssertionError: assert TestSpecialis...oo(a=1, b='b') == TestSpecialise...
→˓oo(a=1, b='c')
E Omitting 1 identical items, use -vv to show
E Differing attributes:
E b: 'b' != 'c'

failure_demo.py:110: AssertionError
________________ TestSpecialisedExplanations.test_eq_attrs _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_attrs(self):
import attr

@attr.s
class Foo(object):

a = attr.ib()
b = attr.ib()

left = Foo(1, "b")
right = Foo(1, "c")

> assert left == right
E AssertionError: assert Foo(a=1, b='b') == Foo(a=1, b='c')
E Omitting 1 identical items, use -vv to show
E Differing attributes:
E b: 'b' != 'c'

failure_demo.py:122: AssertionError
______________________________ test_attribute ______________________________

def test_attribute():
class Foo(object):

b = 1

i = Foo()
> assert i.b == 2
E assert 1 == 2
E + where 1 = <failure_demo.test_attribute.<locals>.Foo object at 0xdeadbeef>.
→˓b

failure_demo.py:130: AssertionError
_________________________ test_attribute_instance __________________________

def test_attribute_instance():
class Foo(object):

b = 1

> assert Foo().b == 2
E AssertionError: assert 1 == 2

(continues on next page)

27.1. Demo of Python failure reports with pytest 197



pytest Documentation, Release 4.6

(continued from previous page)

E + where 1 = <failure_demo.test_attribute_instance.<locals>.Foo object at
→˓0xdeadbeef>.b
E + where <failure_demo.test_attribute_instance.<locals>.Foo object at
→˓0xdeadbeef> = <class 'failure_demo.test_attribute_instance.<locals>.Foo'>()

failure_demo.py:137: AssertionError
__________________________ test_attribute_failure __________________________

def test_attribute_failure():
class Foo(object):

def _get_b(self):
raise Exception("Failed to get attrib")

b = property(_get_b)

i = Foo()
> assert i.b == 2

failure_demo.py:148:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <failure_demo.test_attribute_failure.<locals>.Foo object at 0xdeadbeef>

def _get_b(self):
> raise Exception("Failed to get attrib")
E Exception: Failed to get attrib

failure_demo.py:143: Exception
_________________________ test_attribute_multiple __________________________

def test_attribute_multiple():
class Foo(object):

b = 1

class Bar(object):
b = 2

> assert Foo().b == Bar().b
E AssertionError: assert 1 == 2
E + where 1 = <failure_demo.test_attribute_multiple.<locals>.Foo object at
→˓0xdeadbeef>.b
E + where <failure_demo.test_attribute_multiple.<locals>.Foo object at
→˓0xdeadbeef> = <class 'failure_demo.test_attribute_multiple.<locals>.Foo'>()
E + and 2 = <failure_demo.test_attribute_multiple.<locals>.Bar object at
→˓0xdeadbeef>.b
E + where <failure_demo.test_attribute_multiple.<locals>.Bar object at
→˓0xdeadbeef> = <class 'failure_demo.test_attribute_multiple.<locals>.Bar'>()

failure_demo.py:158: AssertionError
__________________________ TestRaises.test_raises __________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_raises(self):
s = "qwe"

> raises(TypeError, int, s)
E ValueError: invalid literal for int() with base 10: 'qwe'

(continues on next page)

198 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

failure_demo.py:168: ValueError
______________________ TestRaises.test_raises_doesnt _______________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_raises_doesnt(self):
> raises(IOError, int, "3")
E Failed: DID NOT RAISE <class 'OSError'>

failure_demo.py:171: Failed
__________________________ TestRaises.test_raise ___________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_raise(self):
> raise ValueError("demo error")
E ValueError: demo error

failure_demo.py:174: ValueError
________________________ TestRaises.test_tupleerror ________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_tupleerror(self):
> a, b = [1] # NOQA
E ValueError: not enough values to unpack (expected 2, got 1)

failure_demo.py:177: ValueError
______ TestRaises.test_reinterpret_fails_with_print_for_the_fun_of_it ______

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_reinterpret_fails_with_print_for_the_fun_of_it(self):
items = [1, 2, 3]
print("items is %r" % items)

> a, b = items.pop()
E TypeError: cannot unpack non-iterable int object

failure_demo.py:182: TypeError
--------------------------- Captured stdout call ---------------------------
items is [1, 2, 3]
________________________ TestRaises.test_some_error ________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_some_error(self):
> if namenotexi: # NOQA
E NameError: name 'namenotexi' is not defined

failure_demo.py:185: NameError
____________________ test_dynamic_compile_shows_nicely _____________________

def test_dynamic_compile_shows_nicely():
import imp
import sys

(continues on next page)

27.1. Demo of Python failure reports with pytest 199



pytest Documentation, Release 4.6

(continued from previous page)

src = "def foo():\n assert 1 == 0\n"
name = "abc-123"
module = imp.new_module(name)
code = _pytest._code.compile(src, name, "exec")
exec(code, module.__dict__)
sys.modules[name] = module

> module.foo()

failure_demo.py:203:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

def foo():
> assert 1 == 0
E AssertionError

<0-codegen 'abc-123' $REGENDOC_TMPDIR/assertion/failure_demo.py:200>:2: AssertionError
____________________ TestMoreErrors.test_complex_error _____________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_complex_error(self):
def f():

return 44

def g():
return 43

> somefunc(f(), g())

failure_demo.py:214:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
failure_demo.py:12: in somefunc

otherfunc(x, y)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a = 44, b = 43

def otherfunc(a, b):
> assert a == b
E assert 44 == 43

failure_demo.py:8: AssertionError
___________________ TestMoreErrors.test_z1_unpack_error ____________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_z1_unpack_error(self):
items = []

> a, b = items
E ValueError: not enough values to unpack (expected 2, got 0)

failure_demo.py:218: ValueError
____________________ TestMoreErrors.test_z2_type_error _____________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_z2_type_error(self):
(continues on next page)

200 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

items = 3
> a, b = items
E TypeError: cannot unpack non-iterable int object

failure_demo.py:222: TypeError
______________________ TestMoreErrors.test_startswith ______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_startswith(self):
s = "123"
g = "456"

> assert s.startswith(g)
E AssertionError: assert False
E + where False = <built-in method startswith of str object at 0xdeadbeef>(
→˓'456')
E + where <built-in method startswith of str object at 0xdeadbeef> = '123'.
→˓startswith

failure_demo.py:227: AssertionError
__________________ TestMoreErrors.test_startswith_nested ___________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_startswith_nested(self):
def f():

return "123"

def g():
return "456"

> assert f().startswith(g())
E AssertionError: assert False
E + where False = <built-in method startswith of str object at 0xdeadbeef>(
→˓'456')
E + where <built-in method startswith of str object at 0xdeadbeef> = '123'.
→˓startswith
E + where '123' = <function TestMoreErrors.test_startswith_nested.<locals>
→˓.f at 0xdeadbeef>()
E + and '456' = <function TestMoreErrors.test_startswith_nested.<locals>.
→˓g at 0xdeadbeef>()

failure_demo.py:236: AssertionError
_____________________ TestMoreErrors.test_global_func ______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_global_func(self):
> assert isinstance(globf(42), float)
E assert False
E + where False = isinstance(43, float)
E + where 43 = globf(42)

failure_demo.py:239: AssertionError
_______________________ TestMoreErrors.test_instance _______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>
(continues on next page)

27.1. Demo of Python failure reports with pytest 201



pytest Documentation, Release 4.6

(continued from previous page)

def test_instance(self):
self.x = 6 * 7

> assert self.x != 42
E assert 42 != 42
E + where 42 = <failure_demo.TestMoreErrors object at 0xdeadbeef>.x

failure_demo.py:243: AssertionError
_______________________ TestMoreErrors.test_compare ________________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_compare(self):
> assert globf(10) < 5
E assert 11 < 5
E + where 11 = globf(10)

failure_demo.py:246: AssertionError
_____________________ TestMoreErrors.test_try_finally ______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_try_finally(self):
x = 1
try:

> assert x == 0
E assert 1 == 0

failure_demo.py:251: AssertionError
___________________ TestCustomAssertMsg.test_single_line ___________________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

def test_single_line(self):
class A(object):

a = 1

b = 2
> assert A.a == b, "A.a appears not to be b"
E AssertionError: A.a appears not to be b
E assert 1 == 2
E + where 1 = <class 'failure_demo.TestCustomAssertMsg.test_single_line.
→˓<locals>.A'>.a

failure_demo.py:262: AssertionError
____________________ TestCustomAssertMsg.test_multiline ____________________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

def test_multiline(self):
class A(object):

a = 1

b = 2
> assert (

A.a == b
), "A.a appears not to be b\nor does not appear to be b\none of those"

(continues on next page)

202 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

E AssertionError: A.a appears not to be b
E or does not appear to be b
E one of those
E assert 1 == 2
E + where 1 = <class 'failure_demo.TestCustomAssertMsg.test_multiline.<locals>
→˓.A'>.a

failure_demo.py:269: AssertionError
___________________ TestCustomAssertMsg.test_custom_repr ___________________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

def test_custom_repr(self):
class JSON(object):

a = 1

def __repr__(self):
return "This is JSON\n{\n 'foo': 'bar'\n}"

a = JSON()
b = 2

> assert a.a == b, a
E AssertionError: This is JSON
E {
E 'foo': 'bar'
E }
E assert 1 == 2
E + where 1 = This is JSON\n{\n 'foo': 'bar'\n}.a

failure_demo.py:282: AssertionError
======================== 44 failed in 0.12 seconds =========================

27.2 Basic patterns and examples

27.2.1 Pass different values to a test function, depending on command line options

Suppose we want to write a test that depends on a command line option. Here is a basic pattern to achieve this:

# content of test_sample.py
def test_answer(cmdopt):

if cmdopt == "type1":
print("first")

elif cmdopt == "type2":
print("second")

assert 0 # to see what was printed

For this to work we need to add a command line option and provide the cmdopt through a fixture function:

# content of conftest.py
import pytest

def pytest_addoption(parser):

(continues on next page)

27.2. Basic patterns and examples 203



pytest Documentation, Release 4.6

(continued from previous page)

parser.addoption(
"--cmdopt", action="store", default="type1", help="my option: type1 or type2"

)

@pytest.fixture
def cmdopt(request):

return request.config.getoption("--cmdopt")

Let’s run this without supplying our new option:

$ pytest -q test_sample.py
F [100%]
================================= FAILURES =================================
_______________________________ test_answer ________________________________

cmdopt = 'type1'

def test_answer(cmdopt):
if cmdopt == "type1":

print("first")
elif cmdopt == "type2":

print("second")
> assert 0 # to see what was printed
E assert 0

test_sample.py:6: AssertionError
--------------------------- Captured stdout call ---------------------------
first
1 failed in 0.12 seconds

And now with supplying a command line option:

$ pytest -q --cmdopt=type2
F [100%]
================================= FAILURES =================================
_______________________________ test_answer ________________________________

cmdopt = 'type2'

def test_answer(cmdopt):
if cmdopt == "type1":

print("first")
elif cmdopt == "type2":

print("second")
> assert 0 # to see what was printed
E assert 0

test_sample.py:6: AssertionError
--------------------------- Captured stdout call ---------------------------
second
1 failed in 0.12 seconds

You can see that the command line option arrived in our test. This completes the basic pattern. However, one often
rather wants to process command line options outside of the test and rather pass in different or more complex objects.

204 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

27.2.2 Dynamically adding command line options

Through addopts you can statically add command line options for your project. You can also dynamically modify
the command line arguments before they get processed:

# setuptools plugin
import sys

def pytest_load_initial_conftests(args):
if "xdist" in sys.modules: # pytest-xdist plugin

import multiprocessing

num = max(multiprocessing.cpu_count() / 2, 1)
args[:] = ["-n", str(num)] + args

If you have the xdist plugin installed you will now always perform test runs using a number of subprocesses close to
your CPU. Running in an empty directory with the above conftest.py:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 0 items

======================= no tests ran in 0.12 seconds =======================

27.2.3 Control skipping of tests according to command line option

Here is a conftest.py file adding a --runslow command line option to control skipping of pytest.mark.
slow marked tests:

# content of conftest.py

import pytest

def pytest_addoption(parser):
parser.addoption(

"--runslow", action="store_true", default=False, help="run slow tests"
)

def pytest_collection_modifyitems(config, items):
if config.getoption("--runslow"):

# --runslow given in cli: do not skip slow tests
return

skip_slow = pytest.mark.skip(reason="need --runslow option to run")
for item in items:

if "slow" in item.keywords:
item.add_marker(skip_slow)

We can now write a test module like this:

27.2. Basic patterns and examples 205

https://pypi.org/project/pytest-xdist/


pytest Documentation, Release 4.6

# content of test_module.py
import pytest

def test_func_fast():
pass

@pytest.mark.slow
def test_func_slow():

pass

and when running it will see a skipped “slow” test:

$ pytest -rs # "-rs" means report details on the little 's'
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .s [100%]

========================= short test summary info ==========================
SKIPPED [1] test_module.py:8: need --runslow option to run
=================== 1 passed, 1 skipped in 0.12 seconds ====================

Or run it including the slow marked test:

$ pytest --runslow
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .. [100%]

========================= 2 passed in 0.12 seconds =========================

27.2.4 Writing well integrated assertion helpers

If you have a test helper function called from a test you can use the pytest.fail marker to fail a test with a certain
message. The test support function will not show up in the traceback if you set the __tracebackhide__ option
somewhere in the helper function. Example:

# content of test_checkconfig.py
import pytest

def checkconfig(x):
__tracebackhide__ = True
if not hasattr(x, "config"):

pytest.fail("not configured: %s" % (x,))

(continues on next page)

206 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

def test_something():
checkconfig(42)

The __tracebackhide__ setting influences pytest showing of tracebacks: the checkconfig function will
not be shown unless the --full-trace command line option is specified. Let’s run our little function:

$ pytest -q test_checkconfig.py
F [100%]
================================= FAILURES =================================
______________________________ test_something ______________________________

def test_something():
> checkconfig(42)
E Failed: not configured: 42

test_checkconfig.py:11: Failed
1 failed in 0.12 seconds

If you only want to hide certain exceptions, you can set __tracebackhide__ to a callable which gets the
ExceptionInfo object. You can for example use this to make sure unexpected exception types aren’t hidden:

import operator
import pytest

class ConfigException(Exception):
pass

def checkconfig(x):
__tracebackhide__ = operator.methodcaller("errisinstance", ConfigException)
if not hasattr(x, "config"):

raise ConfigException("not configured: %s" % (x,))

def test_something():
checkconfig(42)

This will avoid hiding the exception traceback on unrelated exceptions (i.e. bugs in assertion helpers).

27.2.5 Detect if running from within a pytest run

Usually it is a bad idea to make application code behave differently if called from a test. But if you absolutely must
find out if your application code is running from a test you can do something like this:

# content of conftest.py

def pytest_configure(config):
import sys

sys._called_from_test = True

(continues on next page)

27.2. Basic patterns and examples 207



pytest Documentation, Release 4.6

(continued from previous page)

def pytest_unconfigure(config):
import sys

del sys._called_from_test

and then check for the sys._called_from_test flag:

if hasattr(sys, "_called_from_test"):
# called from within a test run
...

else:
# called "normally"
...

accordingly in your application. It’s also a good idea to use your own application module rather than sys for handling
flag.

27.2.6 Adding info to test report header

It’s easy to present extra information in a pytest run:

# content of conftest.py

def pytest_report_header(config):
return "project deps: mylib-1.1"

which will add the string to the test header accordingly:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
project deps: mylib-1.1
rootdir: $REGENDOC_TMPDIR
collected 0 items

======================= no tests ran in 0.12 seconds =======================

It is also possible to return a list of strings which will be considered as several lines of information. You may consider
config.getoption('verbose') in order to display more information if applicable:

# content of conftest.py

def pytest_report_header(config):
if config.getoption("verbose") > 0:

return ["info1: did you know that ...", "did you?"]

which will add info only when run with “–v”:

$ pytest -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python

(continues on next page)

208 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

cachedir: $PYTHON_PREFIX/.pytest_cache
info1: did you know that ...
did you?
rootdir: $REGENDOC_TMPDIR
collecting ... collected 0 items

======================= no tests ran in 0.12 seconds =======================

and nothing when run plainly:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 0 items

======================= no tests ran in 0.12 seconds =======================

27.2.7 profiling test duration

If you have a slow running large test suite you might want to find out which tests are the slowest. Let’s make an
artificial test suite:

# content of test_some_are_slow.py
import time

def test_funcfast():
time.sleep(0.1)

def test_funcslow1():
time.sleep(0.2)

def test_funcslow2():
time.sleep(0.3)

Now we can profile which test functions execute the slowest:

$ pytest --durations=3
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_some_are_slow.py ... [100%]

========================= slowest 3 test durations =========================
0.31s call test_some_are_slow.py::test_funcslow2
0.20s call test_some_are_slow.py::test_funcslow1
0.10s call test_some_are_slow.py::test_funcfast
========================= 3 passed in 0.12 seconds =========================

27.2. Basic patterns and examples 209



pytest Documentation, Release 4.6

27.2.8 incremental testing - test steps

Sometimes you may have a testing situation which consists of a series of test steps. If one step fails it makes no sense
to execute further steps as they are all expected to fail anyway and their tracebacks add no insight. Here is a simple
conftest.py file which introduces an incremental marker which is to be used on classes:

# content of conftest.py

import pytest

def pytest_runtest_makereport(item, call):
if "incremental" in item.keywords:

if call.excinfo is not None:
parent = item.parent
parent._previousfailed = item

def pytest_runtest_setup(item):
if "incremental" in item.keywords:

previousfailed = getattr(item.parent, "_previousfailed", None)
if previousfailed is not None:

pytest.xfail("previous test failed (%s)" % previousfailed.name)

These two hook implementations work together to abort incremental-marked tests in a class. Here is a test module
example:

# content of test_step.py

import pytest

@pytest.mark.incremental
class TestUserHandling(object):

def test_login(self):
pass

def test_modification(self):
assert 0

def test_deletion(self):
pass

def test_normal():
pass

If we run this:

$ pytest -rx
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items

test_step.py .Fx. [100%]

(continues on next page)

210 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

================================= FAILURES =================================
____________________ TestUserHandling.test_modification ____________________

self = <test_step.TestUserHandling object at 0xdeadbeef>

def test_modification(self):
> assert 0
E assert 0

test_step.py:11: AssertionError
========================= short test summary info ==========================
XFAIL test_step.py::TestUserHandling::test_deletion

reason: previous test failed (test_modification)
============== 1 failed, 2 passed, 1 xfailed in 0.12 seconds ===============

We’ll see that test_deletion was not executed because test_modification failed. It is reported as an
“expected failure”.

27.2.9 Package/Directory-level fixtures (setups)

If you have nested test directories, you can have per-directory fixture scopes by placing fixture functions in a
conftest.py file in that directory You can use all types of fixtures including autouse fixtures which are the equiv-
alent of xUnit’s setup/teardown concept. It’s however recommended to have explicit fixture references in your tests or
test classes rather than relying on implicitly executing setup/teardown functions, especially if they are far away from
the actual tests.

Here is an example for making a db fixture available in a directory:

# content of a/conftest.py
import pytest

class DB(object):
pass

@pytest.fixture(scope="session")
def db():

return DB()

and then a test module in that directory:

# content of a/test_db.py
def test_a1(db):

assert 0, db # to show value

another test module:

# content of a/test_db2.py
def test_a2(db):

assert 0, db # to show value

and then a module in a sister directory which will not see the db fixture:

27.2. Basic patterns and examples 211



pytest Documentation, Release 4.6

# content of b/test_error.py
def test_root(db): # no db here, will error out

pass

We can run this:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 7 items

test_step.py .Fx. [ 57%]
a/test_db.py F [ 71%]
a/test_db2.py F [ 85%]
b/test_error.py E [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_root ________________________
file $REGENDOC_TMPDIR/b/test_error.py, line 1

def test_root(db): # no db here, will error out
E fixture 'db' not found
> available fixtures: cache, capfd, capfdbinary, caplog, capsys, capsysbinary,
→˓doctest_namespace, monkeypatch, pytestconfig, record_property, record_testsuite_
→˓property, record_xml_attribute, recwarn, tmp_path, tmp_path_factory, tmpdir, tmpdir_
→˓factory
> use 'pytest --fixtures [testpath]' for help on them.

$REGENDOC_TMPDIR/b/test_error.py:1
================================= FAILURES =================================
____________________ TestUserHandling.test_modification ____________________

self = <test_step.TestUserHandling object at 0xdeadbeef>

def test_modification(self):
> assert 0
E assert 0

test_step.py:11: AssertionError
_________________________________ test_a1 __________________________________

db = <conftest.DB object at 0xdeadbeef>

def test_a1(db):
> assert 0, db # to show value
E AssertionError: <conftest.DB object at 0xdeadbeef>
E assert 0

a/test_db.py:2: AssertionError
_________________________________ test_a2 __________________________________

db = <conftest.DB object at 0xdeadbeef>

def test_a2(db):
> assert 0, db # to show value
E AssertionError: <conftest.DB object at 0xdeadbeef>

(continues on next page)

212 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

E assert 0

a/test_db2.py:2: AssertionError
========== 3 failed, 2 passed, 1 xfailed, 1 error in 0.12 seconds ==========

The two test modules in the a directory see the same db fixture instance while the one test in the sister-directory b
doesn’t see it. We could of course also define a db fixture in that sister directory’s conftest.py file. Note that
each fixture is only instantiated if there is a test actually needing it (unless you use “autouse” fixture which are always
executed ahead of the first test executing).

27.2.10 post-process test reports / failures

If you want to postprocess test reports and need access to the executing environment you can implement a hook that
gets called when the test “report” object is about to be created. Here we write out all failing test calls and also access
a fixture (if it was used by the test) in case you want to query/look at it during your post processing. In our case we
just write some information out to a failures file:

# content of conftest.py

import pytest
import os.path

@pytest.hookimpl(tryfirst=True, hookwrapper=True)
def pytest_runtest_makereport(item, call):

# execute all other hooks to obtain the report object
outcome = yield
rep = outcome.get_result()

# we only look at actual failing test calls, not setup/teardown
if rep.when == "call" and rep.failed:

mode = "a" if os.path.exists("failures") else "w"
with open("failures", mode) as f:

# let's also access a fixture for the fun of it
if "tmpdir" in item.fixturenames:

extra = " (%s)" % item.funcargs["tmpdir"]
else:

extra = ""

f.write(rep.nodeid + extra + "\n")

if you then have failing tests:

# content of test_module.py
def test_fail1(tmpdir):

assert 0

def test_fail2():
assert 0

and run them:

$ pytest test_module.py
=========================== test session starts ============================

(continues on next page)

27.2. Basic patterns and examples 213



pytest Documentation, Release 4.6

(continued from previous page)

platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py FF [100%]

================================= FAILURES =================================
________________________________ test_fail1 ________________________________

tmpdir = local('PYTEST_TMPDIR/test_fail10')

def test_fail1(tmpdir):
> assert 0
E assert 0

test_module.py:2: AssertionError
________________________________ test_fail2 ________________________________

def test_fail2():
> assert 0
E assert 0

test_module.py:6: AssertionError
========================= 2 failed in 0.12 seconds =========================

you will have a “failures” file which contains the failing test ids:

$ cat failures
test_module.py::test_fail1 (PYTEST_TMPDIR/test_fail10)
test_module.py::test_fail2

27.2.11 Making test result information available in fixtures

If you want to make test result reports available in fixture finalizers here is a little example implemented via a local
plugin:

# content of conftest.py

import pytest

@pytest.hookimpl(tryfirst=True, hookwrapper=True)
def pytest_runtest_makereport(item, call):

# execute all other hooks to obtain the report object
outcome = yield
rep = outcome.get_result()

# set a report attribute for each phase of a call, which can
# be "setup", "call", "teardown"

setattr(item, "rep_" + rep.when, rep)

@pytest.fixture
(continues on next page)

214 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

def something(request):
yield
# request.node is an "item" because we use the default
# "function" scope
if request.node.rep_setup.failed:

print("setting up a test failed!", request.node.nodeid)
elif request.node.rep_setup.passed:

if request.node.rep_call.failed:
print("executing test failed", request.node.nodeid)

if you then have failing tests:

# content of test_module.py

import pytest

@pytest.fixture
def other():

assert 0

def test_setup_fails(something, other):
pass

def test_call_fails(something):
assert 0

def test_fail2():
assert 0

and run it:

$ pytest -s test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_module.py Esetting up a test failed! test_module.py::test_setup_fails
Fexecuting test failed test_module.py::test_call_fails
F

================================== ERRORS ==================================
____________________ ERROR at setup of test_setup_fails ____________________

@pytest.fixture
def other():

> assert 0
E assert 0

test_module.py:7: AssertionError
================================= FAILURES =================================
_____________________________ test_call_fails ______________________________

(continues on next page)

27.2. Basic patterns and examples 215



pytest Documentation, Release 4.6

(continued from previous page)

something = None

def test_call_fails(something):
> assert 0
E assert 0

test_module.py:15: AssertionError
________________________________ test_fail2 ________________________________

def test_fail2():
> assert 0
E assert 0

test_module.py:19: AssertionError
==================== 2 failed, 1 error in 0.12 seconds =====================

You’ll see that the fixture finalizers could use the precise reporting information.

27.2.12 PYTEST_CURRENT_TEST environment variable

Sometimes a test session might get stuck and there might be no easy way to figure out which test got stuck, for example
if pytest was run in quiet mode (-q) or you don’t have access to the console output. This is particularly a problem if
the problem helps only sporadically, the famous “flaky” kind of tests.

pytest sets a PYTEST_CURRENT_TEST environment variable when running tests, which can be inspected by
process monitoring utilities or libraries like psutil to discover which test got stuck if necessary:

import psutil

for pid in psutil.pids():
environ = psutil.Process(pid).environ()
if "PYTEST_CURRENT_TEST" in environ:

print(f'pytest process {pid} running: {environ["PYTEST_CURRENT_TEST"]}')

During the test session pytest will set PYTEST_CURRENT_TEST to the current test nodeid and the current stage,
which can be setup, call and teardown.

For example, when running a single test function named test_foo from foo_module.py,
PYTEST_CURRENT_TEST will be set to:

1. foo_module.py::test_foo (setup)

2. foo_module.py::test_foo (call)

3. foo_module.py::test_foo (teardown)

In that order.

Note: The contents of PYTEST_CURRENT_TEST is meant to be human readable and the actual format can be
changed between releases (even bug fixes) so it shouldn’t be relied on for scripting or automation.

216 Chapter 27. Examples and customization tricks

https://pypi.org/project/psutil/


pytest Documentation, Release 4.6

27.2.13 Freezing pytest

If you freeze your application using a tool like PyInstaller in order to distribute it to your end-users, it is a good idea
to also package your test runner and run your tests using the frozen application. This way packaging errors such as
dependencies not being included into the executable can be detected early while also allowing you to send test files to
users so they can run them in their machines, which can be useful to obtain more information about a hard to reproduce
bug.

Fortunately recent PyInstaller releases already have a custom hook for pytest, but if you are using another tool
to freeze executables such as cx_freeze or py2exe, you can use pytest.freeze_includes() to obtain the
full list of internal pytest modules. How to configure the tools to find the internal modules varies from tool to tool,
however.

Instead of freezing the pytest runner as a separate executable, you can make your frozen program work as the pytest
runner by some clever argument handling during program startup. This allows you to have a single executable, which
is usually more convenient. Please note that the mechanism for plugin discovery used by pytest (setupttools entry
points) doesn’t work with frozen executables so pytest can’t find any third party plugins automatically. To include
third party plugins like pytest-timeout they must be imported explicitly and passed on to pytest.main.

# contents of app_main.py
import sys
import pytest_timeout # Third party plugin

if len(sys.argv) > 1 and sys.argv[1] == "--pytest":
import pytest

sys.exit(pytest.main(sys.argv[2:], plugins=[pytest_timeout]))
else:

# normal application execution: at this point argv can be parsed
# by your argument-parsing library of choice as usual
...

This allows you to execute tests using the frozen application with standard pytest command-line options:

./app_main --pytest --verbose --tb=long --junitxml=results.xml test-suite/

27.3 Parametrizing tests

pytest allows to easily parametrize test functions. For basic docs, see Parametrizing fixtures and test functions.

In the following we provide some examples using the builtin mechanisms.

27.3.1 Generating parameters combinations, depending on command line

Let’s say we want to execute a test with different computation parameters and the parameter range shall be determined
by a command line argument. Let’s first write a simple (do-nothing) computation test:

# content of test_compute.py

def test_compute(param1):
assert param1 < 4

Now we add a test configuration like this:

27.3. Parametrizing tests 217

https://pyinstaller.readthedocs.io


pytest Documentation, Release 4.6

# content of conftest.py

def pytest_addoption(parser):
parser.addoption("--all", action="store_true",

help="run all combinations")

def pytest_generate_tests(metafunc):
if 'param1' in metafunc.fixturenames:

if metafunc.config.getoption('all'):
end = 5

else:
end = 2

metafunc.parametrize("param1", range(end))

This means that we only run 2 tests if we do not pass --all:

$ pytest -q test_compute.py
.. [100%]
2 passed in 0.12 seconds

We run only two computations, so we see two dots. let’s run the full monty:

$ pytest -q --all
....F [100%]
================================= FAILURES =================================
_____________________________ test_compute[4] ______________________________

param1 = 4

def test_compute(param1):
> assert param1 < 4
E assert 4 < 4

test_compute.py:3: AssertionError
1 failed, 4 passed in 0.12 seconds

As expected when running the full range of param1 values we’ll get an error on the last one.

27.3.2 Different options for test IDs

pytest will build a string that is the test ID for each set of values in a parametrized test. These IDs can be used with
-k to select specific cases to run, and they will also identify the specific case when one is failing. Running pytest with
--collect-only will show the generated IDs.

Numbers, strings, booleans and None will have their usual string representation used in the test ID. For other objects,
pytest will make a string based on the argument name:

# content of test_time.py

import pytest

from datetime import datetime, timedelta

testdata = [
(datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1)),
(datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1)),

(continues on next page)

218 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

]

@pytest.mark.parametrize("a,b,expected", testdata)
def test_timedistance_v0(a, b, expected):

diff = a - b
assert diff == expected

@pytest.mark.parametrize("a,b,expected", testdata, ids=["forward", "backward"])
def test_timedistance_v1(a, b, expected):

diff = a - b
assert diff == expected

def idfn(val):
if isinstance(val, (datetime,)):

# note this wouldn't show any hours/minutes/seconds
return val.strftime('%Y%m%d')

@pytest.mark.parametrize("a,b,expected", testdata, ids=idfn)
def test_timedistance_v2(a, b, expected):

diff = a - b
assert diff == expected

@pytest.mark.parametrize("a,b,expected", [
pytest.param(datetime(2001, 12, 12), datetime(2001, 12, 11),

timedelta(1), id='forward'),
pytest.param(datetime(2001, 12, 11), datetime(2001, 12, 12),

timedelta(-1), id='backward'),
])
def test_timedistance_v3(a, b, expected):

diff = a - b
assert diff == expected

In test_timedistance_v0, we let pytest generate the test IDs.

In test_timedistance_v1, we specified ids as a list of strings which were used as the test IDs. These are
succinct, but can be a pain to maintain.

In test_timedistance_v2, we specified ids as a function that can generate a string representation to make part
of the test ID. So our datetime values use the label generated by idfn, but because we didn’t generate a label for
timedelta objects, they are still using the default pytest representation:

$ pytest test_time.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 8 items
<Module test_time.py>

<Function test_timedistance_v0[a0-b0-expected0]>
<Function test_timedistance_v0[a1-b1-expected1]>
<Function test_timedistance_v1[forward]>
<Function test_timedistance_v1[backward]>
<Function test_timedistance_v2[20011212-20011211-expected0]>

(continues on next page)

27.3. Parametrizing tests 219



pytest Documentation, Release 4.6

(continued from previous page)

<Function test_timedistance_v2[20011211-20011212-expected1]>
<Function test_timedistance_v3[forward]>
<Function test_timedistance_v3[backward]>

======================= no tests ran in 0.12 seconds =======================

In test_timedistance_v3, we used pytest.param to specify the test IDs together with the actual data,
instead of listing them separately.

27.3.3 A quick port of “testscenarios”

Here is a quick port to run tests configured with test scenarios, an add-on from Robert Collins for the standard
unittest framework. We only have to work a bit to construct the correct arguments for pytest’s Metafunc.
parametrize():

# content of test_scenarios.py

def pytest_generate_tests(metafunc):
idlist = []
argvalues = []
for scenario in metafunc.cls.scenarios:

idlist.append(scenario[0])
items = scenario[1].items()
argnames = [x[0] for x in items]
argvalues.append(([x[1] for x in items]))

metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class")

scenario1 = ('basic', {'attribute': 'value'})
scenario2 = ('advanced', {'attribute': 'value2'})

class TestSampleWithScenarios(object):
scenarios = [scenario1, scenario2]

def test_demo1(self, attribute):
assert isinstance(attribute, str)

def test_demo2(self, attribute):
assert isinstance(attribute, str)

this is a fully self-contained example which you can run with:

$ pytest test_scenarios.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items

test_scenarios.py .... [100%]

========================= 4 passed in 0.12 seconds =========================

If you just collect tests you’ll also nicely see ‘advanced’ and ‘basic’ as variants for the test function:

220 Chapter 27. Examples and customization tricks

https://pypi.org/project/testscenarios/


pytest Documentation, Release 4.6

$ pytest --collect-only test_scenarios.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items
<Module test_scenarios.py>

<Class TestSampleWithScenarios>
<Function test_demo1[basic]>
<Function test_demo2[basic]>
<Function test_demo1[advanced]>
<Function test_demo2[advanced]>

======================= no tests ran in 0.12 seconds =======================

Note that we told metafunc.parametrize() that your scenario values should be considered class-scoped. With
pytest-2.3 this leads to a resource-based ordering.

27.3.4 Deferring the setup of parametrized resources

The parametrization of test functions happens at collection time. It is a good idea to setup expensive resources like
DB connections or subprocess only when the actual test is run. Here is a simple example how you can achieve that,
first the actual test requiring a db object:

# content of test_backends.py

import pytest
def test_db_initialized(db):

# a dummy test
if db.__class__.__name__ == "DB2":

pytest.fail("deliberately failing for demo purposes")

We can now add a test configuration that generates two invocations of the test_db_initialized function and
also implements a factory that creates a database object for the actual test invocations:

# content of conftest.py
import pytest

def pytest_generate_tests(metafunc):
if 'db' in metafunc.fixturenames:

metafunc.parametrize("db", ['d1', 'd2'], indirect=True)

class DB1(object):
"one database object"

class DB2(object):
"alternative database object"

@pytest.fixture
def db(request):

if request.param == "d1":
return DB1()

elif request.param == "d2":
return DB2()

else:
raise ValueError("invalid internal test config")

27.3. Parametrizing tests 221



pytest Documentation, Release 4.6

Let’s first see how it looks like at collection time:

$ pytest test_backends.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items
<Module test_backends.py>

<Function test_db_initialized[d1]>
<Function test_db_initialized[d2]>

======================= no tests ran in 0.12 seconds =======================

And then when we run the test:

$ pytest -q test_backends.py
.F [100%]
================================= FAILURES =================================
_________________________ test_db_initialized[d2] __________________________

db = <conftest.DB2 object at 0xdeadbeef>

def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":

> pytest.fail("deliberately failing for demo purposes")
E Failed: deliberately failing for demo purposes

test_backends.py:6: Failed
1 failed, 1 passed in 0.12 seconds

The first invocation with db == "DB1" passed while the second with db == "DB2" failed. Our db fixture func-
tion has instantiated each of the DB values during the setup phase while the pytest_generate_tests generated
two according calls to the test_db_initialized during the collection phase.

27.3.5 Apply indirect on particular arguments

Very often parametrization uses more than one argument name. There is opportunity to apply indirect parameter
on particular arguments. It can be done by passing list or tuple of arguments’ names to indirect. In the example
below there is a function test_indirect which uses two fixtures: x and y. Here we give to indirect the list, which
contains the name of the fixture x. The indirect parameter will be applied to this argument only, and the value a will
be passed to respective fixture function:

# content of test_indirect_list.py

import pytest
@pytest.fixture(scope='function')
def x(request):

return request.param * 3

@pytest.fixture(scope='function')
def y(request):

return request.param * 2

@pytest.mark.parametrize('x, y', [('a', 'b')], indirect=['x'])

(continues on next page)

222 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

def test_indirect(x,y):
assert x == 'aaa'
assert y == 'b'

The result of this test will be successful:

$ pytest test_indirect_list.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item
<Module test_indirect_list.py>

<Function test_indirect[a-b]>

======================= no tests ran in 0.12 seconds =======================

27.3.6 Parametrizing test methods through per-class configuration

Here is an example pytest_generate_tests function implementing a parametrization scheme similar to
Michael Foord’s unittest parametrizer but in a lot less code:

# content of ./test_parametrize.py
import pytest

def pytest_generate_tests(metafunc):
# called once per each test function
funcarglist = metafunc.cls.params[metafunc.function.__name__]
argnames = sorted(funcarglist[0])
metafunc.parametrize(argnames, [[funcargs[name] for name in argnames]

for funcargs in funcarglist])

class TestClass(object):
# a map specifying multiple argument sets for a test method
params = {

'test_equals': [dict(a=1, b=2), dict(a=3, b=3), ],
'test_zerodivision': [dict(a=1, b=0), ],

}

def test_equals(self, a, b):
assert a == b

def test_zerodivision(self, a, b):
with pytest.raises(ZeroDivisionError):

a / b

Our test generator looks up a class-level definition which specifies which argument sets to use for each test function.
Let’s run it:

$ pytest -q
F.. [100%]
================================= FAILURES =================================
________________________ TestClass.test_equals[1-2] ________________________

self = <test_parametrize.TestClass object at 0xdeadbeef>, a = 1, b = 2
(continues on next page)

27.3. Parametrizing tests 223

https://github.com/testing-cabal/unittest-ext/blob/master/params.py


pytest Documentation, Release 4.6

(continued from previous page)

def test_equals(self, a, b):
> assert a == b
E assert 1 == 2

test_parametrize.py:18: AssertionError
1 failed, 2 passed in 0.12 seconds

27.3.7 Indirect parametrization with multiple fixtures

Here is a stripped down real-life example of using parametrized testing for testing serialization of objects between
different python interpreters. We define a test_basic_objects function which is to be run with different sets of
arguments for its three arguments:

• python1: first python interpreter, run to pickle-dump an object to a file

• python2: second interpreter, run to pickle-load an object from a file

• obj: object to be dumped/loaded

# -*- coding: utf-8 -*-
"""
module containing a parametrized tests testing cross-python
serialization via the pickle module.
"""
import distutils.spawn
import subprocess
import textwrap

import pytest

pythonlist = ["python2.7", "python3.4", "python3.5"]

@pytest.fixture(params=pythonlist)
def python1(request, tmpdir):

picklefile = tmpdir.join("data.pickle")
return Python(request.param, picklefile)

@pytest.fixture(params=pythonlist)
def python2(request, python1):

return Python(request.param, python1.picklefile)

class Python(object):
def __init__(self, version, picklefile):

self.pythonpath = distutils.spawn.find_executable(version)
if not self.pythonpath:

pytest.skip("{!r} not found".format(version))
self.picklefile = picklefile

def dumps(self, obj):
dumpfile = self.picklefile.dirpath("dump.py")
dumpfile.write(

textwrap.dedent(

(continues on next page)

224 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

r"""
import pickle
f = open({!r}, 'wb')
s = pickle.dump({!r}, f, protocol=2)
f.close()
""".format(

str(self.picklefile), obj
)

)
)
subprocess.check_call((self.pythonpath, str(dumpfile)))

def load_and_is_true(self, expression):
loadfile = self.picklefile.dirpath("load.py")
loadfile.write(

textwrap.dedent(
r"""
import pickle
f = open({!r}, 'rb')
obj = pickle.load(f)
f.close()
res = eval({!r})
if not res:

raise SystemExit(1)
""".format(

str(self.picklefile), expression
)

)
)
print(loadfile)
subprocess.check_call((self.pythonpath, str(loadfile)))

@pytest.mark.parametrize("obj", [42, {}, {1: 3}])
def test_basic_objects(python1, python2, obj):

python1.dumps(obj)
python2.load_and_is_true("obj == %s" % obj)

Running it results in some skips if we don’t have all the python interpreters installed and otherwise runs all combina-
tions (5 interpreters times 5 interpreters times 3 objects to serialize/deserialize):

. $ pytest -rs -q multipython.py

...ssssssssssssssssssssssss [100%]
========================= short test summary info ==========================
SKIPPED [12] $REGENDOC_TMPDIR/CWD/multipython.py:31: 'python3.4' not found
SKIPPED [12] $REGENDOC_TMPDIR/CWD/multipython.py:31: 'python3.5' not found
3 passed, 24 skipped in 0.12 seconds

27.3.8 Indirect parametrization of optional implementations/imports

If you want to compare the outcomes of several implementations of a given API, you can write test functions that
receive the already imported implementations and get skipped in case the implementation is not importable/available.
Let’s say we have a “base” implementation and the other (possibly optimized ones) need to provide similar results:

27.3. Parametrizing tests 225



pytest Documentation, Release 4.6

# content of conftest.py

import pytest

@pytest.fixture(scope="session")
def basemod(request):

return pytest.importorskip("base")

@pytest.fixture(scope="session", params=["opt1", "opt2"])
def optmod(request):

return pytest.importorskip(request.param)

And then a base implementation of a simple function:

# content of base.py
def func1():

return 1

And an optimized version:

# content of opt1.py
def func1():

return 1.0001

And finally a little test module:

# content of test_module.py

def test_func1(basemod, optmod):
assert round(basemod.func1(), 3) == round(optmod.func1(), 3)

If you run this with reporting for skips enabled:

$ pytest -rs test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .s [100%]

========================= short test summary info ==========================
SKIPPED [1] $REGENDOC_TMPDIR/conftest.py:11: could not import 'opt2': No module named
→˓'opt2'
=================== 1 passed, 1 skipped in 0.12 seconds ====================

You’ll see that we don’t have an opt2 module and thus the second test run of our test_func1 was skipped. A few
notes:

• the fixture functions in the conftest.py file are “session-scoped” because we don’t need to import more
than once

• if you have multiple test functions and a skipped import, you will see the [1] count increasing in the report

• you can put @pytest.mark.parametrize style parametrization on the test functions to parametrize input/output
values as well.

226 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

27.3.9 Set marks or test ID for individual parametrized test

Use pytest.param to apply marks or set test ID to individual parametrized test. For example:

# content of test_pytest_param_example.py
import pytest

@pytest.mark.parametrize(
"test_input,expected",
[

("3+5", 8),
pytest.param("1+7", 8, marks=pytest.mark.basic),
pytest.param("2+4", 6, marks=pytest.mark.basic, id="basic_2+4"),
pytest.param(

"6*9", 42, marks=[pytest.mark.basic, pytest.mark.xfail], id="basic_6*9"
),

],
)
def test_eval(test_input, expected):

assert eval(test_input) == expected

In this example, we have 4 parametrized tests. Except for the first test, we mark the rest three parametrized tests with
the custom marker basic, and for the fourth test we also use the built-in mark xfail to indicate this test is expected
to fail. For explicitness, we set test ids for some tests.

Then run pytest with verbose mode and with only the basic marker:

$ pytest -v -m basic
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 17 items / 14 deselected / 3 selected

test_pytest_param_example.py::test_eval[1+7-8] PASSED [ 33%]
test_pytest_param_example.py::test_eval[basic_2+4] PASSED [ 66%]
test_pytest_param_example.py::test_eval[basic_6*9] XFAIL [100%]

============ 2 passed, 14 deselected, 1 xfailed in 0.12 seconds ============

As the result:

• Four tests were collected

• One test was deselected because it doesn’t have the basic mark.

• Three tests with the basic mark was selected.

• The test test_eval[1+7-8] passed, but the name is autogenerated and confusing.

• The test test_eval[basic_2+4] passed.

• The test test_eval[basic_6*9] was expected to fail and did fail.

27.3.10 Parametrizing conditional raising

Use pytest.raises() with the pytest.mark.parametrize decorator to write parametrized tests in which some tests
raise exceptions and others do not.

27.3. Parametrizing tests 227



pytest Documentation, Release 4.6

It is helpful to define a no-op context manager does_not_raise to serve as a complement to raises. For
example:

from contextlib import contextmanager
import pytest

@contextmanager
def does_not_raise():

yield

@pytest.mark.parametrize('example_input,expectation', [
(3, does_not_raise()),
(2, does_not_raise()),
(1, does_not_raise()),
(0, pytest.raises(ZeroDivisionError)),

])
def test_division(example_input, expectation):

"""Test how much I know division."""
with expectation:

assert (6 / example_input) is not None

In the example above, the first three test cases should run unexceptionally, while the fourth should raise
ZeroDivisionError.

If you’re only supporting Python 3.7+, you can simply use nullcontext to define does_not_raise:

from contextlib import nullcontext as does_not_raise

Or, if you’re supporting Python 3.3+ you can use:

from contextlib import ExitStack as does_not_raise

Or, if desired, you can pip install contextlib2 and use:

from contextlib2 import ExitStack as does_not_raise

27.4 Working with custom markers

Here are some examples using the Marking test functions with attributes mechanism.

27.4.1 Marking test functions and selecting them for a run

You can “mark” a test function with custom metadata like this:

# content of test_server.py

import pytest

@pytest.mark.webtest
def test_send_http():

pass # perform some webtest test for your app

(continues on next page)

228 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

def test_something_quick():
pass

def test_another():
pass

class TestClass(object):
def test_method(self):

pass

You can then restrict a test run to only run tests marked with webtest:

$ pytest -v -m webtest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 3 deselected / 1 selected

test_server.py::test_send_http PASSED [100%]

================== 1 passed, 3 deselected in 0.12 seconds ==================

Or the inverse, running all tests except the webtest ones:

$ pytest -v -m "not webtest"
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 1 deselected / 3 selected

test_server.py::test_something_quick PASSED [ 33%]
test_server.py::test_another PASSED [ 66%]
test_server.py::TestClass::test_method PASSED [100%]

================== 3 passed, 1 deselected in 0.12 seconds ==================

27.4.2 Selecting tests based on their node ID

You can provide one or more node IDs as positional arguments to select only specified tests. This makes it easy to
select tests based on their module, class, method, or function name:

$ pytest -v test_server.py::TestClass::test_method
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 1 item

(continues on next page)

27.4. Working with custom markers 229



pytest Documentation, Release 4.6

(continued from previous page)

test_server.py::TestClass::test_method PASSED [100%]

========================= 1 passed in 0.12 seconds =========================

You can also select on the class:

$ pytest -v test_server.py::TestClass
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 1 item

test_server.py::TestClass::test_method PASSED [100%]

========================= 1 passed in 0.12 seconds =========================

Or select multiple nodes:

$ pytest -v test_server.py::TestClass test_server.py::test_send_http
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 2 items

test_server.py::TestClass::test_method PASSED [ 50%]
test_server.py::test_send_http PASSED [100%]

========================= 2 passed in 0.12 seconds =========================

Note: Node IDs are of the form module.py::class::method or module.py::function. Node IDs
control which tests are collected, so module.py::class will select all test methods on the class. Nodes are also
created for each parameter of a parametrized fixture or test, so selecting a parametrized test must include the parameter
value, e.g. module.py::function[param].

Node IDs for failing tests are displayed in the test summary info when running pytest with the -rf option. You can
also construct Node IDs from the output of pytest --collectonly.

27.4.3 Using -k expr to select tests based on their name

You can use the -k command line option to specify an expression which implements a substring match on the test
names instead of the exact match on markers that -m provides. This makes it easy to select tests based on their names:

$ pytest -v -k http # running with the above defined example module
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR

(continues on next page)

230 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

collecting ... collected 4 items / 3 deselected / 1 selected

test_server.py::test_send_http PASSED [100%]

================== 1 passed, 3 deselected in 0.12 seconds ==================

And you can also run all tests except the ones that match the keyword:

$ pytest -k "not send_http" -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 1 deselected / 3 selected

test_server.py::test_something_quick PASSED [ 33%]
test_server.py::test_another PASSED [ 66%]
test_server.py::TestClass::test_method PASSED [100%]

================== 3 passed, 1 deselected in 0.12 seconds ==================

Or to select “http” and “quick” tests:

$ pytest -k "http or quick" -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 2 deselected / 2 selected

test_server.py::test_send_http PASSED [ 50%]
test_server.py::test_something_quick PASSED [100%]

================== 2 passed, 2 deselected in 0.12 seconds ==================

Note: If you are using expressions such as "X and Y" then both X and Y need to be simple non-keyword names.
For example, "pass" or "from" will result in SyntaxErrors because "-k" evaluates the expression using Python’s
eval function.

However, if the "-k" argument is a simple string, no such restrictions apply. Also "-k 'not
STRING'" has no restrictions. You can also specify numbers like "-k 1.3" to match tests which
are parametrized with the float "1.3".

27.4.4 Registering markers

Registering markers for your test suite is simple:

# content of pytest.ini
[pytest]
markers =

webtest: mark a test as a webtest.

27.4. Working with custom markers 231

https://docs.python.org/3.6/library/functions.html#eval


pytest Documentation, Release 4.6

You can ask which markers exist for your test suite - the list includes our just defined webtest markers:

$ pytest --markers
@pytest.mark.webtest: mark a test as a webtest.

@pytest.mark.filterwarnings(warning): add a warning filter to the given test. see
→˓https://docs.pytest.org/en/latest/warnings.html#pytest-mark-filterwarnings

@pytest.mark.skip(reason=None): skip the given test function with an optional reason.
→˓Example: skip(reason="no way of currently testing this") skips the test.

@pytest.mark.skipif(condition): skip the given test function if eval(condition)
→˓results in a True value. Evaluation happens within the module global context.
→˓Example: skipif('sys.platform == "win32"') skips the test if we are on the win32
→˓platform. see https://docs.pytest.org/en/latest/skipping.html

@pytest.mark.xfail(condition, reason=None, run=True, raises=None, strict=False): mark
→˓the test function as an expected failure if eval(condition) has a True value.
→˓Optionally specify a reason for better reporting and run=False if you don't even
→˓want to execute the test function. If only specific exception(s) are expected, you
→˓can list them in raises, and if the test fails in other ways, it will be reported
→˓as a true failure. See https://docs.pytest.org/en/latest/skipping.html

@pytest.mark.parametrize(argnames, argvalues): call a test function multiple times
→˓passing in different arguments in turn. argvalues generally needs to be a list of
→˓values if argnames specifies only one name or a list of tuples of values if
→˓argnames specifies multiple names. Example: @parametrize('arg1', [1,2]) would lead
→˓to two calls of the decorated test function, one with arg1=1 and another with
→˓arg1=2.see https://docs.pytest.org/en/latest/parametrize.html for more info and
→˓examples.

@pytest.mark.usefixtures(fixturename1, fixturename2, ...): mark tests as needing all
→˓of the specified fixtures. see https://docs.pytest.org/en/latest/fixture.html
→˓#usefixtures

@pytest.mark.tryfirst: mark a hook implementation function such that the plugin
→˓machinery will try to call it first/as early as possible.

@pytest.mark.trylast: mark a hook implementation function such that the plugin
→˓machinery will try to call it last/as late as possible.

For an example on how to add and work with markers from a plugin, see Custom marker and command line option to
control test runs.

Note: It is recommended to explicitly register markers so that:

• There is one place in your test suite defining your markers

• Asking for existing markers via pytest --markers gives good output

• Typos in function markers are treated as an error if you use the --strict-markers option.

27.4.5 Marking whole classes or modules

You may use pytest.mark decorators with classes to apply markers to all of its test methods:

232 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

# content of test_mark_classlevel.py
import pytest

@pytest.mark.webtest
class TestClass(object):

def test_startup(self):
pass

def test_startup_and_more(self):
pass

This is equivalent to directly applying the decorator to the two test functions.

To remain backward-compatible with Python 2.4 you can also set a pytestmark attribute on a TestClass like this:

import pytest

class TestClass(object):
pytestmark = pytest.mark.webtest

or if you need to use multiple markers you can use a list:

import pytest

class TestClass(object):
pytestmark = [pytest.mark.webtest, pytest.mark.slowtest]

You can also set a module level marker:

import pytest
pytestmark = pytest.mark.webtest

or multiple markers:

pytestmark = [pytest.mark.webtest, pytest.mark.slowtest]

in which case markers will be applied (in left-to-right order) to all functions and methods defined in the module.

27.4.6 Marking individual tests when using parametrize

When using parametrize, applying a mark will make it apply to each individual test. However it is also possible to
apply a marker to an individual test instance:

import pytest

@pytest.mark.foo
@pytest.mark.parametrize(

("n", "expected"), [(1, 2), pytest.param((1, 3), marks=pytest.mark.bar), (2, 3)]
)
def test_increment(n, expected):

assert n + 1 == expected

27.4. Working with custom markers 233



pytest Documentation, Release 4.6

In this example the mark “foo” will apply to each of the three tests, whereas the “bar” mark is only applied to the
second test. Skip and xfail marks can also be applied in this way, see Skip/xfail with parametrize.

27.4.7 Custom marker and command line option to control test runs

Plugins can provide custom markers and implement specific behaviour based on it. This is a self-contained example
which adds a command line option and a parametrized test function marker to run tests specifies via named environ-
ments:

# content of conftest.py

import pytest

def pytest_addoption(parser):
parser.addoption(

"-E",
action="store",
metavar="NAME",
help="only run tests matching the environment NAME.",

)

def pytest_configure(config):
# register an additional marker
config.addinivalue_line(

"markers", "env(name): mark test to run only on named environment"
)

def pytest_runtest_setup(item):
envnames = [mark.args[0] for mark in item.iter_markers(name="env")]
if envnames:

if item.config.getoption("-E") not in envnames:
pytest.skip("test requires env in %r" % envnames)

A test file using this local plugin:

# content of test_someenv.py

import pytest

@pytest.mark.env("stage1")
def test_basic_db_operation():

pass

and an example invocations specifying a different environment than what the test needs:

$ pytest -E stage2
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

(continues on next page)

234 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

test_someenv.py s [100%]

======================== 1 skipped in 0.12 seconds =========================

and here is one that specifies exactly the environment needed:

$ pytest -E stage1
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_someenv.py . [100%]

========================= 1 passed in 0.12 seconds =========================

The --markers option always gives you a list of available markers:

$ pytest --markers
@pytest.mark.env(name): mark test to run only on named environment

@pytest.mark.filterwarnings(warning): add a warning filter to the given test. see
→˓https://docs.pytest.org/en/latest/warnings.html#pytest-mark-filterwarnings

@pytest.mark.skip(reason=None): skip the given test function with an optional reason.
→˓Example: skip(reason="no way of currently testing this") skips the test.

@pytest.mark.skipif(condition): skip the given test function if eval(condition)
→˓results in a True value. Evaluation happens within the module global context.
→˓Example: skipif('sys.platform == "win32"') skips the test if we are on the win32
→˓platform. see https://docs.pytest.org/en/latest/skipping.html

@pytest.mark.xfail(condition, reason=None, run=True, raises=None, strict=False): mark
→˓the test function as an expected failure if eval(condition) has a True value.
→˓Optionally specify a reason for better reporting and run=False if you don't even
→˓want to execute the test function. If only specific exception(s) are expected, you
→˓can list them in raises, and if the test fails in other ways, it will be reported
→˓as a true failure. See https://docs.pytest.org/en/latest/skipping.html

@pytest.mark.parametrize(argnames, argvalues): call a test function multiple times
→˓passing in different arguments in turn. argvalues generally needs to be a list of
→˓values if argnames specifies only one name or a list of tuples of values if
→˓argnames specifies multiple names. Example: @parametrize('arg1', [1,2]) would lead
→˓to two calls of the decorated test function, one with arg1=1 and another with
→˓arg1=2.see https://docs.pytest.org/en/latest/parametrize.html for more info and
→˓examples.

@pytest.mark.usefixtures(fixturename1, fixturename2, ...): mark tests as needing all
→˓of the specified fixtures. see https://docs.pytest.org/en/latest/fixture.html
→˓#usefixtures

@pytest.mark.tryfirst: mark a hook implementation function such that the plugin
→˓machinery will try to call it first/as early as possible.

@pytest.mark.trylast: mark a hook implementation function such that the plugin
→˓machinery will try to call it last/as late as possible.

27.4. Working with custom markers 235



pytest Documentation, Release 4.6

27.4.8 Passing a callable to custom markers

Below is the config file that will be used in the next examples:

# content of conftest.py
import sys

def pytest_runtest_setup(item):
for marker in item.iter_markers(name="my_marker"):

print(marker)
sys.stdout.flush()

A custom marker can have its argument set, i.e. args and kwargs properties, defined by either invoking it as a
callable or using pytest.mark.MARKER_NAME.with_args. These two methods achieve the same effect most
of the time.

However, if there is a callable as the single positional argument with no keyword arguments, using the pytest.
mark.MARKER_NAME(c) will not pass c as a positional argument but decorate c with the custom marker (see
MarkDecorator). Fortunately, pytest.mark.MARKER_NAME.with_args comes to the rescue:

# content of test_custom_marker.py
import pytest

def hello_world(*args, **kwargs):
return "Hello World"

@pytest.mark.my_marker.with_args(hello_world)
def test_with_args():

pass

The output is as follows:

$ pytest -q -s
Mark(name='my_marker', args=(<function hello_world at 0xdeadbeef>,), kwargs={})
.
1 passed in 0.12 seconds

We can see that the custom marker has its argument set extended with the function hello_world. This is the key
difference between creating a custom marker as a callable, which invokes __call__ behind the scenes, and using
with_args.

27.4.9 Reading markers which were set from multiple places

If you are heavily using markers in your test suite you may encounter the case where a marker is applied several times
to a test function. From plugin code you can read over all such settings. Example:

# content of test_mark_three_times.py
import pytest

pytestmark = pytest.mark.glob("module", x=1)

@pytest.mark.glob("class", x=2)

(continues on next page)

236 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

class TestClass(object):
@pytest.mark.glob("function", x=3)
def test_something(self):

pass

Here we have the marker “glob” applied three times to the same test function. From a conftest file we can read it like
this:

# content of conftest.py
import sys

def pytest_runtest_setup(item):
for mark in item.iter_markers(name="glob"):

print("glob args=%s kwargs=%s" % (mark.args, mark.kwargs))
sys.stdout.flush()

Let’s run this without capturing output and see what we get:

$ pytest -q -s
glob args=('function',) kwargs={'x': 3}
glob args=('class',) kwargs={'x': 2}
glob args=('module',) kwargs={'x': 1}
.
1 passed in 0.12 seconds

27.4.10 marking platform specific tests with pytest

Consider you have a test suite which marks tests for particular platforms, namely pytest.mark.darwin,
pytest.mark.win32 etc. and you also have tests that run on all platforms and have no specific marker. If you
now want to have a way to only run the tests for your particular platform, you could use the following plugin:

# content of conftest.py
#
import sys
import pytest

ALL = set("darwin linux win32".split())

def pytest_runtest_setup(item):
supported_platforms = ALL.intersection(mark.name for mark in item.iter_markers())
plat = sys.platform
if supported_platforms and plat not in supported_platforms:

pytest.skip("cannot run on platform %s" % (plat))

then tests will be skipped if they were specified for a different platform. Let’s do a little test file to show how this looks
like:

# content of test_plat.py

import pytest

(continues on next page)

27.4. Working with custom markers 237



pytest Documentation, Release 4.6

(continued from previous page)

@pytest.mark.darwin
def test_if_apple_is_evil():

pass

@pytest.mark.linux
def test_if_linux_works():

pass

@pytest.mark.win32
def test_if_win32_crashes():

pass

def test_runs_everywhere():
pass

then you will see two tests skipped and two executed tests as expected:

$ pytest -rs # this option reports skip reasons
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items

test_plat.py s.s. [100%]

========================= short test summary info ==========================
SKIPPED [2] $REGENDOC_TMPDIR/conftest.py:13: cannot run on platform linux
=================== 2 passed, 2 skipped in 0.12 seconds ====================

Note that if you specify a platform via the marker-command line option like this:

$ pytest -m linux
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items / 3 deselected / 1 selected

test_plat.py . [100%]

================== 1 passed, 3 deselected in 0.12 seconds ==================

then the unmarked-tests will not be run. It is thus a way to restrict the run to the specific tests.

27.4.11 Automatically adding markers based on test names

If you a test suite where test function names indicate a certain type of test, you can implement a hook that automatically
defines markers so that you can use the -m option with it. Let’s look at this test module:

# content of test_module.py

(continues on next page)

238 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

def test_interface_simple():
assert 0

def test_interface_complex():
assert 0

def test_event_simple():
assert 0

def test_something_else():
assert 0

We want to dynamically define two markers and can do it in a conftest.py plugin:

# content of conftest.py

import pytest

def pytest_collection_modifyitems(items):
for item in items:

if "interface" in item.nodeid:
item.add_marker(pytest.mark.interface)

elif "event" in item.nodeid:
item.add_marker(pytest.mark.event)

We can now use the -m option to select one set:

$ pytest -m interface --tb=short
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items / 2 deselected / 2 selected

test_module.py FF [100%]

================================= FAILURES =================================
__________________________ test_interface_simple ___________________________
test_module.py:4: in test_interface_simple

assert 0
E assert 0
__________________________ test_interface_complex __________________________
test_module.py:8: in test_interface_complex

assert 0
E assert 0
================== 2 failed, 2 deselected in 0.12 seconds ==================

or to select both “event” and “interface” tests:

$ pytest -m "interface or event" --tb=short
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y

(continues on next page)

27.4. Working with custom markers 239



pytest Documentation, Release 4.6

(continued from previous page)

cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items / 1 deselected / 3 selected

test_module.py FFF [100%]

================================= FAILURES =================================
__________________________ test_interface_simple ___________________________
test_module.py:4: in test_interface_simple

assert 0
E assert 0
__________________________ test_interface_complex __________________________
test_module.py:8: in test_interface_complex

assert 0
E assert 0
____________________________ test_event_simple _____________________________
test_module.py:12: in test_event_simple

assert 0
E assert 0
================== 3 failed, 1 deselected in 0.12 seconds ==================

27.5 A session-fixture which can look at all collected tests

A session-scoped fixture effectively has access to all collected test items. Here is an example of a fixture function
which walks all collected tests and looks if their test class defines a callme method and calls it:

# content of conftest.py

import pytest

@pytest.fixture(scope="session", autouse=True)
def callattr_ahead_of_alltests(request):

print("callattr_ahead_of_alltests called")
seen = set([None])
session = request.node
for item in session.items:

cls = item.getparent(pytest.Class)
if cls not in seen:

if hasattr(cls.obj, "callme"):
cls.obj.callme()

seen.add(cls)

test classes may now define a callme method which will be called ahead of running any tests:

# content of test_module.py

class TestHello(object):
@classmethod
def callme(cls):

print("callme called!")

def test_method1(self):
print("test_method1 called")

(continues on next page)

240 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

(continued from previous page)

def test_method2(self):
print("test_method1 called")

class TestOther(object):
@classmethod
def callme(cls):

print("callme other called")
def test_other(self):

print("test other")

# works with unittest as well ...
import unittest

class SomeTest(unittest.TestCase):
@classmethod
def callme(self):

print("SomeTest callme called")

def test_unit1(self):
print("test_unit1 method called")

If you run this without output capturing:

$ pytest -q -s test_module.py
callattr_ahead_of_alltests called
callme called!
callme other called
SomeTest callme called
test_method1 called
.test_method1 called
.test other
.test_unit1 method called
.
4 passed in 0.12 seconds

27.6 Changing standard (Python) test discovery

27.6.1 Ignore paths during test collection

You can easily ignore certain test directories and modules during collection by passing the --ignore=path option
on the cli. pytest allows multiple --ignore options. Example:

tests/
|-- example
| |-- test_example_01.py
| |-- test_example_02.py
| '-- test_example_03.py
|-- foobar
| |-- test_foobar_01.py
| |-- test_foobar_02.py
| '-- test_foobar_03.py
'-- hello

'-- world

(continues on next page)

27.6. Changing standard (Python) test discovery 241



pytest Documentation, Release 4.6

(continued from previous page)

|-- test_world_01.py
|-- test_world_02.py
'-- test_world_03.py

Now if you invoke pytest with --ignore=tests/foobar/test_foobar_03.py --ignore=tests/
hello/, you will see that pytest only collects test-modules, which do not match the patterns specified:

=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:
collected 5 items

tests/example/test_example_01.py . [ 20%]
tests/example/test_example_02.py . [ 40%]
tests/example/test_example_03.py . [ 60%]
tests/foobar/test_foobar_01.py . [ 80%]
tests/foobar/test_foobar_02.py . [100%]

========================= 5 passed in 0.02 seconds =========================

The --ignore-glob option allows to ignore test file paths based on Unix shell-style wildcards. If you want to
exclude test-modules that end with _01.py, execute pytest with --ignore-glob='*_01.py'.

27.6.2 Deselect tests during test collection

Tests can individually be deselected during collection by passing the --deselect=item option. For exam-
ple, say tests/foobar/test_foobar_01.py contains test_a and test_b. You can run all of the
tests within tests/ except for tests/foobar/test_foobar_01.py::test_a by invoking pytest with
--deselect tests/foobar/test_foobar_01.py::test_a. pytest allows multiple --deselect
options.

27.6.3 Keeping duplicate paths specified from command line

Default behavior of pytest is to ignore duplicate paths specified from the command line. Example:

pytest path_a path_a

...
collected 1 item
...

Just collect tests once.

To collect duplicate tests, use the --keep-duplicates option on the cli. Example:

pytest --keep-duplicates path_a path_a

...
collected 2 items
...

As the collector just works on directories, if you specify twice a single test file, pytest will still collect it twice, no
matter if the --keep-duplicates is not specified. Example:

242 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

pytest test_a.py test_a.py

...
collected 2 items
...

27.6.4 Changing directory recursion

You can set the norecursedirs option in an ini-file, for example your pytest.ini in the project root directory:

# content of pytest.ini
[pytest]
norecursedirs = .svn _build tmp*

This would tell pytest to not recurse into typical subversion or sphinx-build directories or into any tmp prefixed
directory.

27.6.5 Changing naming conventions

You can configure different naming conventions by setting the python_files, python_classes and
python_functions configuration options. Here is an example:

# content of pytest.ini
# Example 1: have pytest look for "check" instead of "test"
# can also be defined in tox.ini or setup.cfg file, although the section
# name in setup.cfg files should be "tool:pytest"
[pytest]
python_files = check_*.py
python_classes = Check
python_functions = *_check

This would make pytest look for tests in files that match the check_* .py glob-pattern, Check prefixes in
classes, and functions and methods that match *_check. For example, if we have:

# content of check_myapp.py
class CheckMyApp(object):

def simple_check(self):
pass

def complex_check(self):
pass

The test collection would look like this:

$ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 2 items
<Module check_myapp.py>

<Class CheckMyApp>
<Function simple_check>
<Function complex_check>

======================= no tests ran in 0.12 seconds =======================

27.6. Changing standard (Python) test discovery 243



pytest Documentation, Release 4.6

You can check for multiple glob patterns by adding a space between the patterns:

# Example 2: have pytest look for files with "test" and "example"
# content of pytest.ini, tox.ini, or setup.cfg file (replace "pytest"
# with "tool:pytest" for setup.cfg)
[pytest]
python_files = test_*.py example_*.py

Note: the python_functions and python_classes options has no effect for unittest.TestCase test
discovery because pytest delegates discovery of test case methods to unittest code.

27.6.6 Interpreting cmdline arguments as Python packages

You can use the --pyargs option to make pytest try interpreting arguments as python package names, deriving
their file system path and then running the test. For example if you have unittest2 installed you can type:

pytest --pyargs unittest2.test.test_skipping -q

which would run the respective test module. Like with other options, through an ini-file and the addopts option you
can make this change more permanently:

# content of pytest.ini
[pytest]
addopts = --pyargs

Now a simple invocation of pytest NAME will check if NAME exists as an importable package/module and other-
wise treat it as a filesystem path.

27.6.7 Finding out what is collected

You can always peek at the collection tree without running tests like this:

. $ pytest --collect-only pythoncollection.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 3 items
<Module CWD/pythoncollection.py>

<Function test_function>
<Class TestClass>

<Function test_method>
<Function test_anothermethod>

======================= no tests ran in 0.12 seconds =======================

27.6.8 Customizing test collection

You can easily instruct pytest to discover tests from every Python file:

244 Chapter 27. Examples and customization tricks



pytest Documentation, Release 4.6

# content of pytest.ini
[pytest]
python_files = *.py

However, many projects will have a setup.py which they don’t want to be imported. Moreover, there may files only
importable by a specific python version. For such cases you can dynamically define files to be ignored by listing them
in a conftest.py file:

# content of conftest.py
import sys

collect_ignore = ["setup.py"]
if sys.version_info[0] > 2:

collect_ignore.append("pkg/module_py2.py")

and then if you have a module file like this:

# content of pkg/module_py2.py
def test_only_on_python2():

try:
assert 0

except Exception, e:
pass

and a setup.py dummy file like this:

# content of setup.py
0/0 # will raise exception if imported

If you run with a Python 2 interpreter then you will find the one test and will leave out the setup.py file:

#$ pytest --collect-only
====== test session starts ======
platform linux2 -- Python 2.7.10, pytest-2.9.1, py-1.4.31, pluggy-0.3.1
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 1 items
<Module 'pkg/module_py2.py'>

<Function 'test_only_on_python2'>

====== no tests ran in 0.04 seconds ======

If you run with a Python 3 interpreter both the one test and the setup.py file will be left out:

$ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 0 items

======================= no tests ran in 0.12 seconds =======================

It’s also possible to ignore files based on Unix shell-style wildcards by adding patterns to collect_ignore_glob.

The following example conftest.py ignores the file setup.py and in addition all files that end with *_py2.py
when executed with a Python 3 interpreter:

27.6. Changing standard (Python) test discovery 245



pytest Documentation, Release 4.6

# content of conftest.py
import sys

collect_ignore = ["setup.py"]
if sys.version_info[0] > 2:

collect_ignore_glob = ["*_py2.py"]

27.7 Working with non-python tests

27.7.1 A basic example for specifying tests in Yaml files

Here is an example conftest.py (extracted from Ali Afshnars special purpose pytest-yamlwsgi plugin). This
conftest.py will collect test*.yml files and will execute the yaml-formatted content as custom tests:

# -*- coding: utf-8 -*-
# content of conftest.py
import pytest

def pytest_collect_file(parent, path):
if path.ext == ".yml" and path.basename.startswith("test"):

return YamlFile(path, parent)

class YamlFile(pytest.File):
def collect(self):

import yaml # we need a yaml parser, e.g. PyYAML

raw = yaml.safe_load(self.fspath.open())
for name, spec in sorted(raw.items()):

yield YamlItem(name, self, spec)

class YamlItem(pytest.Item):
def __init__(self, name, parent, spec):

super(YamlItem, self).__init__(name, parent)
self.spec = spec

def runtest(self):
for name, value in sorted(self.spec.items()):

# some custom test execution (dumb example follows)
if name != value:

raise YamlException(self, name, value)

def repr_failure(self, excinfo):
""" called when self.runtest() raises an exception. """
if isinstance(excinfo.value, YamlException):

return "\n".join(
[

"usecase execution failed",
" spec failed: %r: %r" % excinfo.value.args[1:3],
" no further details known at this point.",

]
)

(continues on next page)

246 Chapter 27. Examples and customization tricks

http://bitbucket.org/aafshar/pytest-yamlwsgi/src/tip/pytest_yamlwsgi.py


pytest Documentation, Release 4.6

(continued from previous page)

def reportinfo(self):
return self.fspath, 0, "usecase: %s" % self.name

class YamlException(Exception):
""" custom exception for error reporting. """

You can create a simple example file:

# test_simple.yml
ok:

sub1: sub1

hello:
world: world
some: other

and if you installed PyYAML or a compatible YAML-parser you can now execute the test specification:

nonpython $ pytest test_simple.yml
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/nonpython
collected 2 items

test_simple.yml F. [100%]

================================= FAILURES =================================
______________________________ usecase: hello ______________________________
usecase execution failed

spec failed: 'some': 'other'
no further details known at this point.

==================== 1 failed, 1 passed in 0.12 seconds ====================

You get one dot for the passing sub1: sub1 check and one failure. Obviously in the above conftest.py you’ll
want to implement a more interesting interpretation of the yaml-values. You can easily write your own domain specific
testing language this way.

Note: repr_failure(excinfo) is called for representing test failures. If you create custom collection nodes
you can return an error representation string of your choice. It will be reported as a (red) string.

reportinfo() is used for representing the test location and is also consulted when reporting in verbose mode:

nonpython $ pytest -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/nonpython
collecting ... collected 2 items

test_simple.yml::hello FAILED [ 50%]
test_simple.yml::ok PASSED [100%]

(continues on next page)

27.7. Working with non-python tests 247

https://pypi.org/project/PyYAML/


pytest Documentation, Release 4.6

(continued from previous page)

================================= FAILURES =================================
______________________________ usecase: hello ______________________________
usecase execution failed

spec failed: 'some': 'other'
no further details known at this point.

==================== 1 failed, 1 passed in 0.12 seconds ====================

While developing your custom test collection and execution it’s also interesting to just look at the collection tree:

nonpython $ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/nonpython
collected 2 items
<Package $REGENDOC_TMPDIR/nonpython>

<YamlFile test_simple.yml>
<YamlItem hello>
<YamlItem ok>

======================= no tests ran in 0.12 seconds =======================

248 Chapter 27. Examples and customization tricks



CHAPTER 28

Setting up bash completion

When using bash as your shell, pytest can use argcomplete (https://argcomplete.readthedocs.io/) for auto-
completion. For this argcomplete needs to be installed and enabled.

Install argcomplete using:

sudo pip install 'argcomplete>=0.5.7'

For global activation of all argcomplete enabled python applications run:

sudo activate-global-python-argcomplete

For permanent (but not global) pytest activation, use:

register-python-argcomplete pytest >> ~/.bashrc

For one-time activation of argcomplete for pytest only, use:

eval "$(register-python-argcomplete pytest)"

249

https://argcomplete.readthedocs.io/


pytest Documentation, Release 4.6

250 Chapter 28. Setting up bash completion



CHAPTER 29

Backwards Compatibility Policy

Keeping backwards compatibility has a very high priority in the pytest project. Although we have deprecated func-
tionality over the years, most of it is still supported. All deprecations in pytest were done because simpler or more
efficient ways of accomplishing the same tasks have emerged, making the old way of doing things unnecessary.

With the pytest 3.0 release we introduced a clear communication scheme for when we will actually remove the old
busted joint and politely ask you to use the new hotness instead, while giving you enough time to adjust your tests or
raise concerns if there are valid reasons to keep deprecated functionality around.

To communicate changes we issue deprecation warnings using a custom warning hierarchy (see Internal pytest warn-
ings). These warnings may be suppressed using the standard means: -W command-line flag or filterwarnings
ini options (see Warnings Capture), but we suggest to use these sparingly and temporarily, and heed the warnings
when possible.

We will only start the removal of deprecated functionality in major releases (e.g. if we deprecate something in 3.0 we
will start to remove it in 4.0), and keep it around for at least two minor releases (e.g. if we deprecate something in 3.9
and 4.0 is the next release, we start to remove it in 5.0, not in 4.0).

When the deprecation expires (e.g. 4.0 is released), we won’t remove the deprecated functionality immediately, but
will use the standard warning filters to turn them into errors by default. This approach makes it explicit that removal
is imminent, and still gives you time to turn the deprecated feature into a warning instead of an error so it can be dealt
with in your own time. In the next minor release (e.g. 4.1), the feature will be effectively removed.

29.1 Deprecation Roadmap

Features currently deprecated and removed in previous releases can be found in Deprecations and Removals.

We track future deprecation and removal of features using milestones and the deprecation and removal labels on
GitHub.

251

https://github.com/pytest-dev/pytest/issues?q=label%3A%22type%3A+deprecation%22
https://github.com/pytest-dev/pytest/labels/type%3A%20removal


pytest Documentation, Release 4.6

252 Chapter 29. Backwards Compatibility Policy



CHAPTER 30

Deprecations and Removals

This page lists all pytest features that are currently deprecated or have been removed in past major releases. The
objective is to give users a clear rationale why a certain feature has been removed, and what alternatives should be
used instead.

• Deprecated Features

– "message" parameter of pytest.raises

– pytest.config global

– raises / warns with a string as the second argument

– Result log (--result-log)

• Removed Features

– Using Class in custom Collectors

– marks in pytest.mark.parametrize

– pytest_funcarg__ prefix

– [pytest] section in setup.cfg files

– Metafunc.addcall

– cached_setup

– pytest_plugins in non-top-level conftest files

– Config.warn and Node.warn

– record_xml_property

– Passing command-line string to pytest.main()

– Calling fixtures directly

– yield tests

253



pytest Documentation, Release 4.6

– Internal classes accessed through Node

– Node.get_marker

– somefunction.markname

– pytest_namespace

– Reinterpretation mode (--assert=reinterp)

– Removed command-line options

– py.test-X* entry points

30.1 Deprecated Features

Below is a complete list of all pytest features which are considered deprecated. Using those features will issue
_pytest.warning_types.PytestWarning or subclasses, which can be filtered using standard warning fil-
ters.

30.1.1 "message" parameter of pytest.raises

Deprecated since version 4.1.

It is a common mistake to think this parameter will match the exception message, while in fact it only serves to provide
a custom message in case the pytest.raises check fails. To prevent users from making this mistake, and because
it is believed to be little used, pytest is deprecating it without providing an alternative for the moment.

If you have a valid use case for this parameter, consider that to obtain the same results you can just call pytest.fail
manually at the end of the with statement.

For example:

with pytest.raises(TimeoutError, message="Client got unexpected message"):
wait_for(websocket.recv(), 0.5)

Becomes:

with pytest.raises(TimeoutError):
wait_for(websocket.recv(), 0.5)
pytest.fail("Client got unexpected message")

If you still have concerns about this deprecation and future removal, please comment on issue #3974.

30.1.2 pytest.config global

Deprecated since version 4.1.

The pytest.config global object is deprecated. Instead use request.config (via the request fixture) or if
you are a plugin author use the pytest_configure(config) hook. Note that many hooks can also access the
config object indirectly, through session.config or item.config for example.

254 Chapter 30. Deprecations and Removals

https://github.com/pytest-dev/pytest/issues/3974


pytest Documentation, Release 4.6

30.1.3 raises / warns with a string as the second argument

Deprecated since version 4.1.

Use the context manager form of these instead. When necessary, invoke exec directly.

Example:

pytest.raises(ZeroDivisionError, "1 / 0")
pytest.raises(SyntaxError, "a $ b")

pytest.warns(DeprecationWarning, "my_function()")
pytest.warns(SyntaxWarning, "assert(1, 2)")

Becomes:

with pytest.raises(ZeroDivisionError):
1 / 0

with pytest.raises(SyntaxError):
exec("a $ b") # exec is required for invalid syntax

with pytest.warns(DeprecationWarning):
my_function()

with pytest.warns(SyntaxWarning):
exec("assert(1, 2)") # exec is used to avoid a top-level warning

30.1.4 Result log (--result-log)

The --resultlog command line option has been deprecated: it is little used and there are more modern and better
alternatives, for example pytest-tap.

This feature will be effectively removed in pytest 4.0 as the team intends to include a better alternative in the core.

If you have any concerns, please don’t hesitate to open an issue.

30.2 Removed Features

As stated in our Backwards Compatibility Policy policy, deprecated features are removed only in major releases after
an appropriate period of deprecation has passed.

30.2.1 Using Class in custom Collectors

Removed in version 4.0.

Using objects named "Class" as a way to customize the type of nodes that are collected in Collector subclasses
has been deprecated. Users instead should use pytest_pycollect_makeitem to customize node types during
collection.

This issue should affect only advanced plugins who create new collection types, so if you see this warning message
please contact the authors so they can change the code.

30.2. Removed Features 255

https://tappy.readthedocs.io/en/latest/
https://github.com/pytest-dev/pytest/issues


pytest Documentation, Release 4.6

30.2.2 marks in pytest.mark.parametrize

Removed in version 4.0.

Applying marks to values of a pytest.mark.parametrize call is now deprecated. For example:

@pytest.mark.parametrize(
"a, b",
[

(3, 9),
pytest.mark.xfail(reason="flaky")(6, 36),
(10, 100),
(20, 200),
(40, 400),
(50, 500),

],
)
def test_foo(a, b):

...

This code applies the pytest.mark.xfail(reason="flaky") mark to the (6, 36) value of the above
parametrization call.

This was considered hard to read and understand, and also its implementation presented problems to the code prevent-
ing further internal improvements in the marks architecture.

To update the code, use pytest.param:

@pytest.mark.parametrize(
"a, b",
[

(3, 9),
pytest.param(6, 36, marks=pytest.mark.xfail(reason="flaky")),
(10, 100),
(20, 200),
(40, 400),
(50, 500),

],
)
def test_foo(a, b):

...

30.2.3 pytest_funcarg__ prefix

Removed in version 4.0.

In very early pytest versions fixtures could be defined using the pytest_funcarg__ prefix:

def pytest_funcarg__data():
return SomeData()

Switch over to the @pytest.fixture decorator:

@pytest.fixture
def data():

return SomeData()

256 Chapter 30. Deprecations and Removals



pytest Documentation, Release 4.6

30.2.4 [pytest] section in setup.cfg files

Removed in version 4.0.

[pytest] sections in setup.cfg files should now be named [tool:pytest] to avoid conflicts with other
distutils commands.

30.2.5 Metafunc.addcall

Removed in version 4.0.

_pytest.python.Metafunc.addcall() was a precursor to the current parametrized mechanism. Users
should use _pytest.python.Metafunc.parametrize() instead.

Example:

def pytest_generate_tests(metafunc):
metafunc.addcall({"i": 1}, id="1")
metafunc.addcall({"i": 2}, id="2")

Becomes:

def pytest_generate_tests(metafunc):
metafunc.parametrize("i", [1, 2], ids=["1", "2"])

30.2.6 cached_setup

Removed in version 4.0.

request.cached_setup was the precursor of the setup/teardown mechanism available to fixtures.

Example:

@pytest.fixture
def db_session():

return request.cached_setup(
setup=Session.create, teardown=lambda session: session.close(), scope="module"

)

This should be updated to make use of standard fixture mechanisms:

@pytest.fixture(scope="module")
def db_session():

session = Session.create()
yield session
session.close()

You can consult funcarg comparison section in the docs for more information.

30.2.7 pytest_plugins in non-top-level conftest files

Removed in version 4.0.

Defining pytest_plugins is now deprecated in non-top-level conftest.py files because they will activate referenced
plugins globally, which is surprising because for all other pytest features conftest.py files are only active for tests
at or below it.

30.2. Removed Features 257

https://docs.pytest.org/en/latest/funcarg_compare.html


pytest Documentation, Release 4.6

30.2.8 Config.warn and Node.warn

Removed in version 4.0.

Those methods were part of the internal pytest warnings system, but since 3.8 pytest is using the builtin warning
system for its own warnings, so those two functions are now deprecated.

Config.warn should be replaced by calls to the standard warnings.warn, example:

config.warn("C1", "some warning")

Becomes:

warnings.warn(pytest.PytestWarning("some warning"))

Node.warn now supports two signatures:

• node.warn(PytestWarning("some message")): is now the recommended way to call this func-
tion. The warning instance must be a PytestWarning or subclass.

• node.warn("CI", "some message"): this code/message form has been removed and should be con-
verted to the warning instance form above.

30.2.9 record_xml_property

Removed in version 4.0.

The record_xml_property fixture is now deprecated in favor of the more generic record_property, which
can be used by other consumers (for example pytest-html) to obtain custom information about the test run.

This is just a matter of renaming the fixture as the API is the same:

def test_foo(record_xml_property):
...

Change to:

def test_foo(record_property):
...

30.2.10 Passing command-line string to pytest.main()

Removed in version 4.0.

Passing a command-line string to pytest.main() is deprecated:

pytest.main("-v -s")

Pass a list instead:

pytest.main(["-v", "-s"])

By passing a string, users expect that pytest will interpret that command-line using the shell rules they are working on
(for example bash or Powershell), but this is very hard/impossible to do in a portable way.

258 Chapter 30. Deprecations and Removals



pytest Documentation, Release 4.6

30.2.11 Calling fixtures directly

Removed in version 4.0.

Calling a fixture function directly, as opposed to request them in a test function, is deprecated.

For example:

@pytest.fixture
def cell():

return ...

@pytest.fixture
def full_cell():

cell = cell()
cell.make_full()
return cell

This is a great source of confusion to new users, which will often call the fixture functions and request them from test
functions interchangeably, which breaks the fixture resolution model.

In those cases just request the function directly in the dependent fixture:

@pytest.fixture
def cell():

return ...

@pytest.fixture
def full_cell(cell):

cell.make_full()
return cell

Alternatively if the fixture function is called multiple times inside a test (making it hard to apply the above pattern)
or if you would like to make minimal changes to the code, you can create a fixture which calls the original function
together with the name parameter:

def cell():
return ...

@pytest.fixture(name="cell")
def cell_fixture():

return cell()

30.2.12 yield tests

Removed in version 4.0.

pytest supported yield-style tests, where a test function actually yield functions and values that are then turned
into proper test methods. Example:

def check(x, y):
assert x ** x == y

(continues on next page)

30.2. Removed Features 259



pytest Documentation, Release 4.6

(continued from previous page)

def test_squared():
yield check, 2, 4
yield check, 3, 9

This would result into two actual test functions being generated.

This form of test function doesn’t support fixtures properly, and users should switch to pytest.mark.
parametrize:

@pytest.mark.parametrize("x, y", [(2, 4), (3, 9)])
def test_squared(x, y):

assert x ** x == y

30.2.13 Internal classes accessed through Node

Removed in version 4.0.

Access of Module, Function, Class, Instance, File and Item through Node instances now issue this
warning:

usage of Function.Module is deprecated, please use pytest.Module instead

Users should just import pytest and access those objects using the pytest module.

This has been documented as deprecated for years, but only now we are actually emitting deprecation warnings.

30.2.14 Node.get_marker

Removed in version 4.0.

As part of a large Marker revamp and iteration, _pytest.nodes.Node.get_marker() is deprecated. See the
documentation on tips on how to update your code.

30.2.15 somefunction.markname

Removed in version 4.0.

As part of a large Marker revamp and iteration we already deprecated using MarkInfo the only correct way to get
markers of an element is via node.iter_markers(name).

30.2.16 pytest_namespace

Removed in version 4.0.

This hook is deprecated because it greatly complicates the pytest internals regarding configuration and initialization,
making some bug fixes and refactorings impossible.

Example of usage:

class MySymbol:
...

(continues on next page)

260 Chapter 30. Deprecations and Removals



pytest Documentation, Release 4.6

(continued from previous page)

def pytest_namespace():
return {"my_symbol": MySymbol()}

Plugin authors relying on this hook should instead require that users now import the plugin modules directly (with an
appropriate public API).

As a stopgap measure, plugin authors may still inject their names into pytest’s namespace, usually during
pytest_configure:

import pytest

def pytest_configure():
pytest.my_symbol = MySymbol()

30.2.17 Reinterpretation mode (--assert=reinterp)

Removed in version 3.0.

Reinterpretation mode has now been removed and only plain and rewrite mode are available, consequently
the --assert=reinterp option is no longer available. This also means files imported from plug-
ins or conftest.py will not benefit from improved assertions by default, you should use pytest.
register_assert_rewrite() to explicitly turn on assertion rewriting for those files.

30.2.18 Removed command-line options

Removed in version 3.0.

The following deprecated commandline options were removed:

• --genscript: no longer supported;

• --no-assert: use --assert=plain instead;

• --nomagic: use --assert=plain instead;

• --report: use -r instead;

30.2.19 py.test-X* entry points

Removed in version 3.0.

Removed all py.test-X* entry points. The versioned, suffixed entry points were never documented and a leftover
from a pre-virtualenv era. These entry points also created broken entry points in wheels, so removing them also
removes a source of confusion for users.

30.2. Removed Features 261



pytest Documentation, Release 4.6

262 Chapter 30. Deprecations and Removals



CHAPTER 31

Python 2.7 and 3.4 support plan

Python 2.7 EOL is fast approaching, with upstream support ending in 2020. Python 3.4’s last release is scheduled for
March 2019. pytest is one of the participating projects of the https://python3statement.org.

The pytest 4.6 series will be the last to support Python 2.7 and 3.4, and is scheduled to be released by mid-2019.
pytest 5.0 and onwards will support only Python 3.5+.

Thanks to the python_requires setuptools option, Python 2.7 and Python 3.4 users using a modern pip version
will install the last pytest 4.6 version automatically even if 5.0 or later are available on PyPI.

While pytest 5.0will be the new mainstream and development version, until January 2020 the pytest core team plans
to make bug-fix releases of the pytest 4.6 series by back-porting patches to the 4.6.x branch that affect Python 2
users.

After 2020, the core team will no longer actively backport patches, but the 4.6.x branch will continue to exist so
the community itself can contribute patches. The core team will be happy to accept those patches and make new 4.6
releases until mid-2020.

263

https://legacy.python.org/dev/peps/pep-0373/#id4
https://www.python.org/dev/peps/pep-0429/#release-schedule
https://python3statement.org
https://packaging.python.org/guides/distributing-packages-using-setuptools/#python-requires\T1\textgreater {}


pytest Documentation, Release 4.6

264 Chapter 31. Python 2.7 and 3.4 support plan



CHAPTER 32

Historical Notes

This page lists features or behavior from previous versions of pytest which have changed over the years. They are kept
here as a historical note so users looking at old code can find documentation related to them.

32.1 Marker revamp and iteration

Changed in version 3.6.

pytest’s marker implementation traditionally worked by simply updating the __dict__ attribute of functions to cu-
mulatively add markers. As a result, markers would unintentionally be passed along class hierarchies in surprising
ways. Further, the API for retrieving them was inconsistent, as markers from parameterization would be stored differ-
ently than markers applied using the @pytest.mark decorator and markers added via node.add_marker.

This state of things made it technically next to impossible to use data from markers correctly without having a deep
understanding of the internals, leading to subtle and hard to understand bugs in more advanced usages.

Depending on how a marker got declared/changed one would get either a MarkerInfo which might contain markers
from sibling classes, MarkDecorators when marks came from parameterization or from a node.add_marker
call, discarding prior marks. Also MarkerInfo acts like a single mark, when it in fact represents a merged view on
multiple marks with the same name.

On top of that markers were not accessible in the same way for modules, classes, and functions/methods. In fact,
markers were only accessible in functions, even if they were declared on classes/modules.

A new API to access markers has been introduced in pytest 3.6 in order to solve the problems with the initial design,
providing the _pytest.nodes.Node.iter_markers() method to iterate over markers in a consistent manner
and reworking the internals, which solved a great deal of problems with the initial design.

32.1.1 Updating code

The old Node.get_marker(name) function is considered deprecated because it returns an internal MarkerInfo
object which contains the merged name, *args and **kwargs of all the markers which apply to that node.

In general there are two scenarios on how markers should be handled:

265



pytest Documentation, Release 4.6

1. Marks overwrite each other. Order matters but you only want to think of your mark as a single item. E.g.
log_level('info') at a module level can be overwritten by log_level('debug') for a specific test.

In this case, use Node.get_closest_marker(name):

# replace this:
marker = item.get_marker("log_level")
if marker:

level = marker.args[0]

# by this:
marker = item.get_closest_marker("log_level")
if marker:

level = marker.args[0]

2. Marks compose in an additive manner. E.g. skipif(condition) marks mean you just want to evaluate all of
them, order doesn’t even matter. You probably want to think of your marks as a set here.

In this case iterate over each mark and handle their *args and **kwargs individually.

# replace this
skipif = item.get_marker("skipif")
if skipif:

for condition in skipif.args:
# eval condition
...

# by this:
for skipif in item.iter_markers("skipif"):

condition = skipif.args[0]
# eval condition

If you are unsure or have any questions, please consider opening an issue.

32.1.2 Related issues

Here is a non-exhaustive list of issues fixed by the new implementation:

• Marks don’t pick up nested classes (#199).

• Markers stain on all related classes (#568).

• Combining marks - args and kwargs calculation (#2897).

• request.node.get_marker('name') returns None for markers applied in classes (#902).

• Marks applied in parametrize are stored as markdecorator (#2400).

• Fix marker interaction in a backward incompatible way (#1670).

• Refactor marks to get rid of the current “marks transfer” mechanism (#2363).

• Introduce FunctionDefinition node, use it in generate_tests (#2522).

• Remove named marker attributes and collect markers in items (#891).

• skipif mark from parametrize hides module level skipif mark (#1540).

• skipif + parametrize not skipping tests (#1296).

• Marker transfer incompatible with inheritance (#535).

266 Chapter 32. Historical Notes

https://github.com/pytest-dev/pytest/issues
https://github.com/pytest-dev/pytest/issues/199
https://github.com/pytest-dev/pytest/issues/568
https://github.com/pytest-dev/pytest/issues/2897
https://github.com/pytest-dev/pytest/issues/902
https://github.com/pytest-dev/pytest/issues/2400
https://github.com/pytest-dev/pytest/issues/1670
https://github.com/pytest-dev/pytest/issues/2363
https://github.com/pytest-dev/pytest/issues/2522
https://github.com/pytest-dev/pytest/issues/891
https://github.com/pytest-dev/pytest/issues/1540
https://github.com/pytest-dev/pytest/issues/1296
https://github.com/pytest-dev/pytest/issues/535


pytest Documentation, Release 4.6

More details can be found in the original PR.

Note: in a future major relase of pytest we will introduce class based markers, at which point markers will no longer
be limited to instances of Mark.

32.2 cache plugin integrated into the core

The functionality of the core cache plugin was previously distributed as a third party plugin named pytest-cache.
The core plugin is compatible regarding command line options and API usage except that you can only store/receive
data between test runs that is json-serializable.

32.3 funcargs and pytest_funcarg__

In versions prior to 2.3 there was no @pytest.fixture marker and you had to use a magic
pytest_funcarg__NAME prefix for the fixture factory. This remains and will remain supported but is not anymore
advertised as the primary means of declaring fixture functions.

32.4 @pytest.yield_fixture decorator

Prior to version 2.10, in order to use a yield statement to execute teardown code one had to mark a fixture using
the yield_fixture marker. From 2.10 onward, normal fixtures can use yield directly so the yield_fixture
decorator is no longer needed and considered deprecated.

32.5 [pytest] header in setup.cfg

Prior to 3.0, the supported section name was [pytest]. Due to how this may collide with some distutils commands,
the recommended section name for setup.cfg files is now [tool:pytest].

Note that for pytest.ini and tox.ini files the section name is [pytest].

32.6 Applying marks to @pytest.mark.parametrize parameters

Prior to version 3.1 the supported mechanism for marking values used the syntax:

import pytest

@pytest.mark.parametrize(
"test_input,expected", [("3+5", 8), ("2+4", 6), pytest.mark.xfail(("6*9", 42))]

)
def test_eval(test_input, expected):

assert eval(test_input) == expected

32.2. cache plugin integrated into the core 267

https://github.com/pytest-dev/pytest/pull/3317


pytest Documentation, Release 4.6

This was an initial hack to support the feature but soon was demonstrated to be incomplete, broken for passing func-
tions or applying multiple marks with the same name but different parameters.

The old syntax is planned to be removed in pytest-4.0.

32.7 @pytest.mark.parametrize argument names as a tuple

In versions prior to 2.4 one needed to specify the argument names as a tuple. This remains valid but the simpler
"name1,name2,..." comma-separated-string syntax is now advertised first because it’s easier to write and pro-
duces less line noise.

32.8 setup: is now an “autouse fixture”

During development prior to the pytest-2.3 release the name pytest.setup was used but before the release it
was renamed and moved to become part of the general fixture mechanism, namely Autouse fixtures (xUnit setup on
steroids)

32.9 Conditions as strings instead of booleans

Prior to pytest-2.4 the only way to specify skipif/xfail conditions was to use strings:

import sys

@pytest.mark.skipif("sys.version_info >= (3,3)")
def test_function():

...

During test function setup the skipif condition is evaluated by calling eval('sys.version_info >= (3,
0)', namespace). The namespace contains all the module globals, and os and sys as a minimum.

Since pytest-2.4 boolean conditions are considered preferable because markers can then be freely imported between
test modules. With strings you need to import not only the marker but all variables used by the marker, which violates
encapsulation.

The reason for specifying the condition as a string was that pytest can report a summary of skip conditions based
purely on the condition string. With conditions as booleans you are required to specify a reason string.

Note that string conditions will remain fully supported and you are free to use them if you have no need for cross-
importing markers.

The evaluation of a condition string in pytest.mark.skipif(conditionstring) or pytest.mark.
xfail(conditionstring) takes place in a namespace dictionary which is constructed as follows:

• the namespace is initialized by putting the sys and os modules and the pytest config object into it.

• updated with the module globals of the test function for which the expression is applied.

The pytest config object allows you to skip based on a test configuration value which you might have added:

@pytest.mark.skipif("not config.getvalue('db')")
def test_function():

...

268 Chapter 32. Historical Notes



pytest Documentation, Release 4.6

The equivalent with “boolean conditions” is:

@pytest.mark.skipif(not pytest.config.getvalue("db"), reason="--db was not specified")
def test_function():

pass

Note: You cannot use pytest.config.getvalue() in code imported before pytest’s argument parsing
takes place. For example, conftest.py files are imported before command line parsing and thus config.
getvalue() will not execute correctly.

32.10 pytest.set_trace()

Previous to version 2.4 to set a break point in code one needed to use pytest.set_trace():

import pytest

def test_function():
...
pytest.set_trace() # invoke PDB debugger and tracing

This is no longer needed and one can use the native import pdb;pdb.set_trace() call directly.

For more details see Setting breakpoints.

32.11 “compat” properties

Access of Module, Function, Class, Instance, File and Item through Node instances have long been
documented as deprecated, but started to emit warnings from pytest 3.9 and onward.

Users should just import pytest and access those objects using the pytest module.

32.10. pytest.set_trace() 269



pytest Documentation, Release 4.6

270 Chapter 32. Historical Notes



CHAPTER 33

License

Distributed under the terms of the MIT license, pytest is free and open source software.

The MIT License (MIT)

Copyright (c) 2004-2020 Holger Krekel and others

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

271

https://github.com/pytest-dev/pytest/blob/master/LICENSE


pytest Documentation, Release 4.6

272 Chapter 33. License



CHAPTER 34

Contribution getting started

Contributions are highly welcomed and appreciated. Every little help counts, so do not hesitate!

Contribution links

• Contribution getting started

– Feature requests and feedback

– Report bugs

– Fix bugs

– Implement features

– Write documentation

– Submitting Plugins to pytest-dev

– Preparing Pull Requests

– Writing Tests

– Joining the Development Team

34.1 Feature requests and feedback

Do you like pytest? Share some love on Twitter or in your blog posts!

We’d also like to hear about your propositions and suggestions. Feel free to submit them as issues and:

• Explain in detail how they should work.

• Keep the scope as narrow as possible. This will make it easier to implement.

273

https://github.com/pytest-dev/pytest/issues


pytest Documentation, Release 4.6

34.2 Report bugs

Report bugs for pytest in the issue tracker.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting, specifically the Python interpreter
version, installed libraries, and pytest version.

• Detailed steps to reproduce the bug.

If you can write a demonstration test that currently fails but should pass (xfail), that is a very useful commit to make
as well, even if you cannot fix the bug itself.

34.3 Fix bugs

Look through the GitHub issues for bugs.

Talk to developers to find out how you can fix specific bugs.

Don’t forget to check the issue trackers of your favourite plugins, too!

34.4 Implement features

Look through the GitHub issues for enhancements.

Talk to developers to find out how you can implement specific features.

34.5 Write documentation

Pytest could always use more documentation. What exactly is needed?

• More complementary documentation. Have you perhaps found something unclear?

• Documentation translations. We currently have only English.

• Docstrings. There can never be too many of them.

• Blog posts, articles and such – they’re all very appreciated.

You can also edit documentation files directly in the GitHub web interface, without using a local copy. This can be
convenient for small fixes.

Note: Build the documentation locally with the following command:

$ tox -e docs

The built documentation should be available in the doc/en/_build/.

Where ‘en’ refers to the documentation language.

274 Chapter 34. Contribution getting started

https://github.com/pytest-dev/pytest/issues
https://github.com/pytest-dev/pytest/labels/type:%20bug
https://github.com/pytest-dev/pytest/labels/type:%20enhancement


pytest Documentation, Release 4.6

34.6 Submitting Plugins to pytest-dev

Pytest development of the core, some plugins and support code happens in repositories living under the pytest-dev
organisations:

• pytest-dev on GitHub

• pytest-dev on Bitbucket

All pytest-dev Contributors team members have write access to all contained repositories. Pytest core and plugins are
generally developed using pull requests to respective repositories.

The objectives of the pytest-dev organisation are:

• Having a central location for popular pytest plugins

• Sharing some of the maintenance responsibility (in case a maintainer no longer wishes to maintain a plugin)

You can submit your plugin by subscribing to the pytest-dev mail list and writing a mail pointing to your existing
pytest plugin repository which must have the following:

• PyPI presence with a setup.py that contains a license, pytest- prefixed name, version number, authors,
short and long description.

• a tox.ini for running tests using tox.

• a README.txt describing how to use the plugin and on which platforms it runs.

• a LICENSE.txt file or equivalent containing the licensing information, with matching info in setup.py.

• an issue tracker for bug reports and enhancement requests.

• a changelog

If no contributor strongly objects and two agree, the repository can then be transferred to the pytest-dev organisa-
tion.

Here’s a rundown of how a repository transfer usually proceeds (using a repository named joedoe/pytest-xyz
as example):

• joedoe transfers repository ownership to pytest-dev administrator calvin.

• calvin creates pytest-xyz-admin and pytest-xyz-developers teams, inviting joedoe to both
as maintainer.

• calvin transfers repository to pytest-dev and configures team access:

– pytest-xyz-admin admin access;

– pytest-xyz-developers write access;

The pytest-dev/Contributors team has write access to all projects, and every project administrator is in it.
We recommend that each plugin has at least three people who have the right to release to PyPI.

Repository owners can rest assured that no pytest-dev administrator will ever make releases of your repository
or take ownership in any way, except in rare cases where someone becomes unresponsive after months of contact
attempts. As stated, the objective is to share maintenance and avoid “plugin-abandon”.

34.6. Submitting Plugins to pytest-dev 275

https://github.com/pytest-dev
https://bitbucket.org/pytest-dev
https://mail.python.org/mailman/listinfo/pytest-dev
https://tox.readthedocs.io
http://keepachangelog.com/


pytest Documentation, Release 4.6

34.7 Preparing Pull Requests

34.7.1 Short version

1. Fork the repository.

2. Enable and install pre-commit to ensure style-guides and code checks are followed.

3. Target master for bugfixes and doc changes.

4. Target features for new features or functionality changes.

5. Follow PEP-8 for naming and black for formatting.

6. Tests are run using tox:

tox -e linting,py27,py37

The test environments above are usually enough to cover most cases locally.

7. Write a changelog entry: changelog/2574.bugfix, use issue id number and one of bugfix,
removal, feature, vendor, doc or trivial for the issue type.

8. Unless your change is a trivial or a documentation fix (e.g., a typo or reword of a small section) please add
yourself to the AUTHORS file, in alphabetical order.

34.7.2 Long version

What is a “pull request”? It informs the project’s core developers about the changes you want to review and merge.
Pull requests are stored on GitHub servers. Once you send a pull request, we can discuss its potential modifications
and even add more commits to it later on. There’s an excellent tutorial on how Pull Requests work in the GitHub Help
Center.

Here is a simple overview, with pytest-specific bits:

1. Fork the pytest GitHub repository. It’s fine to use pytest as your fork repository name because it will live
under your user.

2. Clone your fork locally using git and create a branch:

$ git clone git@github.com:YOUR_GITHUB_USERNAME/pytest.git
$ cd pytest
# now, to fix a bug create your own branch off "master":

$ git checkout -b your-bugfix-branch-name master

# or to instead add a feature create your own branch off "features":

$ git checkout -b your-feature-branch-name features

Given we have “major.minor.micro” version numbers, bugfixes will usually be released in micro releases
whereas features will be released in minor releases and incompatible changes in major releases.

If you need some help with Git, follow this quick start guide: https://git.wiki.kernel.org/index.php/QuickStart

3. Install pre-commit and its hook on the pytest repo:

$ pip install --user pre-commit
$ pre-commit install

276 Chapter 34. Contribution getting started

https://pre-commit.com
https://github.com/python/black
https://github.com/pytest-dev/pytest/pulls
https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/using-pull-requests/
https://github.com/pytest-dev/pytest
https://git-scm.com/
https://git.wiki.kernel.org/index.php/QuickStart
https://pre-commit.com


pytest Documentation, Release 4.6

Afterwards pre-commit will run whenever you commit.

https://pre-commit.com/ is a framework for managing and maintaining multi-language pre-commit hooks to
ensure code-style and code formatting is consistent.

4. Install tox

Tox is used to run all the tests and will automatically setup virtualenvs to run the tests in. (will implicitly use
http://www.virtualenv.org/en/latest/):

$ pip install tox

5. Run all the tests

You need to have Python 2.7 and 3.7 available in your system. Now running tests is as simple as issuing this
command:

$ tox -e linting,py27,py37

This command will run tests via the “tox” tool against Python 2.7 and 3.7 and also perform “lint” coding-style
checks.

6. You can now edit your local working copy and run the tests again as necessary. Please follow PEP-8 for naming.

You can pass different options to tox. For example, to run tests on Python 2.7 and pass options to pytest (e.g.
enter pdb on failure) to pytest you can do:

$ tox -e py27 -- --pdb

Or to only run tests in a particular test module on Python 3.7:

$ tox -e py37 -- testing/test_config.py

When committing, pre-commit will re-format the files if necessary.

7. Commit and push once your tests pass and you are happy with your change(s):

$ git commit -a -m "<commit message>"
$ git push -u

8. Create a new changelog entry in changelog. The file should be named <issueid>.<type>, where issueid
is the number of the issue related to the change and type is one of bugfix, removal, feature, vendor,
doc or trivial.

9. Add yourself to AUTHORS file if not there yet, in alphabetical order.

10. Finally, submit a pull request through the GitHub website using this data:

head-fork: YOUR_GITHUB_USERNAME/pytest
compare: your-branch-name

base-fork: pytest-dev/pytest
base: master # if it's a bugfix
base: features # if it's a feature

34.8 Writing Tests

Writing tests for plugins or for pytest itself is often done using the testdir fixture, as a “black-box” test.

34.8. Writing Tests 277

https://pre-commit.com/
http://www.virtualenv.org/en/latest/
https://docs.pytest.org/en/latest/reference.html#testdir


pytest Documentation, Release 4.6

For example, to ensure a simple test passes you can write:

def test_true_assertion(testdir):
testdir.makepyfile(

"""
def test_foo():

assert True
"""
)
result = testdir.runpytest()
result.assert_outcomes(failed=0, passed=1)

Alternatively, it is possible to make checks based on the actual output of the termal using glob-like expressions:

def test_true_assertion(testdir):
testdir.makepyfile(

"""
def test_foo():

assert False
"""
)
result = testdir.runpytest()
result.stdout.fnmatch_lines(["*assert False*", "*1 failed*"])

When choosing a file where to write a new test, take a look at the existing files and see if there’s one file which looks like
a good fit. For example, a regression test about a bug in the --lf option should go into test_cacheprovider.
py, given that this option is implemented in cacheprovider.py. If in doubt, go ahead and open a PR with your
best guess and we can discuss this over the code.

34.9 Joining the Development Team

Anyone who has successfully seen through a pull request which did not require any extra work from the development
team to merge will themselves gain commit access if they so wish (if we forget to ask please send a friendly reminder).
This does not mean your workflow to contribute changes, everyone goes through the same pull-request-and-review
process and no-one merges their own pull requests unless already approved. It does however mean you can participate
in the development process more fully since you can merge pull requests from other contributors yourself after having
reviewed them.

278 Chapter 34. Contribution getting started



CHAPTER 35

Development Guide

Some general guidelines regarding development in pytest for maintainers and contributors. Nothing here is set in stone
and can’t be changed, feel free to suggest improvements or changes in the workflow.

35.1 Code Style

• PEP-8

• flake8 for quality checks

• invoke to automate development tasks

35.2 Branches

We have two long term branches:

• master: contains the code for the next bugfix release.

• features: contains the code with new features for the next minor release.

The official repository usually does not contain topic branches, developers and contributors should create topic
branches in their own forks.

Exceptions can be made for cases where more than one contributor is working on the same topic or where it makes
sense to use some automatic capability of the main repository, such as automatic docs from readthedocs for a branch
dealing with documentation refactoring.

35.3 Issues

Any question, feature, bug or proposal is welcome as an issue. Users are encouraged to use them whenever they need.

279

https://www.python.org/dev/peps/pep-0008
https://pypi.org/project/flake8/
http://www.pyinvoke.org/
readthedocs.org


pytest Documentation, Release 4.6

GitHub issues should use labels to categorize them. Labels should be created sporadically, to fill a niche; we should
avoid creating labels just for the sake of creating them.

Each label should include a description in the GitHub’s interface stating its purpose.

Labels are managed using labels. All the labels in the repository are kept in .github/labels.toml, so any
changes should be via PRs to that file. After a PR is accepted and merged, one of the maintainers must manually
synchronize the labels file with the GitHub repository.

35.3.1 Temporary labels

To classify issues for a special event it is encouraged to create a temporary label. This helps those involved to find the
relevant issues to work on. Examples of that are sprints in Python events or global hacking events.

• temporary: EP2017 sprint: candidate issues or PRs tackled during the EuroPython 2017

Issues created at those events should have other relevant labels added as well.

Those labels should be removed after they are no longer relevant.

35.4 Release Procedure

Our current policy for releasing is to aim for a bugfix every few weeks and a minor release every 2-3 months. The idea
is to get fixes and new features out instead of trying to cram a ton of features into a release and by consequence taking
a lot of time to make a new one.

Important: pytest releases must be prepared on Linux because the docs and examples expect to be executed in that
platform.

1. Create a branch release-X.Y.Z with the version for the release.

• patch releases: from the latest master;

• minor releases: from the latest features; then merge with the latest master;

Ensure your are in a clean work tree.

2. Using tox, generate docs, changelog, announcements:

$ tox -e release -- <VERSION>

This will generate a commit with all the changes ready for pushing.

3. Open a PR for this branch targeting master.

4. After all tests pass and the PR has been approved, publish to PyPI by pushing the tag:

git tag <VERSION>
git push git@github.com:pytest-dev/pytest.git <VERSION>

Wait for the deploy to complete, then make sure it is available on PyPI.

5. Merge the PR into master.

6. Send an email announcement with the contents from:

doc/en/announce/release-<VERSION>.rst

280 Chapter 35. Development Guide

https://github.com/hackebrot/labels
https://pypi.org/project/pytest


pytest Documentation, Release 4.6

To the following mailing lists:

• pytest-dev@python.org (all releases)

• python-announce-list@python.org (all releases)

• testing-in-python@lists.idyll.org (only major/minor releases)

And announce it on Twitter with the #pytest hashtag.

35.4. Release Procedure 281

mailto:pytest-dev@python.org
mailto:python-announce-list@python.org
mailto:testing-in-python@lists.idyll.org
https://twitter.com/


pytest Documentation, Release 4.6

282 Chapter 35. Development Guide



CHAPTER 36

Talks and Tutorials

36.1 Books

• pytest Quick Start Guide, by Bruno Oliveira (2018).

• Python Testing with pytest, by Brian Okken (2017).

36.2 Talks and blog postings

• pytest: recommendations, basic packages for testing in Python and Django, Andreu Vallbona, PyconES 2017
(slides in english, video in spanish)

• pytest advanced, Andrew Svetlov (Russian, PyCon Russia, 2016).

• Pythonic testing, Igor Starikov (Russian, PyNsk, November 2016).

• pytest - Rapid Simple Testing, Florian Bruhin, Swiss Python Summit 2016.

• Improve your testing with Pytest and Mock, Gabe Hollombe, PyCon SG 2015.

• Introduction to pytest, Andreas Pelme, EuroPython 2014.

• Advanced Uses of py.test Fixtures, Floris Bruynooghe, EuroPython 2014.

• Why i use py.test and maybe you should too, Andy Todd, Pycon AU 2013

• 3-part blog series about pytest from @pydanny alias Daniel Greenfeld (January 2014)

• pytest: helps you write better Django apps, Andreas Pelme, DjangoCon Europe 2014.

• pytest fixtures: explicit, modular, scalable

• Testing Django Applications with pytest, Andreas Pelme, EuroPython 2013.

• Testes pythonics com py.test, Vinicius Belchior Assef Neto, Plone Conf 2013, Brazil.

• Introduction to py.test fixtures, FOSDEM 2013, Floris Bruynooghe.

283

https://www.packtpub.com/web-development/pytest-quick-start-guide
https://pragprog.com/book/bopytest/python-testing-with-pytest
http://talks.apsl.io/testing-pycones-2017/
https://www.youtube.com/watch?v=K20GeR-lXDk
https://www.youtube.com/watch?v=7KgihdKTWY4
https://www.youtube.com/watch?v=_92nfdd5nK8
https://www.youtube.com/watch?v=rCBHkQ_LVIs
https://www.youtube.com/watch?v=RcN26hznmk4
https://www.youtube.com/watch?v=LdVJj65ikRY
https://www.youtube.com/watch?v=IBC_dxr-4ps
https://www.youtube.com/watch?v=P-AhpukDIik
http://pydanny.com/pytest-no-boilerplate-testing.html
https://www.youtube.com/watch?v=aaArYVh6XSM
https://www.youtube.com/watch?v=aUf8Fkb7TaY
https://www.youtube.com/watch?v=QUKoq2K7bis
https://www.youtube.com/watch?v=bJhRW4eZMco


pytest Documentation, Release 4.6

• pytest feature and release highlights, Holger Krekel (GERMAN, October 2013)

• pytest introduction from Brian Okken (January 2013)

• pycon australia 2012 pytest talk from Brianna Laugher (video, slides, code)

• pycon 2012 US talk video from Holger Krekel

• monkey patching done right (blog post, consult monkeypatch plugin for up-to-date API)

Test parametrization:

• generating parametrized tests with fixtures.

• test generators and cached setup

• parametrizing tests, generalized (blog post)

• putting test-hooks into local or global plugins (blog post)

Assertion introspection:

• (07/2011) Behind the scenes of pytest’s new assertion rewriting

Distributed testing:

• simultaneously test your code on all platforms (blog entry)

Plugin specific examples:

• skipping slow tests by default in pytest (blog entry)

• many examples in the docs for plugins

284 Chapter 36. Talks and Tutorials

http://pyvideo.org/video/2429/pytest-feature-and-new-release-highlights
http://pythontesting.net/framework/pytest-introduction/
http://www.youtube.com/watch?v=DTNejE9EraI
http://www.slideshare.net/pfctdayelise/funcargs-other-fun-with-pytest
https://gist.github.com/3386951
http://www.youtube.com/watch?v=9LVqBQcFmyw
http://tetamap.wordpress.com/2009/03/03/monkeypatching-in-unit-tests-done-right/
monkeypatch.html
parametrize.html#test-generators
http://bruynooghe.blogspot.com/2010/06/pytest-test-generators-and-cached-setup.html
http://tetamap.wordpress.com/2009/05/13/parametrizing-python-tests-generalized/
http://tetamap.wordpress.com/2009/05/14/putting-test-hooks-into-local-and-global-plugins/
http://pybites.blogspot.com/2011/07/behind-scenes-of-pytests-new-assertion.html
http://tetamap.wordpress.com/2009/03/23/new-simultanously-test-your-code-on-all-platforms/
http://bruynooghe.blogspot.com/2009/12/skipping-slow-test-by-default-in-pytest.html
plugins.html


pytest Documentation, Release 4.6

36.2. Talks and blog postings 285



pytest Documentation, Release 4.6

286 Chapter 36. Talks and Tutorials



CHAPTER 37

Project examples

Here are some examples of projects using pytest (please send notes via Contact channels):

• PyPy, Python with a JIT compiler, running over 21000 tests

• the MoinMoin Wiki Engine

• sentry, realtime app-maintenance and exception tracking

• Astropy and affiliated packages

• tox, virtualenv/Hudson integration tool

• PIDA framework for integrated development

• PyPM ActiveState’s package manager

• Fom a fluid object mapper for FluidDB

• applib cross-platform utilities

• six Python 2 and 3 compatibility utilities

• pediapress MediaWiki articles

• mwlib mediawiki parser and utility library

• The Translate Toolkit for localization and conversion

• execnet rapid multi-Python deployment

• pylib cross-platform path, IO, dynamic code library

• Pacha configuration management in five minutes

• bbfreeze create standalone executables from Python scripts

• pdb++ a fancier version of PDB

• py-s3fuse Amazon S3 FUSE based filesystem

• waskr WSGI Stats Middleware

• guachi global persistent configs for Python modules

287

http://pypy.org
http://buildbot.pypy.org/summary?branch=%3Ctrunk%3E
http://moinmo.in
https://getsentry.com/welcome/
http://www.astropy.org/
http://www.astropy.org/affiliated/index.html
http://testrun.org/tox
http://pida.co.uk
http://code.activestate.com/pypm/
http://packages.python.org/Fom/
https://github.com/ActiveState/applib
https://pypi.org/project/six/
http://code.pediapress.com/wiki/wiki
https://pypi.org/project/mwlib/
http://translate.sourceforge.net/wiki/toolkit/index
http://codespeak.net/execnet
https://py.readthedocs.io
http://pacha.cafepais.com/
https://pypi.org/project/bbfreeze/
http://bitbucket.org/antocuni/pdb
http://code.google.com/p/py-s3fuse/
http://code.google.com/p/waskr/
http://code.google.com/p/guachi/


pytest Documentation, Release 4.6

• Circuits lightweight Event Driven Framework

• pygtk-helpers easy interaction with PyGTK

• QuantumCore statusmessage and repoze openid plugin

• pydataportability libraries for managing the open web

• XIST extensible HTML/XML generator

• tiddlyweb optionally headless, extensible RESTful datastore

• fancycompleter for colorful tab-completion

• Paludis tools for Gentoo Paludis package manager

• Gerald schema comparison tool

• abjad Python API for Formalized Score control

• bu a microscopic build system

• katcp Telescope communication protocol over Twisted

• kss plugin timer

• pyudev a pure Python binding to the Linux library libudev

• pytest-localserver a plugin for pytest that provides an httpserver and smtpserver

• pytest-monkeyplus a plugin that extends monkeypatch

These projects help integrate pytest into other Python frameworks:

• pytest-django for Django

• zope.pytest for Zope and Grok

• pytest_gae for Google App Engine

• There is some work underway for Kotti, a CMS built in Pyramid/Pylons

37.1 Some organisations using pytest

• Square Kilometre Array, Cape Town

• Some Mozilla QA people use pytest to distribute their Selenium tests

• Tandberg

• Shootq

• Stups department of Heinrich Heine University Duesseldorf

• cellzome

• Open End, Gothenborg

• Laboratory of Bioinformatics, Warsaw

• merlinux, Germany

• ESSS, Brazil

• many more . . . (please be so kind to send a note via Contact channels)

288 Chapter 37. Project examples

https://pypi.org/project/circuits/
http://bitbucket.org/aafshar/pygtkhelpers-main/
http://quantumcore.org/
http://pydataportability.net/
http://www.livinglogic.de/Python/xist/
https://pypi.org/project/tiddlyweb/
http://bitbucket.org/antocuni/fancycompleter/src
http://paludis.exherbo.org/
http://halfcooked.com/code/gerald/
http://code.google.com/p/abjad/
http://packages.python.org/bu/
https://bitbucket.org/hodgestar/katcp
https://pypi.org/project/kss.plugin.timer/
https://pyudev.readthedocs.io/en/latest/tests/plugins.html
https://bitbucket.org/pytest-dev/pytest-localserver/
https://pypi.org/project/pytest-monkeyplus/
https://pypi.org/project/pytest-django/
http://packages.python.org/zope.pytest/
https://pypi.org/project/pytest_gae/0.2.1/
https://github.com/Kotti/Kotti/blob/master/kotti/testing.py
http://ska.ac.za/
http://www.theautomatedtester.co.uk/blog/2011/pytest_and_xdist_plugin.html
http://www.tandberg.com/
http://web.shootq.com/
http://www.stups.uni-duesseldorf.de/projects.php
http://www.cellzome.com/
http://www.openend.se
http://genesilico.pl/
http://merlinux.eu
http://www.esss.com.br


CHAPTER 38

Some Issues and Questions

Note: This FAQ is here only mostly for historic reasons. Checkout pytest Q&A at Stackoverflow for many questions
and answers related to pytest and/or use Contact channels to get help.

38.1 On naming, nosetests, licensing and magic

38.1.1 How does pytest relate to nose and unittest?

pytest and nose share basic philosophy when it comes to running and writing Python tests. In fact, you can run
many tests written for nose with pytest. nose was originally created as a clone of pytest when pytest was in
the 0.8 release cycle. Note that starting with pytest-2.0 support for running unittest test suites is majorly improved.

38.1.2 how does pytest relate to twisted’s trial?

Since some time pytest has builtin support for supporting tests written using trial. It does not itself start a reactor,
however, and does not handle Deferreds returned from a test in pytest style. If you are using trial’s unittest.TestCase
chances are that you can just run your tests even if you return Deferreds. In addition, there also is a dedicated pytest-
twisted plugin which allows you to return deferreds from pytest-style tests, allowing the use of pytest fixtures: explicit,
modular, scalable and other features.

38.1.3 how does pytest work with Django?

In 2012, some work is going into the pytest-django plugin. It substitutes the usage of Django’s manage.py test
and allows the use of all pytest features most of which are not available from Django directly.

289

http://stackoverflow.com/search?q=pytest
https://nose.readthedocs.io/en/latest/
https://nose.readthedocs.io/en/latest/
https://pypi.org/project/pytest-twisted/
https://pypi.org/project/pytest-twisted/
https://pypi.org/project/pytest-django/
features.html


pytest Documentation, Release 4.6

38.1.4 What’s this “magic” with pytest? (historic notes)

Around 2007 (version 0.8) some people thought that pytest was using too much “magic”. It had been part of
the pylib which contains a lot of unrelated python library code. Around 2010 there was a major cleanup refactoring,
which removed unused or deprecated code and resulted in the new pytest PyPI package which strictly contains only
test-related code. This release also brought a complete pluginification such that the core is around 300 lines of code
and everything else is implemented in plugins. Thus pytest today is a small, universally runnable and customizable
testing framework for Python. Note, however, that pytest uses metaprogramming techniques and reading its source
is thus likely not something for Python beginners.

A second “magic” issue was the assert statement debugging feature. Nowadays, pytest explicitly rewrites assert
statements in test modules in order to provide more useful assert feedback. This completely avoids previous issues of
confusing assertion-reporting. It also means, that you can use Python’s -O optimization without losing assertions in
test modules.

You can also turn off all assertion interaction using the --assert=plain option.

38.1.5 Why can I use both pytest and py.test commands?

pytest used to be part of the py package, which provided several developer utilities, all starting with py.<TAB>, thus
providing nice TAB-completion. If you install pip install pycmd you get these tools from a separate package.
Once pytest became a separate package, the py.test name was retained due to avoid a naming conflict with
another tool. This conflict was eventually resolved, and the pytest command was therefore introduced. In future
versions of pytest, we may deprecate and later remove the py.test command to avoid perpetuating the confusion.

38.2 pytest fixtures, parametrized tests

38.2.1 Is using pytest fixtures versus xUnit setup a style question?

For simple applications and for people experienced with nose or unittest-style test setup using xUnit style setup proba-
bly feels natural. For larger test suites, parametrized testing or setup of complex test resources using fixtures may feel
more natural. Moreover, fixtures are ideal for writing advanced test support code (like e.g. the monkeypatch, the tmpdir
or capture fixtures) because the support code can register setup/teardown functions in a managed class/module/function
scope.

38.2.2 Can I yield multiple values from a fixture function?

There are two conceptual reasons why yielding from a factory function is not possible:

• If multiple factories yielded values there would be no natural place to determine the combination policy - in
real-world examples some combinations often should not run.

• Calling factories for obtaining test function arguments is part of setting up and running a test. At that point it is
not possible to add new test calls to the test collection anymore.

However, with pytest-2.3 you can use the Fixtures as Function arguments decorator and specify params so that all
tests depending on the factory-created resource will run multiple times with different parameters.

You can also use the pytest_generate_tests hook to implement the parametrization scheme of your choice.
See also Parametrizing tests for more examples.

290 Chapter 38. Some Issues and Questions

https://py.readthedocs.io/en/latest/
https://nose.readthedocs.io/en/latest/
xunit_setup.html
fixture.html
monkeypatch.html
tmpdir.html
capture.html
http://tetamap.wordpress.com/2009/05/13/parametrizing-python-tests-generalized/


pytest Documentation, Release 4.6

38.3 pytest interaction with other packages

38.3.1 Issues with pytest, multiprocess and setuptools?

On Windows the multiprocess package will instantiate sub processes by pickling and thus implicitly re-import a lot
of local modules. Unfortunately, setuptools-0.6.11 does not if __name__=='__main__' protect its generated
command line script. This leads to infinite recursion when running a test that instantiates Processes.

As of mid-2013, there shouldn’t be a problem anymore when you use the standard setuptools (note that distribute has
been merged back into setuptools which is now shipped directly with virtualenv).

38.3. pytest interaction with other packages 291



pytest Documentation, Release 4.6

292 Chapter 38. Some Issues and Questions



CHAPTER 39

Contact channels

• pytest issue tracker to report bugs or suggest features (for version 2.0 and above).

• pytest on stackoverflow.com to post questions with the tag pytest. New Questions will usually be seen by
pytest users or developers and answered quickly.

• Testing In Python: a mailing list for Python testing tools and discussion.

• pytest-dev at python.org (mailing list) pytest specific announcements and discussions.

• pytest-commit at python.org (mailing list): for commits and new issues

• contribution guide for help on submitting pull requests to GitHub.

• #pylib on irc.freenode.net IRC channel for random questions.

• private mail to Holger.Krekel at gmail com if you want to communicate sensitive issues

• merlinux.eu offers pytest and tox-related professional teaching and consulting.

293

https://github.com/pytest-dev/pytest/issues
http://stackoverflow.com/search?q=pytest
http://lists.idyll.org/listinfo/testing-in-python
http://mail.python.org/mailman/listinfo/pytest-dev
http://mail.python.org/mailman/listinfo/pytest-commit
http://merlinux.eu


pytest Documentation, Release 4.6

294 Chapter 39. Contact channels



CHAPTER 40

Tidelift

pytest is a member of Tidelift. This document describes how the core team manages Tidelift-related activities.

40.1 What is it

Tidelift aims to make Open Source sustainable by offering subscriptions to companies which rely on Open Source
packages. This subscription allows it to pay maintainers of those Open Source packages to aid sustainability of the
work.

40.2 Funds

It was decided in the mailing list that the Tidelift contribution will be split evenly between members of the contributors
team interested in receiving funding.

The current list of contributors receiving funding are:

• @asottile

• @blueyed

• @nicoddemus

Contributors interested in receiving a part of the funds just need to submit a PR adding their name to the list. Contrib-
utors that want to stop receiving the funds should also submit a PR in the same way.

The PR should mention @pytest-dev/tidelift-admins so appropriate changes can be made in the Tidelift platform.

After the PR has been accepted and merged, the contributor should register in the Tidelift platform and follow the
instructions there, including signing an agreement.

295

https://tidelift.com
https://mail.python.org/pipermail/pytest-dev/2019-May/004716.html
https://github.com/orgs/pytest-dev/teams/contributors
https://github.com/orgs/pytest-dev/teams/contributors
https://github.com/asottile
https://github.com/blueyed
https://github.com/nicoddemus
https://github.com/orgs/pytest-dev/teams/tidelift-admins/members
https://tidelift.com
https://tidelift.com/docs/lifting/agreement


pytest Documentation, Release 4.6

40.3 Admins

A few people have admin access to the Tidelift dashboard to make changes. Those people are part of the @pytest-
dev/tidelift-admins team.

Core contributors interested in helping out with Tidelift maintenance are welcome! We don’t expect much work
here other than the occasional adding/removal of a contributor from receiving funds. Just drop a line to one of the
@pytest-dev/tidelift-admins or use the mailing list.

296 Chapter 40. Tidelift

https://github.com/orgs/pytest-dev/teams/tidelift-admins/members
https://github.com/orgs/pytest-dev/teams/tidelift-admins/members
https://github.com/orgs/pytest-dev/teams/core/members
https://github.com/orgs/pytest-dev/teams/tidelift-admins/members


Index

Symbols
_Result (class in pluggy.callers), 166

A
add_cleanup() (Config method), 155
add_hookcall_monitoring() (PluginManager

method), 164
add_hookspecs() (PluginManager method), 163
add_marker() (Node method), 161
add_report_section() (Item method), 157
addfinalizer() (FixtureRequest method), 135
addfinalizer() (Node method), 161
addhooks() (PytestPluginManager method), 164
addini() (Parser method), 162
addinivalue_line() (Config method), 155
addoption() (Parser method), 162
addopts

configuration value, 169
applymarker() (FixtureRequest method), 135
approx() (in module _pytest.python_api), 122
args (Mark attribute), 159
args (MarkDecorator attribute), 158
assert_outcomes() (RunResult method), 144
at_level() (LogCaptureFixture method), 138

C
cache_dir

configuration value, 169
CallInfo (class in _pytest.runner), 154
capfd() (in module _pytest.capture), 134
capfdbinary() (in module _pytest.capture), 134
caplog (TestReport attribute), 166
caplog() (in module _pytest.logging), 136
capstderr (TestReport attribute), 166
capstdout (TestReport attribute), 166
capsys() (in module _pytest.capture), 133
capsysbinary() (in module _pytest.capture), 133
CaptureFixture (class in _pytest.capture), 133
chdir() (MonkeyPatch method), 139

chdir() (Testdir method), 140
check_pending() (PluginManager method), 163
Class (class in _pytest.python), 154
clear() (LogCaptureFixture method), 137
clear() (WarningsRecorder method), 145
CLOSE_STDIN (Testdir attribute), 140
cls (FixtureRequest attribute), 135
cls (Metafunc attribute), 159
collect() (Class method), 154
collect() (Collector method), 154
collect() (Module method), 160
collect() (Session method), 165
collect() (Testdir.Session method), 141
collect_by_name() (Testdir method), 143
Collector (class in _pytest.nodes), 154
Collector.CollectError, 154
combined_with() (Mark method), 159
confcutdir

configuration value, 169
Config (class in _pytest.config), 154
config (FixtureRequest attribute), 135
config (Metafunc attribute), 159
config (Node attribute), 160
Config.InvocationParams (class in

_pytest.config), 155
configuration value

addopts, 169
cache_dir, 169
confcutdir, 169
console_output_style, 169
doctest_encoding, 169
doctest_optionflags, 169
empty_parameter_set_mark, 169
filterwarnings, 170
junit_duration_report, 170
junit_family, 170
junit_log_passing_tests, 170
junit_logging, 170
junit_suite_name, 170
log_cli_date_format, 171

297



pytest Documentation, Release 4.6

log_cli_format, 171
log_cli_level, 171
log_date_format, 171
log_file, 171
log_file_date_format, 171
log_file_format, 171
log_file_level, 172
log_format, 172
log_level, 172
log_print, 172
markers, 172
minversion, 172
norecursedirs, 172
python_classes, 173
python_files, 173
python_functions, 173
testpaths, 174
usefixtures, 174
xfail_strict, 174

consider_conftest() (PytestPluginManager
method), 164

consider_env() (PytestPluginManager method),
164

consider_module() (PytestPluginManager
method), 164

consider_pluginarg() (PytestPluginManager
method), 164

consider_preparse() (PytestPluginManager
method), 164

console_output_style
configuration value, 169

context() (MonkeyPatch method), 138
count_towards_summary (TestReport attribute),

166

D
delattr() (MonkeyPatch method), 139
delenv() (MonkeyPatch method), 139
delitem() (MonkeyPatch method), 139
deprecated_call() (in module pytest), 127
disabled() (CaptureFixture method), 133
doctest_encoding

configuration value, 169
doctest_namespace() (in module _pytest.doctest),

134
doctest_optionflags

configuration value, 169
duration (TestReport attribute), 165

E
empty_parameter_set_mark

configuration value, 169
enable_tracing() (PluginManager method), 164
errisinstance() (ExceptionInfo method), 156

ExceptionInfo (class in _pytest._code), 155
exconly() (ExceptionInfo method), 156
exit() (in module _pytest.outcomes), 125
extra_keyword_matches (Node attribute), 161

F
fail() (in module _pytest.outcomes), 124
filterwarnings

configuration value, 170
finalize() (Testdir method), 140
fixture() (in module pytest), 131
FixtureDef (class in _pytest.fixtures), 157
fixturename (FixtureRequest attribute), 135
fixturenames (FixtureRequest attribute), 135
fixturenames (Metafunc attribute), 159
FixtureRequest (class in _pytest.fixtures), 134
fnmatch_lines() (LineMatcher method), 144
fnmatch_lines_random() (LineMatcher method),

144
for_later() (ExceptionInfo method), 156
force_result() (_Result method), 166
freeze_includes() (in module pytest), 128
from_current() (ExceptionInfo method), 155
from_item_and_call() (TestReport method), 165
fromdictargs() (Config method), 155
FSCollector (class in _pytest.nodes), 157
fspath (FixtureRequest attribute), 135
fspath (Node attribute), 160
Function (class in _pytest.python), 157
function (FixtureRequest attribute), 135
function (Function attribute), 157
function (Metafunc attribute), 159

G
genitems() (Testdir method), 141
get() (Cache method), 132
get_canonical_name() (PluginManager method),

163
get_closest_marker() (Node method), 161
get_hookcallers() (PluginManager method), 164
get_lines_after() (LineMatcher method), 144
get_name() (PluginManager method), 163
get_plugin() (PluginManager method), 163
get_plugins() (PluginManager method), 163
get_records() (LogCaptureFixture method), 137
get_result() (_Result method), 166
getbasetemp() (TempdirFactory method), 146
getbasetemp() (TempPathFactory method), 146
getfixturevalue() (FixtureRequest method), 135
getfuncargvalue() (FixtureRequest method), 135
getgroup() (Parser method), 162
getini() (Config method), 155
getinicfg() (Testdir method), 140
getitem() (Testdir method), 142

298 Index



pytest Documentation, Release 4.6

getitems() (Testdir method), 142
getmodulecol() (Testdir method), 142
getnode() (Testdir method), 141
getoption() (Config method), 155
getparent() (Node method), 162
getpathnode() (Testdir method), 141
getplugin() (PytestPluginManager method), 164
getrepr() (ExceptionInfo method), 156
getvalue() (Config method), 155
getvalueorskip() (Config method), 155

H
handler (LogCaptureFixture attribute), 137
has_plugin() (PluginManager method), 163
hasplugin() (PytestPluginManager method), 164
head_line (TestReport attribute), 166

I
ihook (Node attribute), 161
import_plugin() (PytestPluginManager method),

165
importorskip() (in module _pytest.outcomes), 124
inline_genitems() (Testdir method), 141
inline_run() (Testdir method), 142
inline_runsource() (Testdir method), 141
instance (FixtureRequest attribute), 135
invocation_dir (Config attribute), 155
is_blocked() (PluginManager method), 163
is_registered() (PluginManager method), 163
Item (class in _pytest.nodes), 157
iter_markers() (Node method), 161
iter_markers_with_node() (Node method), 161

J
junit_duration_report

configuration value, 170
junit_family

configuration value, 170
junit_log_passing_tests

configuration value, 170
junit_logging

configuration value, 170
junit_suite_name

configuration value, 170

K
keywords (FixtureRequest attribute), 135
keywords (Node attribute), 161
keywords (TestReport attribute), 165
kwargs (Mark attribute), 159
kwargs (MarkDecorator attribute), 158

L
LineMatcher (class in _pytest.pytester), 144

list (WarningsRecorder attribute), 145
list_name_plugin() (PluginManager method),

163
list_plugin_distinfo() (PluginManager

method), 163
listchain() (Node method), 161
listextrakeywords() (Node method), 161
load_setuptools_entrypoints() (PluginMan-

ager method), 163
location (TestReport attribute), 165
log_cli_date_format

configuration value, 171
log_cli_format

configuration value, 171
log_cli_level

configuration value, 171
log_date_format

configuration value, 171
log_file

configuration value, 171
log_file_date_format

configuration value, 171
log_file_format

configuration value, 171
log_file_level

configuration value, 172
log_format

configuration value, 172
log_level

configuration value, 172
log_print

configuration value, 172
LogCaptureFixture (class in _pytest.logging), 137
longrepr (TestReport attribute), 165
longreprtext (TestReport attribute), 166

M
main() (in module _pytest.config), 125
make_hook_recorder() (Testdir method), 140
makeconftest() (Testdir method), 140
makedir() (Cache method), 133
makefile() (Testdir method), 140
makeini() (Testdir method), 140
makepyfile() (Testdir method), 140
maketxtfile() (Testdir method), 140
Mark (class in _pytest.mark.structures), 159
MarkDecorator (class in _pytest.mark), 158
markers

configuration value, 172
MarkGenerator (class in _pytest.mark), 159
match() (ExceptionInfo method), 156
messages (LogCaptureFixture attribute), 137
Metafunc (class in _pytest.python), 159
minversion

Index 299



pytest Documentation, Release 4.6

configuration value, 172
mkdir() (Testdir method), 140
mkpydir() (Testdir method), 141
mktemp() (TempdirFactory method), 146
mktemp() (TempPathFactory method), 146
Module (class in _pytest.python), 160
module (FixtureRequest attribute), 135
module (Metafunc attribute), 159
MonkeyPatch (class in _pytest.monkeypatch), 138
monkeypatch() (in module _pytest.monkeypatch),

138

N
name (Mark attribute), 159
name (MarkDecorator attribute), 158
name (Node attribute), 160
Node (class in _pytest.nodes), 160
node (FixtureRequest attribute), 135
nodeid (Node attribute), 161
nodeid (TestReport attribute), 165
norecursedirs

configuration value, 172

O
option (Config attribute), 155
originalname (Function attribute), 157
outcome (TestReport attribute), 165
own_markers (Node attribute), 161

P
param() (in module pytest), 125
parametrize() (Metafunc method), 129, 159
parent (Node attribute), 160
parse_hookimpl_opts() (PytestPluginManager

method), 164
parse_hookspec_opts() (PytestPluginManager

method), 164
parse_known_and_unknown_args() (Parser

method), 162
parse_known_args() (Parser method), 162
parseconfig() (Testdir method), 142
parseconfigure() (Testdir method), 142
parseoutcomes() (RunResult method), 144
Parser (class in _pytest.config.argparsing), 162
PluginManager (class in pluggy), 162
pluginmanager (Config attribute), 155
pop() (WarningsRecorder method), 145
popen() (Testdir method), 143
pytest.mark.filterwarnings() (built-in func-

tion), 129
pytest.mark.skip() (built-in function), 130
pytest.mark.skipif() (built-in function), 130
pytest.mark.usefixtures() (built-in function),

130

pytest.mark.xfail() (built-in function), 130
pytest_addhooks() (in module _pytest.hookspec),

148
pytest_addoption() (in module _pytest.hookspec),

147
pytest_assertrepr_compare() (in module

_pytest.hookspec), 153
pytest_cmdline_main() (in module

_pytest.hookspec), 147
pytest_cmdline_parse() (in module

_pytest.hookspec), 147
pytest_cmdline_preparse() (in module

_pytest.hookspec), 147
pytest_collect_directory() (in module

_pytest.hookspec), 150
pytest_collect_file() (in module

_pytest.hookspec), 150
pytest_collection() (in module

_pytest.hookspec), 150
pytest_collection_finish() (in module

_pytest.hookspec), 151
pytest_collection_modifyitems() (in mod-

ule _pytest.hookspec), 151
pytest_collectreport() (in module

_pytest.hookspec), 151
pytest_collectstart() (in module

_pytest.hookspec), 151
pytest_configure() (in module _pytest.hookspec),

148
pytest_configure() (PytestPluginManager

method), 164
pytest_deselected() (in module

_pytest.hookspec), 151
pytest_enter_pdb() (in module _pytest.hookspec),

153
pytest_exception_interact() (in module

_pytest.hookspec), 153
pytest_fixture_post_finalizer() (in mod-

ule _pytest.hookspec), 152
pytest_fixture_setup() (in module

_pytest.hookspec), 152
pytest_generate_tests() (in module

_pytest.hookspec), 151
pytest_ignore_collect() (in module

_pytest.hookspec), 150
pytest_internalerror() (in module

_pytest.hookspec), 153
pytest_itemcollected() (in module

_pytest.hookspec), 151
pytest_keyboard_interrupt() (in module

_pytest.hookspec), 153
pytest_load_initial_conftests() (in mod-

ule _pytest.hookspec), 146
pytest_make_collect_report() (in module

300 Index



pytest Documentation, Release 4.6

_pytest.hookspec), 151
pytest_make_parametrize_id() (in module

_pytest.hookspec), 151
pytest_plugin_registered() (in module

_pytest.hookspec), 148
pytest_pycollect_makeitem() (in module

_pytest.hookspec), 151
pytest_pycollect_makemodule() (in module

_pytest.hookspec), 150
pytest_pyfunc_call() (in module

_pytest.hookspec), 150
pytest_report_collectionfinish() (in mod-

ule _pytest.hookspec), 152
pytest_report_header() (in module

_pytest.hookspec), 152
pytest_report_teststatus() (in module

_pytest.hookspec), 152
pytest_runtest_call() (in module

_pytest.hookspec), 149
pytest_runtest_logfinish() (in module

_pytest.hookspec), 149
pytest_runtest_logreport() (in module

_pytest.hookspec), 153
pytest_runtest_logstart() (in module

_pytest.hookspec), 149
pytest_runtest_makereport() (in module

_pytest.hookspec), 150
pytest_runtest_protocol() (in module

_pytest.hookspec), 149
pytest_runtest_setup() (in module

_pytest.hookspec), 149
pytest_runtest_teardown() (in module

_pytest.hookspec), 149
pytest_runtestloop() (in module

_pytest.hookspec), 149
pytest_sessionfinish() (in module

_pytest.hookspec), 148
pytest_sessionstart() (in module

_pytest.hookspec), 148
pytest_terminal_summary() (in module

_pytest.hookspec), 152
pytest_unconfigure() (in module

_pytest.hookspec), 148
pytest_warning_captured() (in module

_pytest.hookspec), 153
PytestAssertRewriteWarning (class in pytest),

67
PytestCacheWarning (class in pytest), 67
PytestCollectionWarning (class in pytest), 67
pytestconfig() (in module _pytest.fixtures), 136
PytestConfigWarning (class in pytest), 67
PytestDeprecationWarning (class in pytest), 67
PytestExperimentalApiWarning (class in

pytest), 67

PytestPluginManager (class in _pytest.config), 164
PytestUnhandledCoroutineWarning (class in

pytest), 67
PytestUnknownMarkWarning (class in pytest), 67
PytestWarning (class in pytest), 67
Python Enhancement Proposals

PEP 302, 105
python_classes

configuration value, 173
python_files

configuration value, 173
python_functions

configuration value, 173

R
raiseerror() (FixtureRequest method), 135
raises() (in module pytest), 125
re_match_lines() (LineMatcher method), 145
re_match_lines_random() (LineMatcher

method), 144
readouterr() (CaptureFixture method), 133
record_property() (in module _pytest.junitxml),

136
record_testsuite_property() (in module

_pytest.junitxml), 136
record_tuples (LogCaptureFixture attribute), 137
records (LogCaptureFixture attribute), 137
recwarn() (in module _pytest.recwarn), 145
register() (PluginManager method), 163
register() (PytestPluginManager method), 164
register_assert_rewrite() (in module pytest),

127
RemovedInPytest4Warning (class in pytest), 67
repr_failure() (Collector method), 154
result (_Result attribute), 166
run() (Testdir method), 143
runitem() (Testdir method), 141
runpytest() (Testdir method), 142
runpytest_inprocess() (Testdir method), 142
runpytest_subprocess() (Testdir method), 143
runpython() (Testdir method), 143
runpython_c() (Testdir method), 143
RunResult (class in _pytest.pytester), 144
runtest() (Function method), 157

S
scope (FixtureRequest attribute), 135
sections (TestReport attribute), 165
Session (class in _pytest.main), 165
session (FixtureRequest attribute), 135
session (Node attribute), 160
Session.Failed, 165
Session.Interrupted, 165
set() (Cache method), 132

Index 301



pytest Documentation, Release 4.6

set_blocked() (PluginManager method), 163
set_level() (LogCaptureFixture method), 137
setattr() (MonkeyPatch method), 138
setenv() (MonkeyPatch method), 139
setitem() (MonkeyPatch method), 139
setup() (Function method), 157
skip() (in module _pytest.outcomes), 124
spawn() (Testdir method), 144
spawn_pytest() (Testdir method), 144
str() (LineMatcher method), 144
subset_hook_caller() (PluginManager method),

164
syspath_prepend() (MonkeyPatch method), 139
syspathinsert() (Testdir method), 140

T
tb (ExceptionInfo attribute), 156
Testdir (class in _pytest.pytester), 139
Testdir.Session (class in _pytest.pytester), 141
Testdir.Session.Failed, 141
Testdir.Session.Interrupted, 141
Testdir.TimeoutExpired, 140
testpaths

configuration value, 174
TestReport (class in _pytest.runner), 165
text (LogCaptureFixture attribute), 137
tmp_path() (in module _pytest.tmpdir), 145
tmpdir() (in module _pytest.tmpdir), 146
traceback (ExceptionInfo attribute), 156
type (ExceptionInfo attribute), 156
typename (ExceptionInfo attribute), 156

U
undo() (MonkeyPatch method), 139
unregister() (PluginManager method), 163
usefixtures

configuration value, 174
user_properties (Item attribute), 157
user_properties (TestReport attribute), 165

V
value (ExceptionInfo attribute), 156

W
warn() (Node method), 161
WarningsRecorder (class in _pytest.recwarn), 145
warns() (in module pytest), 128
when (TestReport attribute), 165
with_args() (MarkDecorator method), 158

X
xfail() (in module _pytest.outcomes), 124
xfail_strict

configuration value, 174

302 Index


	Installation and Getting Started
	Install pytest
	Create your first test
	Run multiple tests
	Assert that a certain exception is raised
	Group multiple tests in a class
	Request a unique temporary directory for functional tests
	Continue reading

	Usage and Invocations
	Calling pytest through python -m pytest
	Possible exit codes
	Getting help on version, option names, environment variables
	Stopping after the first (or N) failures
	Specifying tests / selecting tests
	Modifying Python traceback printing
	Detailed summary report
	Dropping to PDB (Python Debugger) on failures
	Dropping to PDB (Python Debugger) at the start of a test
	Setting breakpoints
	Using the builtin breakpoint function
	Profiling test execution duration
	Creating JUnitXML format files
	Creating resultlog format files
	Sending test report to online pastebin service
	Early loading plugins
	Disabling plugins
	Calling pytest from Python code

	Using pytest with an existing test suite
	Running an existing test suite with pytest

	The writing and reporting of assertions in tests
	Asserting with the assert statement
	Assertions about expected exceptions
	Assertions about expected warnings
	Making use of context-sensitive comparisons
	Defining your own explanation for failed assertions
	Assertion introspection details

	pytest fixtures: explicit, modular, scalable
	Fixtures as Function arguments
	Fixtures: a prime example of dependency injection
	conftest.py: sharing fixture functions
	Sharing test data
	Scope: sharing a fixture instance across tests in a class, module or session
	Higher-scoped fixtures are instantiated first
	Fixture finalization / executing teardown code
	Fixtures can introspect the requesting test context
	Factories as fixtures
	Parametrizing fixtures
	Using marks with parametrized fixtures
	Modularity: using fixtures from a fixture function
	Automatic grouping of tests by fixture instances
	Using fixtures from classes, modules or projects
	Autouse fixtures (xUnit setup on steroids)
	Overriding fixtures on various levels

	Marking test functions with attributes
	Registering marks
	Raising errors on unknown marks

	Monkeypatching/mocking modules and environments
	Simple example: monkeypatching functions
	Global patch example: preventing “requests” from remote operations
	Monkeypatching environment variables
	API Reference

	Temporary directories and files
	The tmp_path fixture
	The tmp_path_factory fixture
	The ‘tmpdir’ fixture
	The ‘tmpdir_factory’ fixture
	The default base temporary directory

	Capturing of the stdout/stderr output
	Default stdout/stderr/stdin capturing behaviour
	Setting capturing methods or disabling capturing
	Using print statements for debugging
	Accessing captured output from a test function

	Warnings Capture
	@pytest.mark.filterwarnings
	Disabling warnings summary
	Disabling warning capture entirely
	DeprecationWarning and PendingDeprecationWarning
	Ensuring code triggers a deprecation warning
	Asserting warnings with the warns function
	Recording warnings
	Custom failure messages
	Internal pytest warnings

	Doctest integration for modules and test files
	Encoding
	Using ‘doctest’ options
	Output format
	pytest-specific features

	Skip and xfail: dealing with tests that cannot succeed
	Skipping test functions
	XFail: mark test functions as expected to fail
	Skip/xfail with parametrize

	Parametrizing fixtures and test functions
	@pytest.mark.parametrize: parametrizing test functions
	Basic pytest_generate_tests example
	More examples

	Cache: working with cross-testrun state
	Usage
	Rerunning only failures or failures first
	Behavior when no tests failed in the last run
	The new config.cache object
	Inspecting Cache content
	Clearing Cache content
	Stepwise

	unittest.TestCase Support
	Benefits out of the box
	pytest features in unittest.TestCase subclasses
	Mixing pytest fixtures into unittest.TestCase subclasses using marks
	Using autouse fixtures and accessing other fixtures

	Running tests written for nose
	Usage
	Supported nose Idioms
	Unsupported idioms / known issues

	classic xunit-style setup
	Module level setup/teardown
	Class level setup/teardown
	Method and function level setup/teardown

	Installing and Using plugins
	Requiring/Loading plugins in a test module or conftest file
	Finding out which plugins are active
	Deactivating / unregistering a plugin by name

	Writing plugins
	Plugin discovery order at tool startup
	conftest.py: local per-directory plugins
	Writing your own plugin
	Making your plugin installable by others
	Assertion Rewriting
	Requiring/Loading plugins in a test module or conftest file
	Accessing another plugin by name
	Registering custom markers
	Testing plugins

	Writing hook functions
	hook function validation and execution
	firstresult: stop at first non-None result
	hookwrapper: executing around other hooks
	Hook function ordering / call example
	Declaring new hooks
	Optionally using hooks from 3rd party plugins

	Logging
	caplog fixture
	Live Logs
	Release notes
	Incompatible changes in pytest 3.4

	Reference
	Functions
	Marks
	Fixtures
	Hooks
	Objects
	Special Variables
	Environment Variables
	Configuration Options

	Good Integration Practices
	Install package with pip
	Conventions for Python test discovery
	Choosing a test layout / import rules
	tox
	Integrating with setuptools / python setup.py test / pytest-runner

	Flaky tests
	Why flaky tests are a problem
	Potential root causes
	Pytest features
	Other general strategies
	Research
	Resources

	pytest import mechanisms and sys.path/PYTHONPATH
	Test modules / conftest.py files inside packages
	Standalone test modules / conftest.py files
	Invoking pytest versus python -m pytest

	Configuration
	Command line options and configuration file settings
	Initialization: determining rootdir and inifile
	How to change command line options defaults
	Builtin configuration file options

	Examples and customization tricks
	Demo of Python failure reports with pytest
	Basic patterns and examples
	Parametrizing tests
	Working with custom markers
	A session-fixture which can look at all collected tests
	Changing standard (Python) test discovery
	Working with non-python tests

	Setting up bash completion
	Backwards Compatibility Policy
	Deprecation Roadmap

	Deprecations and Removals
	Deprecated Features
	Removed Features

	Python 2.7 and 3.4 support plan
	Historical Notes
	Marker revamp and iteration
	cache plugin integrated into the core
	funcargs and pytest_funcarg__
	@pytest.yield_fixture decorator
	[pytest] header in setup.cfg
	Applying marks to @pytest.mark.parametrize parameters
	@pytest.mark.parametrize argument names as a tuple
	setup: is now an “autouse fixture”
	Conditions as strings instead of booleans
	pytest.set_trace()
	“compat” properties

	License
	Contribution getting started
	Feature requests and feedback
	Report bugs
	Fix bugs
	Implement features
	Write documentation
	Submitting Plugins to pytest-dev
	Preparing Pull Requests
	Writing Tests
	Joining the Development Team

	Development Guide
	Code Style
	Branches
	Issues
	Release Procedure

	Talks and Tutorials
	Books
	Talks and blog postings

	Project examples
	Some organisations using pytest

	Some Issues and Questions
	On naming, nosetests, licensing and magic
	pytest fixtures, parametrized tests
	pytest interaction with other packages

	Contact channels
	Tidelift
	What is it
	Funds
	Admins

	Index

