
pytest Documentation
Release 6.2

holger krekel, trainer and consultant, http://merlinux.eu

Aug 11, 2022





CONTENTS

1 Installation and Getting Started 3
1.1 Install pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Create your first test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Run multiple tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Assert that a certain exception is raised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Group multiple tests in a class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Request a unique temporary directory for functional tests . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Continue reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Usage and Invocations 9
2.1 Calling pytest through python -m pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Possible exit codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Getting help on version, option names, environment variables . . . . . . . . . . . . . . . . . . . . . 10
2.4 Stopping after the first (or N) failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Specifying tests / selecting tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Modifying Python traceback printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Detailed summary report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Dropping to PDB (Python Debugger) on failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Dropping to PDB (Python Debugger) at the start of a test . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Setting breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.11 Using the builtin breakpoint function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.12 Profiling test execution duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.13 Fault Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.14 Warning about unraisable exceptions and unhandled thread exceptions . . . . . . . . . . . . . . . . . 16
2.15 Creating JUnitXML format files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.16 Creating resultlog format files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.17 Sending test report to online pastebin service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.18 Early loading plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.19 Disabling plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.20 Calling pytest from Python code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Using pytest with an existing test suite 23
3.1 Running an existing test suite with pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 The writing and reporting of assertions in tests 25
4.1 Asserting with the assert statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Assertions about expected exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Assertions about expected warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Making use of context-sensitive comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Defining your own explanation for failed assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

i



4.6 Assertion introspection details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 pytest fixtures: explicit, modular, scalable 31
5.1 What fixtures are . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 “Requesting” fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Autouse fixtures (fixtures you don’t have to request) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Scope: sharing fixtures across classes, modules, packages or session . . . . . . . . . . . . . . . . . . 39
5.5 Fixture errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Teardown/Cleanup (AKA Fixture finalization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 Safe teardowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8 Fixture availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.9 Sharing test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.10 Fixture instantiation order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.11 Running multiple assert statements safely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.12 Fixtures can introspect the requesting test context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.13 Using markers to pass data to fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.14 Factories as fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.15 Parametrizing fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.16 Using marks with parametrized fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.17 Modularity: using fixtures from a fixture function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.18 Automatic grouping of tests by fixture instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.19 Use fixtures in classes and modules with usefixtures . . . . . . . . . . . . . . . . . . . . . . . 67
5.20 Overriding fixtures on various levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.21 Using fixtures from other projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Marking test functions with attributes 73
6.1 Registering marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Raising errors on unknown marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Monkeypatching/mocking modules and environments 75
7.1 Simple example: monkeypatching functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Monkeypatching returned objects: building mock classes . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3 Global patch example: preventing “requests” from remote operations . . . . . . . . . . . . . . . . . 78
7.4 Monkeypatching environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.5 Monkeypatching dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.6 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Temporary directories and files 83
8.1 The tmp_path fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 The tmp_path_factory fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3 The ‘tmpdir’ fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.4 The ‘tmpdir_factory’ fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.5 The default base temporary directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 Capturing of the stdout/stderr output 87
9.1 Default stdout/stderr/stdin capturing behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 Setting capturing methods or disabling capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.3 Using print statements for debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.4 Accessing captured output from a test function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10 Warnings Capture 91
10.1 @pytest.mark.filterwarnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.2 Disabling warnings summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.3 Disabling warning capture entirely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.4 DeprecationWarning and PendingDeprecationWarning . . . . . . . . . . . . . . . . . . . . . . . . . 93

ii



10.5 Ensuring code triggers a deprecation warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.6 Asserting warnings with the warns function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.7 Recording warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.8 Custom failure messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.9 Internal pytest warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

11 Doctest integration for modules and test files 97
11.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.2 Using ‘doctest’ options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.3 Continue on failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.4 Output format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.5 pytest-specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.6 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

12 Skip and xfail: dealing with tests that cannot succeed 103
12.1 Skipping test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
12.2 XFail: mark test functions as expected to fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
12.3 Skip/xfail with parametrize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

13 Parametrizing fixtures and test functions 111
13.1 @pytest.mark.parametrize: parametrizing test functions . . . . . . . . . . . . . . . . . . . 111
13.2 Basic pytest_generate_tests example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
13.3 More examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

14 Cache: working with cross-testrun state 115
14.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
14.2 Rerunning only failures or failures first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
14.3 Behavior when no tests failed in the last run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
14.4 The new config.cache object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
14.5 Inspecting Cache content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
14.6 Clearing Cache content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
14.7 Stepwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

15 unittest.TestCase Support 123
15.1 Benefits out of the box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
15.2 pytest features in unittest.TestCase subclasses . . . . . . . . . . . . . . . . . . . . . . . . . 124
15.3 Mixing pytest fixtures into unittest.TestCase subclasses using marks . . . . . . . . . . . . . 124
15.4 Using autouse fixtures and accessing other fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

16 Running tests written for nose 127
16.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
16.2 Supported nose Idioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
16.3 Unsupported idioms / known issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
16.4 Migrating from nose to pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

17 classic xunit-style setup 129
17.1 Module level setup/teardown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
17.2 Class level setup/teardown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
17.3 Method and function level setup/teardown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

18 Installing and Using plugins 131
18.1 Requiring/Loading plugins in a test module or conftest file . . . . . . . . . . . . . . . . . . . . . . . 132
18.2 Finding out which plugins are active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
18.3 Deactivating / unregistering a plugin by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

iii



19 Writing plugins 133
19.1 Plugin discovery order at tool startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
19.2 conftest.py: local per-directory plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
19.3 Writing your own plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
19.4 Making your plugin installable by others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
19.5 Assertion Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
19.6 Requiring/Loading plugins in a test module or conftest file . . . . . . . . . . . . . . . . . . . . . . . 136
19.7 Accessing another plugin by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
19.8 Registering custom markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
19.9 Testing plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

20 Writing hook functions 141
20.1 hook function validation and execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
20.2 firstresult: stop at first non-None result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
20.3 hookwrapper: executing around other hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
20.4 Hook function ordering / call example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
20.5 Declaring new hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
20.6 Using hooks in pytest_addoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
20.7 Optionally using hooks from 3rd party plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

21 Logging 147
21.1 caplog fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
21.2 Live Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
21.3 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
21.4 Incompatible changes in pytest 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

22 API Reference 151
22.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
22.2 Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
22.3 Fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
22.4 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
22.5 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
22.6 Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
22.7 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
22.8 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
22.9 Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
22.10 Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
22.11 Command-line Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

23 Good Integration Practices 229
23.1 Install package with pip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
23.2 Conventions for Python test discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
23.3 Choosing a test layout / import rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
23.4 tox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

24 Flaky tests 233
24.1 Why flaky tests are a problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
24.2 Potential root causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
24.3 Pytest features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
24.4 Other general strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
24.5 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
24.6 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

25 pytest import mechanisms and sys.path/PYTHONPATH 237
25.1 Import modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

iv



25.2 prepend and append import modes scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
25.3 Invoking pytest versus python -m pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

26 Configuration 241
26.1 Command line options and configuration file settings . . . . . . . . . . . . . . . . . . . . . . . . . . 241
26.2 Configuration file formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
26.3 Initialization: determining rootdir and configfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
26.4 Builtin configuration file options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

27 Examples and customization tricks 245
27.1 Demo of Python failure reports with pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
27.2 Basic patterns and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
27.3 Parametrizing tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
27.4 Working with custom markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
27.5 A session-fixture which can look at all collected tests . . . . . . . . . . . . . . . . . . . . . . . . . . 298
27.6 Changing standard (Python) test discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
27.7 Working with non-python tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

28 Setting up bash completion 307

29 Backwards Compatibility Policy 309

30 History 311
30.1 Focus primary on smooth transition - stance (pre 6.0) . . . . . . . . . . . . . . . . . . . . . . . . . . 311

31 Deprecations and Removals 313
31.1 Deprecated Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
31.2 Removed Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

32 Python 2.7 and 3.4 support 325
32.1 What this means for general users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
32.2 Maintenance of 4.6.X versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

33 Contribution getting started 327
33.1 Feature requests and feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
33.2 Report bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
33.3 Fix bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
33.4 Implement features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
33.5 Write documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
33.6 Submitting Plugins to pytest-dev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
33.7 Preparing Pull Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
33.8 Joining the Development Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
33.9 Backporting bug fixes for the next patch release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
33.10 Handling stale issues/PRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
33.11 Closing Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

34 Development Guide 337

35 Sponsor 339
35.1 OpenCollective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

36 pytest for enterprise 341

37 License 343

38 Contact channels 345

v



39 Historical Notes 347
39.1 Marker revamp and iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
39.2 cache plugin integrated into the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
39.3 funcargs and pytest_funcarg__ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
39.4 @pytest.yield_fixture decorator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
39.5 [pytest] header in setup.cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
39.6 Applying marks to @pytest.mark.parametrize parameters . . . . . . . . . . . . . . . . . . 349
39.7 @pytest.mark.parametrize argument names as a tuple . . . . . . . . . . . . . . . . . . . . 350
39.8 setup: is now an “autouse fixture” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
39.9 Conditions as strings instead of booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
39.10 pytest.set_trace() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
39.11 “compat” properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

40 Talks and Tutorials 353
40.1 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
40.2 Talks and blog postings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

41 Project examples 357
41.1 Some organisations using pytest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Index 359

vi



pytest Documentation, Release 6.2

Download latest version as PDF

CONTENTS 1

https://media.readthedocs.org/pdf/pytest/latest/pytest.pdf


pytest Documentation, Release 6.2

2 CONTENTS



CHAPTER

ONE

INSTALLATION AND GETTING STARTED

Pythons: Python 3.6, 3.7, 3.8, 3.9, PyPy3

Platforms: Linux and Windows

PyPI package name: pytest

Documentation as PDF: download latest

pytest is a framework that makes building simple and scalable tests easy. Tests are expressive and readable—no
boilerplate code required. Get started in minutes with a small unit test or complex functional test for your application
or library.

1.1 Install pytest

1. Run the following command in your command line:

pip install -U pytest

2. Check that you installed the correct version:

$ pytest --version
pytest 6.2.5

1.2 Create your first test

Create a simple test function with just four lines of code:

# content of test_sample.py
def func(x):

return x + 1

def test_answer():
assert func(3) == 5

That’s it. You can now execute the test function:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y

(continues on next page)

3

https://pypi.org/project/pytest/
https://media.readthedocs.org/pdf/pytest/latest/pytest.pdf


pytest Documentation, Release 6.2

(continued from previous page)

cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_sample.py F [100%]

================================= FAILURES =================================
_______________________________ test_answer ________________________________

def test_answer():
> assert func(3) == 5
E assert 4 == 5
E + where 4 = func(3)

test_sample.py:6: AssertionError
========================= short test summary info ==========================
FAILED test_sample.py::test_answer - assert 4 == 5
============================ 1 failed in 0.12s =============================

The [100%] refers to the overall progress of running all test cases. After it finishes, pytest then shows a failure report
because func(3) does not return 5.

Note: You can use the assert statement to verify test expectations. pytest’s Advanced assertion introspection will
intelligently report intermediate values of the assert expression so you can avoid the many names of JUnit legacy
methods.

1.3 Run multiple tests

pytest will run all files of the form test_*.py or *_test.py in the current directory and its subdirectories. More
generally, it follows standard test discovery rules.

1.4 Assert that a certain exception is raised

Use the raises helper to assert that some code raises an exception:

# content of test_sysexit.py
import pytest

def f():
raise SystemExit(1)

def test_mytest():
with pytest.raises(SystemExit):

f()

Execute the test function with “quiet” reporting mode:

4 Chapter 1. Installation and Getting Started

http://docs.python.org/reference/simple_stmts.html#the-assert-statement
http://docs.python.org/library/unittest.html#test-cases
http://docs.python.org/library/unittest.html#test-cases


pytest Documentation, Release 6.2

$ pytest -q test_sysexit.py
. [100%]
1 passed in 0.12s

Note: The -q/--quiet flag keeps the output brief in this and following examples.

1.5 Group multiple tests in a class

Once you develop multiple tests, you may want to group them into a class. pytest makes it easy to create a class
containing more than one test:

# content of test_class.py
class TestClass:

def test_one(self):
x = "this"
assert "h" in x

def test_two(self):
x = "hello"
assert hasattr(x, "check")

pytest discovers all tests following its Conventions for Python test discovery, so it finds both test_ prefixed
functions. There is no need to subclass anything, but make sure to prefix your class with Test otherwise the class
will be skipped. We can simply run the module by passing its filename:

$ pytest -q test_class.py
.F [100%]
================================= FAILURES =================================
____________________________ TestClass.test_two ____________________________

self = <test_class.TestClass object at 0xdeadbeef>

def test_two(self):
x = "hello"

> assert hasattr(x, "check")
E AssertionError: assert False
E + where False = hasattr('hello', 'check')

test_class.py:8: AssertionError
========================= short test summary info ==========================
FAILED test_class.py::TestClass::test_two - AssertionError: assert False
1 failed, 1 passed in 0.12s

The first test passed and the second failed. You can easily see the intermediate values in the assertion to help you
understand the reason for the failure.

Grouping tests in classes can be beneficial for the following reasons:

• Test organization

• Sharing fixtures for tests only in that particular class

• Applying marks at the class level and having them implicitly apply to all tests

1.5. Group multiple tests in a class 5



pytest Documentation, Release 6.2

Something to be aware of when grouping tests inside classes is that each test has a unique instance of the class.
Having each test share the same class instance would be very detrimental to test isolation and would promote poor test
practices. This is outlined below:

# content of test_class_demo.py
class TestClassDemoInstance:

def test_one(self):
assert 0

def test_two(self):
assert 0

$ pytest -k TestClassDemoInstance -q
FF [100%]
================================= FAILURES =================================
______________________ TestClassDemoInstance.test_one ______________________

self = <test_class_demo.TestClassDemoInstance object at 0xdeadbeef>

def test_one(self):
> assert 0
E assert 0

test_class_demo.py:3: AssertionError
______________________ TestClassDemoInstance.test_two ______________________

self = <test_class_demo.TestClassDemoInstance object at 0xdeadbeef>

def test_two(self):
> assert 0
E assert 0

test_class_demo.py:6: AssertionError
========================= short test summary info ==========================
FAILED test_class_demo.py::TestClassDemoInstance::test_one - assert 0
FAILED test_class_demo.py::TestClassDemoInstance::test_two - assert 0
2 failed in 0.12s

1.6 Request a unique temporary directory for functional tests

pytest provides Builtin fixtures/function arguments to request arbitrary resources, like a unique temporary directory:

# content of test_tmpdir.py
def test_needsfiles(tmpdir):

print(tmpdir)
assert 0

List the name tmpdir in the test function signature and pytest will lookup and call a fixture factory to create the
resource before performing the test function call. Before the test runs, pytest creates a unique-per-test-invocation
temporary directory:

$ pytest -q test_tmpdir.py
F [100%]
================================= FAILURES =================================
_____________________________ test_needsfiles ______________________________

(continues on next page)

6 Chapter 1. Installation and Getting Started

https://docs.pytest.org/en/stable/builtin.html


pytest Documentation, Release 6.2

(continued from previous page)

tmpdir = local('PYTEST_TMPDIR/test_needsfiles0')

def test_needsfiles(tmpdir):
print(tmpdir)

> assert 0
E assert 0

test_tmpdir.py:3: AssertionError
--------------------------- Captured stdout call ---------------------------
PYTEST_TMPDIR/test_needsfiles0
========================= short test summary info ==========================
FAILED test_tmpdir.py::test_needsfiles - assert 0
1 failed in 0.12s

More info on tmpdir handling is available at Temporary directories and files.

Find out what kind of builtin pytest fixtures exist with the command:

pytest --fixtures # shows builtin and custom fixtures

Note that this command omits fixtures with leading _ unless the -v option is added.

1.7 Continue reading

Check out additional pytest resources to help you customize tests for your unique workflow:

• “Calling pytest through python -m pytest” for command line invocation examples

• “Using pytest with an existing test suite” for working with pre-existing tests

• “Marking test functions with attributes” for information on the pytest.mark mechanism

• “pytest fixtures: explicit, modular, scalable” for providing a functional baseline to your tests

• “Writing plugins” for managing and writing plugins

• “Good Integration Practices” for virtualenv and test layouts

1.7. Continue reading 7



pytest Documentation, Release 6.2

8 Chapter 1. Installation and Getting Started



CHAPTER

TWO

USAGE AND INVOCATIONS

2.1 Calling pytest through python -m pytest

You can invoke testing through the Python interpreter from the command line:

python -m pytest [...]

This is almost equivalent to invoking the command line script pytest [...] directly, except that calling via
python will also add the current directory to sys.path.

2.2 Possible exit codes

Running pytest can result in six different exit codes:

Exit code 0 All tests were collected and passed successfully

Exit code 1 Tests were collected and run but some of the tests failed

Exit code 2 Test execution was interrupted by the user

Exit code 3 Internal error happened while executing tests

Exit code 4 pytest command line usage error

Exit code 5 No tests were collected

They are represented by the pytest.ExitCode enum. The exit codes being a part of the public API can be
imported and accessed directly using:

from pytest import ExitCode

Note: If you would like to customize the exit code in some scenarios, specially when no tests are collected, consider
using the pytest-custom_exit_code plugin.

9

https://github.com/yashtodi94/pytest-custom_exit_code


pytest Documentation, Release 6.2

2.3 Getting help on version, option names, environment variables

pytest --version # shows where pytest was imported from
pytest --fixtures # show available builtin function arguments
pytest -h | --help # show help on command line and config file options

The full command-line flags can be found in the reference.

2.4 Stopping after the first (or N) failures

To stop the testing process after the first (N) failures:

pytest -x # stop after first failure
pytest --maxfail=2 # stop after two failures

2.5 Specifying tests / selecting tests

Pytest supports several ways to run and select tests from the command-line.

Run tests in a module

pytest test_mod.py

Run tests in a directory

pytest testing/

Run tests by keyword expressions

pytest -k "MyClass and not method"

This will run tests which contain names that match the given string expression (case-insensitive), which can in-
clude Python operators that use filenames, class names and function names as variables. The example above will
run TestMyClass.test_something but not TestMyClass.test_method_simple.

Run tests by node ids

Each collected test is assigned a unique nodeid which consist of the module filename followed by specifiers like
class names, function names and parameters from parametrization, separated by :: characters.

To run a specific test within a module:

pytest test_mod.py::test_func

Another example specifying a test method in the command line:

pytest test_mod.py::TestClass::test_method

Run tests by marker expressions

pytest -m slow

10 Chapter 2. Usage and Invocations



pytest Documentation, Release 6.2

Will run all tests which are decorated with the @pytest.mark.slow decorator.

For more information see marks.

Run tests from packages

pytest --pyargs pkg.testing

This will import pkg.testing and use its filesystem location to find and run tests from.

2.6 Modifying Python traceback printing

Examples for modifying traceback printing:

pytest --showlocals # show local variables in tracebacks
pytest -l # show local variables (shortcut)

pytest --tb=auto # (default) 'long' tracebacks for the first and last
# entry, but 'short' style for the other entries

pytest --tb=long # exhaustive, informative traceback formatting
pytest --tb=short # shorter traceback format
pytest --tb=line # only one line per failure
pytest --tb=native # Python standard library formatting
pytest --tb=no # no traceback at all

The --full-trace causes very long traces to be printed on error (longer than --tb=long). It also ensures that
a stack trace is printed on KeyboardInterrupt (Ctrl+C). This is very useful if the tests are taking too long and you
interrupt them with Ctrl+C to find out where the tests are hanging. By default no output will be shown (because
KeyboardInterrupt is caught by pytest). By using this option you make sure a trace is shown.

2.7 Detailed summary report

The -r flag can be used to display a “short test summary info” at the end of the test session, making it easy in large
test suites to get a clear picture of all failures, skips, xfails, etc.

It defaults to fE to list failures and errors.

Example:

# content of test_example.py
import pytest

@pytest.fixture
def error_fixture():

assert 0

def test_ok():
print("ok")

def test_fail():
assert 0

(continues on next page)

2.6. Modifying Python traceback printing 11



pytest Documentation, Release 6.2

(continued from previous page)

def test_error(error_fixture):
pass

def test_skip():
pytest.skip("skipping this test")

def test_xfail():
pytest.xfail("xfailing this test")

@pytest.mark.xfail(reason="always xfail")
def test_xpass():

pass

$ pytest -ra
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 6 items

test_example.py .FEsxX [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

@pytest.fixture
def error_fixture():

> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

def test_fail():
> assert 0
E assert 0

test_example.py:14: AssertionError
========================= short test summary info ==========================
SKIPPED [1] test_example.py:22: skipping this test
XFAIL test_example.py::test_xfail

reason: xfailing this test
XPASS test_example.py::test_xpass always xfail
ERROR test_example.py::test_error - assert 0
FAILED test_example.py::test_fail - assert 0
== 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.12s ===

The -r options accepts a number of characters after it, with a used above meaning “all except passes”.

Here is the full list of available characters that can be used:

• f - failed

12 Chapter 2. Usage and Invocations



pytest Documentation, Release 6.2

• E - error

• s - skipped

• x - xfailed

• X - xpassed

• p - passed

• P - passed with output

Special characters for (de)selection of groups:

• a - all except pP

• A - all

• N - none, this can be used to display nothing (since fE is the default)

More than one character can be used, so for example to only see failed and skipped tests, you can execute:

$ pytest -rfs
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 6 items

test_example.py .FEsxX [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

@pytest.fixture
def error_fixture():

> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

def test_fail():
> assert 0
E assert 0

test_example.py:14: AssertionError
========================= short test summary info ==========================
FAILED test_example.py::test_fail - assert 0
SKIPPED [1] test_example.py:22: skipping this test
== 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.12s ===

Using p lists the passing tests, whilst P adds an extra section “PASSES” with those tests that passed but had captured
output:

$ pytest -rpP
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR

(continues on next page)

2.7. Detailed summary report 13



pytest Documentation, Release 6.2

(continued from previous page)

collected 6 items

test_example.py .FEsxX [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

@pytest.fixture
def error_fixture():

> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

def test_fail():
> assert 0
E assert 0

test_example.py:14: AssertionError
================================== PASSES ==================================
_________________________________ test_ok __________________________________
--------------------------- Captured stdout call ---------------------------
ok
========================= short test summary info ==========================
PASSED test_example.py::test_ok
== 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.12s ===

2.8 Dropping to PDB (Python Debugger) on failures

Python comes with a builtin Python debugger called PDB. pytest allows one to drop into the PDB prompt via a
command line option:

pytest --pdb

This will invoke the Python debugger on every failure (or KeyboardInterrupt). Often you might only want to do this
for the first failing test to understand a certain failure situation:

pytest -x --pdb # drop to PDB on first failure, then end test session
pytest --pdb --maxfail=3 # drop to PDB for first three failures

Note that on any failure the exception information is stored on sys.last_value, sys.last_type and sys.
last_traceback. In interactive use, this allows one to drop into postmortem debugging with any debug tool. One
can also manually access the exception information, for example:

>>> import sys
>>> sys.last_traceback.tb_lineno
42
>>> sys.last_value
AssertionError('assert result == "ok"',)

14 Chapter 2. Usage and Invocations

http://docs.python.org/library/pdb.html
http://docs.python.org/library/pdb.html


pytest Documentation, Release 6.2

2.9 Dropping to PDB (Python Debugger) at the start of a test

pytest allows one to drop into the PDB prompt immediately at the start of each test via a command line option:

pytest --trace

This will invoke the Python debugger at the start of every test.

2.10 Setting breakpoints

To set a breakpoint in your code use the native Python import pdb;pdb.set_trace() call in your code and
pytest automatically disables its output capture for that test:

• Output capture in other tests is not affected.

• Any prior test output that has already been captured and will be processed as such.

• Output capture gets resumed when ending the debugger session (via the continue command).

2.11 Using the builtin breakpoint function

Python 3.7 introduces a builtin breakpoint() function. Pytest supports the use of breakpoint() with the
following behaviours:

• When breakpoint() is called and PYTHONBREAKPOINT is set to the default value, pytest will use the
custom internal PDB trace UI instead of the system default Pdb.

• When tests are complete, the system will default back to the system Pdb trace UI.

• With --pdb passed to pytest, the custom internal Pdb trace UI is used with both breakpoint() and failed
tests/unhandled exceptions.

• --pdbcls can be used to specify a custom debugger class.

2.12 Profiling test execution duration

Changed in version 6.0.

To get a list of the slowest 10 test durations over 1.0s long:

pytest --durations=10 --durations-min=1.0

By default, pytest will not show test durations that are too small (<0.005s) unless -vv is passed on the command-line.

2.9. Dropping to PDB (Python Debugger) at the start of a test 15

http://docs.python.org/library/pdb.html


pytest Documentation, Release 6.2

2.13 Fault Handler

New in version 5.0.

The faulthandler standard module can be used to dump Python tracebacks on a segfault or after a timeout.

The module is automatically enabled for pytest runs, unless the -p no:faulthandler is given on the command-
line.

Also the faulthandler_timeout=X configuration option can be used to dump the traceback of all threads if a
test takes longer than X seconds to finish (not available on Windows).

Note: This functionality has been integrated from the external pytest-faulthandler plugin, with two small differences:

• To disable it, use -p no:faulthandler instead of --no-faulthandler: the former can be used with
any plugin, so it saves one option.

• The --faulthandler-timeout command-line option has become the faulthandler_timeout con-
figuration option. It can still be configured from the command-line using -o faulthandler_timeout=X.

2.14 Warning about unraisable exceptions and unhandled thread ex-
ceptions

New in version 6.2.

Note: These features only work on Python>=3.8.

Unhandled exceptions are exceptions that are raised in a situation in which they cannot propagate to a caller. The most
common case is an exception raised in a __del__ implementation.

Unhandled thread exceptions are exceptions raised in a Thread but not handled, causing the thread to terminate
uncleanly.

Both types of exceptions are normally considered bugs, but may go unnoticed because they don’t cause the program
itself to crash. Pytest detects these conditions and issues a warning that is visible in the test run summary.

The plugins are automatically enabled for pytest runs, unless the -p no:unraisableexception (for unraisable
exceptions) and -p no:threadexception (for thread exceptions) options are given on the command-line.

The warnings may be silenced selectivly using the pytest.mark.filterwarnings mark. The
warning categories are pytest.PytestUnraisableExceptionWarning and pytest.
PytestUnhandledThreadExceptionWarning.

16 Chapter 2. Usage and Invocations

https://docs.python.org/3/library/faulthandler.html
https://github.com/pytest-dev/pytest-faulthandler
https://docs.python.org/3/reference/datamodel.html#object.__del__
https://docs.python.org/3/library/threading.html#threading.Thread


pytest Documentation, Release 6.2

2.15 Creating JUnitXML format files

To create result files which can be read by Jenkins or other Continuous integration servers, use this invocation:

pytest --junitxml=path

to create an XML file at path.

To set the name of the root test suite xml item, you can configure the junit_suite_name option in your config
file:

[pytest]
junit_suite_name = my_suite

New in version 4.0.

JUnit XML specification seems to indicate that "time" attribute should report total test execution times, includ-
ing setup and teardown (1, 2). It is the default pytest behavior. To report just call durations instead, configure the
junit_duration_report option like this:

[pytest]
junit_duration_report = call

2.15.1 record_property

If you want to log additional information for a test, you can use the record_property fixture:

def test_function(record_property):
record_property("example_key", 1)
assert True

This will add an extra property example_key="1" to the generated testcase tag:

<testcase classname="test_function" file="test_function.py" line="0" name="test_
→˓function" time="0.0009">
<properties>
<property name="example_key" value="1" />

</properties>
</testcase>

Alternatively, you can integrate this functionality with custom markers:

# content of conftest.py

def pytest_collection_modifyitems(session, config, items):
for item in items:

for marker in item.iter_markers(name="test_id"):
test_id = marker.args[0]
item.user_properties.append(("test_id", test_id))

And in your tests:

# content of test_function.py
import pytest

(continues on next page)

2.15. Creating JUnitXML format files 17

http://jenkins-ci.org/
http://windyroad.com.au/dl/Open%20Source/JUnit.xsd
https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_14.1.0/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_useresults_junit.html


pytest Documentation, Release 6.2

(continued from previous page)

@pytest.mark.test_id(1501)
def test_function():

assert True

Will result in:

<testcase classname="test_function" file="test_function.py" line="0" name="test_
→˓function" time="0.0009">
<properties>
<property name="test_id" value="1501" />

</properties>
</testcase>

Warning: Please note that using this feature will break schema verifications for the latest JUnitXML schema.
This might be a problem when used with some CI servers.

2.15.2 record_xml_attribute

To add an additional xml attribute to a testcase element, you can use record_xml_attribute fixture. This can
also be used to override existing values:

def test_function(record_xml_attribute):
record_xml_attribute("assertions", "REQ-1234")
record_xml_attribute("classname", "custom_classname")
print("hello world")
assert True

Unlike record_property, this will not add a new child element. Instead, this will add an attribute
assertions="REQ-1234" inside the generated testcase tag and override the default classname with
"classname=custom_classname":

<testcase classname="custom_classname" file="test_function.py" line="0" name="test_
→˓function" time="0.003" assertions="REQ-1234">

<system-out>
hello world

</system-out>
</testcase>

Warning: record_xml_attribute is an experimental feature, and its interface might be replaced by some-
thing more powerful and general in future versions. The functionality per-se will be kept, however.

Using this over record_xml_property can help when using ci tools to parse the xml report. However, some
parsers are quite strict about the elements and attributes that are allowed. Many tools use an xsd schema (like the
example below) to validate incoming xml. Make sure you are using attribute names that are allowed by your parser.

Below is the Scheme used by Jenkins to validate the XML report:
<xs:element name="testcase">

<xs:complexType>
<xs:sequence>

<xs:element ref="skipped" minOccurs="0" maxOccurs="1"/>
<xs:element ref="error" minOccurs="0" maxOccurs="unbounded"/>

18 Chapter 2. Usage and Invocations



pytest Documentation, Release 6.2

<xs:element ref="failure" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="system-out" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="system-err" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="assertions" type="xs:string" use="optional"/>
<xs:attribute name="time" type="xs:string" use="optional"/>
<xs:attribute name="classname" type="xs:string" use="optional"/>
<xs:attribute name="status" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

Warning: Please note that using this feature will break schema verifications for the latest JUnitXML schema.
This might be a problem when used with some CI servers.

2.15.3 record_testsuite_property

New in version 4.5.

If you want to add a properties node at the test-suite level, which may contains properties that are relevant to all tests,
you can use the record_testsuite_property session-scoped fixture:

The record_testsuite_property session-scoped fixture can be used to add properties relevant to all tests.

import pytest

@pytest.fixture(scope="session", autouse=True)
def log_global_env_facts(record_testsuite_property):

record_testsuite_property("ARCH", "PPC")
record_testsuite_property("STORAGE_TYPE", "CEPH")

class TestMe:
def test_foo(self):

assert True

The fixture is a callable which receives name and value of a <property> tag added at the test-suite level of the
generated xml:

<testsuite errors="0" failures="0" name="pytest" skipped="0" tests="1" time="0.006">
<properties>
<property name="ARCH" value="PPC"/>
<property name="STORAGE_TYPE" value="CEPH"/>

</properties>
<testcase classname="test_me.TestMe" file="test_me.py" line="16" name="test_foo"

→˓time="0.000243663787842"/>
</testsuite>

name must be a string, value will be converted to a string and properly xml-escaped.

The generated XML is compatible with the latest xunit standard, contrary to record_property and
record_xml_attribute.

2.15. Creating JUnitXML format files 19



pytest Documentation, Release 6.2

2.16 Creating resultlog format files

To create plain-text machine-readable result files you can issue:

pytest --resultlog=path

and look at the content at the path location. Such files are used e.g. by the PyPy-test web page to show test results
over several revisions.

Warning: This option is rarely used and is scheduled for removal in pytest 6.0.

If you use this option, consider using the new pytest-reportlog plugin instead.

See the deprecation docs for more information.

2.17 Sending test report to online pastebin service

Creating a URL for each test failure:

pytest --pastebin=failed

This will submit test run information to a remote Paste service and provide a URL for each failure. You may select
tests as usual or add for example -x if you only want to send one particular failure.

Creating a URL for a whole test session log:

pytest --pastebin=all

Currently only pasting to the http://bpaste.net service is implemented.

Changed in version 5.2.

If creating the URL fails for any reason, a warning is generated instead of failing the entire test suite.

2.18 Early loading plugins

You can early-load plugins (internal and external) explicitly in the command-line with the -p option:

pytest -p mypluginmodule

The option receives a name parameter, which can be:

• A full module dotted name, for example myproject.plugins. This dotted name must be importable.

• The entry-point name of a plugin. This is the name passed to setuptools when the plugin is registered. For
example to early-load the pytest-cov plugin you can use:

pytest -p pytest_cov

20 Chapter 2. Usage and Invocations

http://buildbot.pypy.org/summary
https://github.com/pytest-dev/pytest-reportlog
https://docs.pytest.org/en/stable/deprecations.html#result-log-result-log
http://bpaste.net
https://pypi.org/project/pytest-cov/


pytest Documentation, Release 6.2

2.19 Disabling plugins

To disable loading specific plugins at invocation time, use the -p option together with the prefix no:.

Example: to disable loading the plugin doctest, which is responsible for executing doctest tests from text files,
invoke pytest like this:

pytest -p no:doctest

2.20 Calling pytest from Python code

You can invoke pytest from Python code directly:

pytest.main()

this acts as if you would call “pytest” from the command line. It will not raise SystemExit but return the exitcode
instead. You can pass in options and arguments:

pytest.main(["-x", "mytestdir"])

You can specify additional plugins to pytest.main:

# content of myinvoke.py
import pytest

class MyPlugin:
def pytest_sessionfinish(self):

print("*** test run reporting finishing")

pytest.main(["-qq"], plugins=[MyPlugin()])

Running it will show that MyPlugin was added and its hook was invoked:

$ python myinvoke.py
.FEsxX. [100%]*** test
→˓run reporting finishing

================================== ERRORS ==================================
_______________________ ERROR at setup of test_error _______________________

@pytest.fixture
def error_fixture():

> assert 0
E assert 0

test_example.py:6: AssertionError
================================= FAILURES =================================
________________________________ test_fail _________________________________

def test_fail():
> assert 0
E assert 0

(continues on next page)

2.19. Disabling plugins 21



pytest Documentation, Release 6.2

(continued from previous page)

test_example.py:14: AssertionError
========================= short test summary info ==========================
FAILED test_example.py::test_fail - assert 0
ERROR test_example.py::test_error - assert 0

Note: Calling pytest.main() will result in importing your tests and any modules that they import. Due to the
caching mechanism of python’s import system, making subsequent calls to pytest.main() from the same process
will not reflect changes to those files between the calls. For this reason, making multiple calls to pytest.main()
from the same process (in order to re-run tests, for example) is not recommended.

22 Chapter 2. Usage and Invocations



CHAPTER

THREE

USING PYTEST WITH AN EXISTING TEST SUITE

Pytest can be used with most existing test suites, but its behavior differs from other test runners such as nose or
Python’s default unittest framework.

Before using this section you will want to install pytest.

3.1 Running an existing test suite with pytest

Say you want to contribute to an existing repository somewhere. After pulling the code into your development space
using some flavor of version control and (optionally) setting up a virtualenv you will want to run:

cd <repository>
pip install -e . # Environment dependent alternatives include

# 'python setup.py develop' and 'conda develop'

in your project root. This will set up a symlink to your code in site-packages, allowing you to edit your code while
your tests run against it as if it were installed.

Setting up your project in development mode lets you avoid having to reinstall every time you want to run your tests,
and is less brittle than mucking about with sys.path to point your tests at local code.

Also consider using tox.

23



pytest Documentation, Release 6.2

24 Chapter 3. Using pytest with an existing test suite



CHAPTER

FOUR

THE WRITING AND REPORTING OF ASSERTIONS IN TESTS

4.1 Asserting with the assert statement

pytest allows you to use the standard python assert for verifying expectations and values in Python tests. For
example, you can write the following:

# content of test_assert1.py
def f():

return 3

def test_function():
assert f() == 4

to assert that your function returns a certain value. If this assertion fails you will see the return value of the function
call:

$ pytest test_assert1.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_assert1.py F [100%]

================================= FAILURES =================================
______________________________ test_function _______________________________

def test_function():
> assert f() == 4
E assert 3 == 4
E + where 3 = f()

test_assert1.py:6: AssertionError
========================= short test summary info ==========================
FAILED test_assert1.py::test_function - assert 3 == 4
============================ 1 failed in 0.12s =============================

pytest has support for showing the values of the most common subexpressions including calls, attributes, compar-
isons, and binary and unary operators. (See Demo of Python failure reports with pytest). This allows you to use the
idiomatic python constructs without boilerplate code while not losing introspection information.

However, if you specify a message with the assertion like this:

25



pytest Documentation, Release 6.2

assert a % 2 == 0, "value was odd, should be even"

then no assertion introspection takes places at all and the message will be simply shown in the traceback.

See Assertion introspection details for more information on assertion introspection.

4.2 Assertions about expected exceptions

In order to write assertions about raised exceptions, you can use pytest.raises() as a context manager like this:

import pytest

def test_zero_division():
with pytest.raises(ZeroDivisionError):

1 / 0

and if you need to have access to the actual exception info you may use:

def test_recursion_depth():
with pytest.raises(RuntimeError) as excinfo:

def f():
f()

f()
assert "maximum recursion" in str(excinfo.value)

excinfo is an ExceptionInfo instance, which is a wrapper around the actual exception raised. The main at-
tributes of interest are .type, .value and .traceback.

You can pass a match keyword parameter to the context-manager to test that a regular expression matches on the string
representation of an exception (similar to the TestCase.assertRaisesRegexp method from unittest):

import pytest

def myfunc():
raise ValueError("Exception 123 raised")

def test_match():
with pytest.raises(ValueError, match=r".* 123 .*"):

myfunc()

The regexp parameter of the match method is matched with the re.search function, so in the above example
match='123' would have worked as well.

There’s an alternate form of the pytest.raises() function where you pass a function that will be executed with
the given *args and **kwargs and assert that the given exception is raised:

pytest.raises(ExpectedException, func, *args, **kwargs)

The reporter will provide you with helpful output in case of failures such as no exception or wrong exception.

Note that it is also possible to specify a “raises” argument to pytest.mark.xfail, which checks that the test is
failing in a more specific way than just having any exception raised:

26 Chapter 4. The writing and reporting of assertions in tests



pytest Documentation, Release 6.2

@pytest.mark.xfail(raises=IndexError)
def test_f():

f()

Using pytest.raises() is likely to be better for cases where you are testing exceptions your own code is delib-
erately raising, whereas using @pytest.mark.xfail with a check function is probably better for something like
documenting unfixed bugs (where the test describes what “should” happen) or bugs in dependencies.

4.3 Assertions about expected warnings

You can check that code raises a particular warning using pytest.warns.

4.4 Making use of context-sensitive comparisons

pytest has rich support for providing context-sensitive information when it encounters comparisons. For example:

# content of test_assert2.py

def test_set_comparison():
set1 = set("1308")
set2 = set("8035")
assert set1 == set2

if you run this module:

$ pytest test_assert2.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_assert2.py F [100%]

================================= FAILURES =================================
___________________________ test_set_comparison ____________________________

def test_set_comparison():
set1 = set("1308")
set2 = set("8035")

> assert set1 == set2
E AssertionError: assert {'0', '1', '3', '8'} == {'0', '3', '5', '8'}
E Extra items in the left set:
E '1'
E Extra items in the right set:
E '5'
E Use -v to get the full diff

test_assert2.py:6: AssertionError
========================= short test summary info ==========================
FAILED test_assert2.py::test_set_comparison - AssertionError: assert {'0'...
============================ 1 failed in 0.12s =============================

4.3. Assertions about expected warnings 27



pytest Documentation, Release 6.2

Special comparisons are done for a number of cases:

• comparing long strings: a context diff is shown

• comparing long sequences: first failing indices

• comparing dicts: different entries

See the reporting demo for many more examples.

4.5 Defining your own explanation for failed assertions

It is possible to add your own detailed explanations by implementing the pytest_assertrepr_compare hook.

pytest_assertrepr_compare(config: Config, op: str, left: object, right: object)→ Optional[List[str]]
Return explanation for comparisons in failing assert expressions.

Return None for no custom explanation, otherwise return a list of strings. The strings will be joined by newlines
but any newlines in a string will be escaped. Note that all but the first line will be indented slightly, the intention
is for the first line to be a summary.

Parameters config (_pytest.config.Config) – The pytest config object.

As an example consider adding the following hook in a conftest.py file which provides an alternative explanation for
Foo objects:

# content of conftest.py
from test_foocompare import Foo

def pytest_assertrepr_compare(op, left, right):
if isinstance(left, Foo) and isinstance(right, Foo) and op == "==":

return [
"Comparing Foo instances:",
" vals: {} != {}".format(left.val, right.val),

]

now, given this test module:

# content of test_foocompare.py
class Foo:

def __init__(self, val):
self.val = val

def __eq__(self, other):
return self.val == other.val

def test_compare():
f1 = Foo(1)
f2 = Foo(2)
assert f1 == f2

you can run the test module and get the custom output defined in the conftest file:

$ pytest -q test_foocompare.py
F [100%]
================================= FAILURES =================================

(continues on next page)

28 Chapter 4. The writing and reporting of assertions in tests

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

(continued from previous page)

_______________________________ test_compare _______________________________

def test_compare():
f1 = Foo(1)
f2 = Foo(2)

> assert f1 == f2
E assert Comparing Foo instances:
E vals: 1 != 2

test_foocompare.py:12: AssertionError
========================= short test summary info ==========================
FAILED test_foocompare.py::test_compare - assert Comparing Foo instances:
1 failed in 0.12s

4.6 Assertion introspection details

Reporting details about a failing assertion is achieved by rewriting assert statements before they are run. Rewritten
assert statements put introspection information into the assertion failure message. pytest only rewrites test modules
directly discovered by its test collection process, so asserts in supporting modules which are not themselves test
modules will not be rewritten.

You can manually enable assertion rewriting for an imported module by calling register_assert_rewrite before you
import it (a good place to do that is in your root conftest.py).

For further information, Benjamin Peterson wrote up Behind the scenes of pytest’s new assertion rewriting.

4.6.1 Assertion rewriting caches files on disk

pytest will write back the rewritten modules to disk for caching. You can disable this behavior (for example to
avoid leaving stale .pyc files around in projects that move files around a lot) by adding this to the top of your
conftest.py file:

import sys

sys.dont_write_bytecode = True

Note that you still get the benefits of assertion introspection, the only change is that the .pyc files won’t be cached
on disk.

Additionally, rewriting will silently skip caching if it cannot write new .pyc files, i.e. in a read-only filesystem or a
zipfile.

4.6.2 Disabling assert rewriting

pytest rewrites test modules on import by using an import hook to write new pyc files. Most of the time this works
transparently. However, if you are working with the import machinery yourself, the import hook may interfere.

If this is the case you have two options:

• Disable rewriting for a specific module by adding the string PYTEST_DONT_REWRITE to its docstring.

• Disable rewriting for all modules by using --assert=plain.

4.6. Assertion introspection details 29

https://docs.pytest.org/en/stable/writing_plugins.html#assertion-rewriting
http://pybites.blogspot.com/2011/07/behind-scenes-of-pytests-new-assertion.html


pytest Documentation, Release 6.2

30 Chapter 4. The writing and reporting of assertions in tests



CHAPTER

FIVE

PYTEST FIXTURES: EXPLICIT, MODULAR, SCALABLE

Software test fixtures initialize test functions. They provide a fixed baseline so that tests execute reliably and produce
consistent, repeatable, results. Initialization may setup services, state, or other operating environments. These are
accessed by test functions through arguments; for each fixture used by a test function there is typically a parameter
(named after the fixture) in the test function’s definition.

pytest fixtures offer dramatic improvements over the classic xUnit style of setup/teardown functions:

• fixtures have explicit names and are activated by declaring their use from test functions, modules, classes or
whole projects.

• fixtures are implemented in a modular manner, as each fixture name triggers a fixture function which can itself
use other fixtures.

• fixture management scales from simple unit to complex functional testing, allowing to parametrize fixtures and
tests according to configuration and component options, or to re-use fixtures across function, class, module or
whole test session scopes.

• teardown logic can be easily, and safely managed, no matter how many fixtures are used, without the need to
carefully handle errors by hand or micromanage the order that cleanup steps are added.

In addition, pytest continues to support classic xunit-style setup. You can mix both styles, moving incrementally from
classic to new style, as you prefer. You can also start out from existing unittest.TestCase style or nose based projects.

Fixtures are defined using the @pytest.fixture decorator, described below. Pytest has useful built-in fixtures, listed here
for reference:

capfd Capture, as text, output to file descriptors 1 and 2.

capfdbinary Capture, as bytes, output to file descriptors 1 and 2.

caplog Control logging and access log entries.

capsys Capture, as text, output to sys.stdout and sys.stderr.

capsysbinary Capture, as bytes, output to sys.stdout and sys.stderr.

cache Store and retrieve values across pytest runs.

doctest_namespace Provide a dict injected into the docstests namespace.

monkeypatch Temporarily modify classes, functions, dictionaries, os.environ, and other objects.

pytestconfig Access to configuration values, pluginmanager and plugin hooks.

record_property Add extra properties to the test.

record_testsuite_property Add extra properties to the test suite.

recwarn Record warnings emitted by test functions.

request Provide information on the executing test function.

31

https://en.wikipedia.org/wiki/Test_fixture#Software


pytest Documentation, Release 6.2

testdir Provide a temporary test directory to aid in running, and testing, pytest plugins.

tmp_path Provide a pathlib.Path object to a temporary directory which is unique to each test
function.

tmp_path_factory Make session-scoped temporary directories and return pathlib.Path ob-
jects.

tmpdir Provide a py.path.local object to a temporary directory which is unique to each test func-
tion; replaced by tmp_path.

tmpdir_factory Make session-scoped temporary directories and return py.path.local objects;
replaced by tmp_path_factory.

5.1 What fixtures are

Before we dive into what fixtures are, let’s first look at what a test is.

In the simplest terms, a test is meant to look at the result of a particular behavior, and make sure that result aligns with
what you would expect. Behavior is not something that can be empirically measured, which is why writing tests can
be challenging.

“Behavior” is the way in which some system acts in response to a particular situation and/or stimuli. But exactly how
or why something is done is not quite as important as what was done.

You can think of a test as being broken down into four steps:

1. Arrange

2. Act

3. Assert

4. Cleanup

Arrange is where we prepare everything for our test. This means pretty much everything except for the “act”. It’s
lining up the dominoes so that the act can do its thing in one, state-changing step. This can mean preparing objects,
starting/killing services, entering records into a database, or even things like defining a URL to query, generating some
credentials for a user that doesn’t exist yet, or just waiting for some process to finish.

Act is the singular, state-changing action that kicks off the behavior we want to test. This behavior is what carries
out the changing of the state of the system under test (SUT), and it’s the resulting changed state that we can look at to
make a judgement about the behavior. This typically takes the form of a function/method call.

Assert is where we look at that resulting state and check if it looks how we’d expect after the dust has settled. It’s
where we gather evidence to say the behavior does or does not align with what we expect. The assert in our test is
where we take that measurement/observation and apply our judgement to it. If something should be green, we’d say
assert thing == "green".

Cleanup is where the test picks up after itself, so other tests aren’t being accidentally influenced by it.

At it’s core, the test is ultimately the act and assert steps, with the arrange step only providing the context. Behavior
exists between act and assert.

32 Chapter 5. pytest fixtures: explicit, modular, scalable

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path


pytest Documentation, Release 6.2

5.1.1 Back to fixtures

“Fixtures”, in the literal sense, are each of the arrange steps and data. They’re everything that test needs to do its
thing.

At a basic level, test functions request fixtures by declaring them as arguments, as my_fruit and fruit_basket
in the test_my_fruit_in_basket(my_fruit, fruit_basket): example below.

In pytest, “fixtures” are functions you define that serve this purpose. But they don’t have to be limited to just the
arrange steps. They can provide the act step, as well, and this can be a powerful technique for designing more
complex tests, especially given how pytest’s fixture system works. But we’ll get into that further down.

We can tell pytest that a particular function is a fixture by decorating it with @pytest.fixture. Here’s a simple
example of what a fixture in pytest might look like:

import pytest

class Fruit:
def __init__(self, name):

self.name = name

def __eq__(self, other):
return self.name == other.name

@pytest.fixture
def my_fruit():

return Fruit("apple")

@pytest.fixture
def fruit_basket(my_fruit):

return [Fruit("banana"), my_fruit]

def test_my_fruit_in_basket(my_fruit, fruit_basket):
assert my_fruit in fruit_basket

Tests don’t have to be limited to a single fixture, either. They can depend on as many fixtures as you want, and fixtures
can use other fixtures, as well. This is where pytest’s fixture system really shines.

Don’t be afraid to break things up if it makes things cleaner.

5.2 “Requesting” fixtures

So fixtures are how we prepare for a test, but how do we tell pytest what tests and fixtures need which fixtures?

At a basic level, test functions request fixtures by declaring them as arguments, as in the
test_my_fruit_in_basket(my_fruit, fruit_basket): in the previous example.

At a basic level, pytest depends on a test to tell it what fixtures it needs, so we have to build that information into the
test itself. We have to make the test “request” the fixtures it depends on, and to do this, we have to list those fixtures
as parameters in the test function’s “signature” (which is the def test_something(blah, stuff, more):
line).

When pytest goes to run a test, it looks at the parameters in that test function’s signature, and then searches for fixtures
that have the same names as those parameters. Once pytest finds them, it runs those fixtures, captures what they

5.2. “Requesting” fixtures 33



pytest Documentation, Release 6.2

returned (if anything), and passes those objects into the test function as arguments.

5.2.1 Quick example

import pytest

class Fruit:
def __init__(self, name):

self.name = name
self.cubed = False

def cube(self):
self.cubed = True

class FruitSalad:
def __init__(self, *fruit_bowl):

self.fruit = fruit_bowl
self._cube_fruit()

def _cube_fruit(self):
for fruit in self.fruit:

fruit.cube()

# Arrange
@pytest.fixture
def fruit_bowl():

return [Fruit("apple"), Fruit("banana")]

def test_fruit_salad(fruit_bowl):
# Act
fruit_salad = FruitSalad(*fruit_bowl)

# Assert
assert all(fruit.cubed for fruit in fruit_salad.fruit)

In this example, test_fruit_salad “requests” fruit_bowl (i.e. def
test_fruit_salad(fruit_bowl):), and when pytest sees this, it will execute the fruit_bowl fix-
ture function and pass the object it returns into test_fruit_salad as the fruit_bowl argument.

Here’s roughly what’s happening if we were to do it by hand:

def fruit_bowl():
return [Fruit("apple"), Fruit("banana")]

def test_fruit_salad(fruit_bowl):
# Act
fruit_salad = FruitSalad(*fruit_bowl)

# Assert
assert all(fruit.cubed for fruit in fruit_salad.fruit)

(continues on next page)

34 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

# Arrange
bowl = fruit_bowl()
test_fruit_salad(fruit_bowl=bowl)

5.2.2 Fixtures can request other fixtures

One of pytest’s greatest strengths is its extremely flexible fixture system. It allows us to boil down complex require-
ments for tests into more simple and organized functions, where we only need to have each one describe the things
they are dependent on. We’ll get more into this further down, but for now, here’s a quick example to demonstrate how
fixtures can use other fixtures:

# contents of test_append.py
import pytest

# Arrange
@pytest.fixture
def first_entry():

return "a"

# Arrange
@pytest.fixture
def order(first_entry):

return [first_entry]

def test_string(order):
# Act
order.append("b")

# Assert
assert order == ["a", "b"]

Notice that this is the same example from above, but very little changed. The fixtures in pytest request fixtures just
like tests. All the same requesting rules apply to fixtures that do for tests. Here’s how this example would work if we
did it by hand:

def first_entry():
return "a"

def order(first_entry):
return [first_entry]

def test_string(order):
# Act
order.append("b")

# Assert
assert order == ["a", "b"]

(continues on next page)

5.2. “Requesting” fixtures 35



pytest Documentation, Release 6.2

(continued from previous page)

entry = first_entry()
the_list = order(first_entry=entry)
test_string(order=the_list)

5.2.3 Fixtures are reusable

One of the things that makes pytest’s fixture system so powerful, is that it gives us the abilty to define a generic setup
step that can reused over and over, just like a normal function would be used. Two different tests can request the same
fixture and have pytest give each test their own result from that fixture.

This is extremely useful for making sure tests aren’t affected by each other. We can use this system to make sure each
test gets its own fresh batch of data and is starting from a clean state so it can provide consistent, repeatable results.

Here’s an example of how this can come in handy:

# contents of test_append.py
import pytest

# Arrange
@pytest.fixture
def first_entry():

return "a"

# Arrange
@pytest.fixture
def order(first_entry):

return [first_entry]

def test_string(order):
# Act
order.append("b")

# Assert
assert order == ["a", "b"]

def test_int(order):
# Act
order.append(2)

# Assert
assert order == ["a", 2]

Each test here is being given its own copy of that list object, which means the order fixture is getting executed
twice (the same is true for the first_entry fixture). If we were to do this by hand as well, it would look something
like this:

def first_entry():
return "a"

def order(first_entry):

(continues on next page)

36 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

return [first_entry]

def test_string(order):
# Act
order.append("b")

# Assert
assert order == ["a", "b"]

def test_int(order):
# Act
order.append(2)

# Assert
assert order == ["a", 2]

entry = first_entry()
the_list = order(first_entry=entry)
test_string(order=the_list)

entry = first_entry()
the_list = order(first_entry=entry)
test_int(order=the_list)

5.2.4 A test/fixture can request more than one fixture at a time

Tests and fixtures aren’t limited to requesting a single fixture at a time. They can request as many as they like. Here’s
another quick example to demonstrate:

# contents of test_append.py
import pytest

# Arrange
@pytest.fixture
def first_entry():

return "a"

# Arrange
@pytest.fixture
def second_entry():

return 2

# Arrange
@pytest.fixture
def order(first_entry, second_entry):

return [first_entry, second_entry]

# Arrange

(continues on next page)

5.2. “Requesting” fixtures 37



pytest Documentation, Release 6.2

(continued from previous page)

@pytest.fixture
def expected_list():

return ["a", 2, 3.0]

def test_string(order, expected_list):
# Act
order.append(3.0)

# Assert
assert order == expected_list

5.2.5 Fixtures can be requested more than once per test (return values are cached)

Fixtures can also be requested more than once during the same test, and pytest won’t execute them again for that test.
This means we can request fixtures in multiple fixtures that are dependent on them (and even again in the test itself)
without those fixtures being executed more than once.

# contents of test_append.py
import pytest

# Arrange
@pytest.fixture
def first_entry():

return "a"

# Arrange
@pytest.fixture
def order():

return []

# Act
@pytest.fixture
def append_first(order, first_entry):

return order.append(first_entry)

def test_string_only(append_first, order, first_entry):
# Assert
assert order == [first_entry]

If a requested fixture was executed once for every time it was requested during a test, then this test would fail because
both append_first and test_string_only would see order as an empty list (i.e. []), but since the return
value of order was cached (along with any side effects executing it may have had) after the first time it was called,
both the test and append_first were referencing the same object, and the test saw the effect append_first had
on that object.

38 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

5.3 Autouse fixtures (fixtures you don’t have to request)

Sometimes you may want to have a fixture (or even several) that you know all your tests will depend on. “Autouse”
fixtures are a convenient way to make all tests automatically request them. This can cut out a lot of redundant requests,
and can even provide more advanced fixture usage (more on that further down).

We can make a fixture an autouse fixture by passing in autouse=True to the fixture’s decorator. Here’s a simple
example for how they can be used:

# contents of test_append.py
import pytest

@pytest.fixture
def first_entry():

return "a"

@pytest.fixture
def order(first_entry):

return []

@pytest.fixture(autouse=True)
def append_first(order, first_entry):

return order.append(first_entry)

def test_string_only(order, first_entry):
assert order == [first_entry]

def test_string_and_int(order, first_entry):
order.append(2)
assert order == [first_entry, 2]

In this example, the append_first fixture is an autouse fixture. Because it happens automatically, both tests are
affected by it, even though neither test requested it. That doesn’t mean they can’t be requested though; just that it
isn’t necessary.

5.4 Scope: sharing fixtures across classes, modules, packages or
session

Fixtures requiring network access depend on connectivity and are usually time-expensive to create. Extending the
previous example, we can add a scope="module" parameter to the @pytest.fixture invocation to cause a
smtp_connection fixture function, responsible to create a connection to a preexisting SMTP server, to only be
invoked once per test module (the default is to invoke once per test function). Multiple test functions in a test module
will thus each receive the same smtp_connection fixture instance, thus saving time. Possible values for scope
are: function, class, module, package or session.

The next example puts the fixture function into a separate conftest.py file so that tests from multiple test modules
in the directory can access the fixture function:

5.3. Autouse fixtures (fixtures you don’t have to request) 39



pytest Documentation, Release 6.2

# content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module")
def smtp_connection():

return smtplib.SMTP("smtp.gmail.com", 587, timeout=5)

# content of test_module.py

def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg
assert 0 # for demo purposes

def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250
assert 0 # for demo purposes

Here, the test_ehlo needs the smtp_connection fixture value. pytest will discover and call the @pytest.
fixture marked smtp_connection fixture function. Running the test looks like this:

$ pytest test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py FF [100%]

================================= FAILURES =================================
________________________________ test_ehlo _________________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg

> assert 0 # for demo purposes
E assert 0

test_module.py:7: AssertionError
________________________________ test_noop _________________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250

> assert 0 # for demo purposes

(continues on next page)

40 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

E assert 0

test_module.py:13: AssertionError
========================= short test summary info ==========================
FAILED test_module.py::test_ehlo - assert 0
FAILED test_module.py::test_noop - assert 0
============================ 2 failed in 0.12s =============================

You see the two assert 0 failing and more importantly you can also see that the exactly same
smtp_connection object was passed into the two test functions because pytest shows the incoming argument
values in the traceback. As a result, the two test functions using smtp_connection run as quick as a single one
because they reuse the same instance.

If you decide that you rather want to have a session-scoped smtp_connection instance, you can simply declare it:

@pytest.fixture(scope="session")
def smtp_connection():

# the returned fixture value will be shared for
# all tests requesting it
...

5.4.1 Fixture scopes

Fixtures are created when first requested by a test, and are destroyed based on their scope:

• function: the default scope, the fixture is destroyed at the end of the test.

• class: the fixture is destroyed during teardown of the last test in the class.

• module: the fixture is destroyed during teardown of the last test in the module.

• package: the fixture is destroyed during teardown of the last test in the package.

• session: the fixture is destroyed at the end of the test session.

Note: Pytest only caches one instance of a fixture at a time, which means that when using a parametrized fixture,
pytest may invoke a fixture more than once in the given scope.

5.4.2 Dynamic scope

New in version 5.2.

In some cases, you might want to change the scope of the fixture without changing the code. To do that, pass a
callable to scope. The callable must return a string with a valid scope and will be executed only once - during the
fixture definition. It will be called with two keyword arguments - fixture_name as a string and config with a
configuration object.

This can be especially useful when dealing with fixtures that need time for setup, like spawning a docker container.
You can use the command-line argument to control the scope of the spawned containers for different environments.
See the example below.

def determine_scope(fixture_name, config):
if config.getoption("--keep-containers", None):

return "session"

(continues on next page)

5.4. Scope: sharing fixtures across classes, modules, packages or session 41



pytest Documentation, Release 6.2

(continued from previous page)

return "function"

@pytest.fixture(scope=determine_scope)
def docker_container():

yield spawn_container()

5.5 Fixture errors

pytest does its best to put all the fixtures for a given test in a linear order so that it can see which fixture happens first,
second, third, and so on. If an earlier fixture has a problem, though, and raises an exception, pytest will stop executing
fixtures for that test and mark the test as having an error.

When a test is marked as having an error, it doesn’t mean the test failed, though. It just means the test couldn’t even
be attempted because one of the things it depends on had a problem.

This is one reason why it’s a good idea to cut out as many unnecessary dependencies as possible for a given test. That
way a problem in something unrelated isn’t causing us to have an incomplete picture of what may or may not have
issues.

Here’s a quick example to help explain:

import pytest

@pytest.fixture
def order():

return []

@pytest.fixture
def append_first(order):

order.append(1)

@pytest.fixture
def append_second(order, append_first):

order.extend([2])

@pytest.fixture(autouse=True)
def append_third(order, append_second):

order += [3]

def test_order(order):
assert order == [1, 2, 3]

If, for whatever reason, order.append(1) had a bug and it raises an exception, we wouldn’t be able to know if
order.extend([2]) or order += [3] would also have problems. After append_first throws an excep-
tion, pytest won’t run any more fixtures for test_order, and it won’t even try to run test_order itself. The only
things that would’ve run would be order and append_first.

42 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

5.6 Teardown/Cleanup (AKA Fixture finalization)

When we run our tests, we’ll want to make sure they clean up after themselves so they don’t mess with any other tests
(and also so that we don’t leave behind a mountain of test data to bloat the system). Fixtures in pytest offer a very
useful teardown system, which allows us to define the specific steps necessary for each fixture to clean up after itself.

This system can be leveraged in two ways.

5.6.1 1. yield fixtures (recommended)

“Yield” fixtures yield instead of return. With these fixtures, we can run some code and pass an object back to the
requesting fixture/test, just like with the other fixtures. The only differences are:

1. return is swapped out for yield.

2. Any teardown code for that fixture is placed after the yield.

Once pytest figures out a linear order for the fixtures, it will run each one up until it returns or yields, and then move
on to the next fixture in the list to do the same thing.

Once the test is finished, pytest will go back down the list of fixtures, but in the reverse order, taking each one that
yielded, and running the code inside it that was after the yield statement.

As a simple example, let’s say we want to test sending email from one user to another. We’ll have to first make each
user, then send the email from one user to the other, and finally assert that the other user received that message in their
inbox. If we want to clean up after the test runs, we’ll likely have to make sure the other user’s mailbox is emptied
before deleting that user, otherwise the system may complain.

Here’s what that might look like:

import pytest

from emaillib import Email, MailAdminClient

@pytest.fixture
def mail_admin():

return MailAdminClient()

@pytest.fixture
def sending_user(mail_admin):

user = mail_admin.create_user()
yield user
mail_admin.delete_user(user)

@pytest.fixture
def receiving_user(mail_admin):

user = mail_admin.create_user()
yield user
mail_admin.delete_user(user)

def test_email_received(receiving_user, sending_user):
email = Email(subject="Hey!", body="How's it going?")
sending_user.send_email(email, receiving_user)
assert email in receiving_user.inbox

5.6. Teardown/Cleanup (AKA Fixture finalization) 43



pytest Documentation, Release 6.2

Because receiving_user is the last fixture to run during setup, it’s the first to run during teardown.

There is a risk that even having the order right on the teardown side of things doesn’t guarantee a safe cleanup. That’s
covered in a bit more detail in Safe teardowns.

Handling errors for yield fixture

If a yield fixture raises an exception before yielding, pytest won’t try to run the teardown code after that yield fixture’s
yield statement. But, for every fixture that has already run successfully for that test, pytest will still attempt to tear
them down as it normally would.

5.6.2 2. Adding finalizers directly

While yield fixtures are considered to be the cleaner and more straighforward option, there is another choice, and that
is to add “finalizer” functions directly to the test’s request-context object. It brings a similar result as yield fixtures,
but requires a bit more verbosity.

In order to use this approach, we have to request the request-context object (just like we would request another fix-
ture) in the fixture we need to add teardown code for, and then pass a callable, containing that teardown code, to its
addfinalizer method.

We have to be careful though, because pytest will run that finalizer once it’s been added, even if that fixture raises an
exception after adding the finalizer. So to make sure we don’t run the finalizer code when we wouldn’t need to, we
would only add the finalizer once the fixture would have done something that we’d need to teardown.

Here’s how the previous example would look using the addfinalizer method:

import pytest

from emaillib import Email, MailAdminClient

@pytest.fixture
def mail_admin():

return MailAdminClient()

@pytest.fixture
def sending_user(mail_admin):

user = mail_admin.create_user()
yield user
mail_admin.delete_user(user)

@pytest.fixture
def receiving_user(mail_admin, request):

user = mail_admin.create_user()

def delete_user():
mail_admin.delete_user(user)

request.addfinalizer(delete_user)
return user

@pytest.fixture
(continues on next page)

44 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

def email(sending_user, receiving_user, request):
_email = Email(subject="Hey!", body="How's it going?")
sending_user.send_email(_email, receiving_user)

def empty_mailbox():
receiving_user.delete_email(_email)

request.addfinalizer(empty_mailbox)
return _email

def test_email_received(receiving_user, email):
assert email in receiving_user.inbox

It’s a bit longer than yield fixtures and a bit more complex, but it does offer some nuances for when you’re in a pinch.

5.7 Safe teardowns

The fixture system of pytest is very powerful, but it’s still being run by a computer, so it isn’t able to figure out how to
safely teardown everything we throw at it. If we aren’t careful, an error in the wrong spot might leave stuff from our
tests behind, and that can cause further issues pretty quickly.

For example, consider the following tests (based off of the mail example from above):

import pytest

from emaillib import Email, MailAdminClient

@pytest.fixture
def setup():

mail_admin = MailAdminClient()
sending_user = mail_admin.create_user()
receiving_user = mail_admin.create_user()
email = Email(subject="Hey!", body="How's it going?")
sending_user.send_emai(email, receiving_user)
yield receiving_user, email
receiving_user.delete_email(email)
mail_admin.delete_user(sending_user)
mail_admin.delete_user(receiving_user)

def test_email_received(setup):
receiving_user, email = setup
assert email in receiving_user.inbox

This version is a lot more compact, but it’s also harder to read, doesn’t have a very descriptive fixture name, and none
of the fixtures can be reused easily.

There’s also a more serious issue, which is that if any of those steps in the setup raise an exception, none of the
teardown code will run.

One option might be to go with the addfinalizer method instead of yield fixtures, but that might get pretty
complex and difficult to maintain (and it wouldn’t be compact anymore).

5.7. Safe teardowns 45



pytest Documentation, Release 6.2

5.7.1 Safe fixture structure

The safest and simplest fixture structure requires limiting fixtures to only making one state-changing action each, and
then bundling them together with their teardown code, as the email examples above showed.

The chance that a state-changing operation can fail but still modify state is neglibible, as most of these operations tend
to be transaction-based (at least at the level of testing where state could be left behind). So if we make sure that any
successful state-changing action gets torn down by moving it to a separate fixture function and separating it from other,
potentially failing state-changing actions, then our tests will stand the best chance at leaving the test environment the
way they found it.

For an example, let’s say we have a website with a login page, and we have access to an admin API where we can
generate users. For our test, we want to:

1. Create a user through that admin API

2. Launch a browser using Selenium

3. Go to the login page of our site

4. Log in as the user we created

5. Assert that their name is in the header of the landing page

We wouldn’t want to leave that user in the system, nor would we want to leave that browser session running, so we’ll
want to make sure the fixtures that create those things clean up after themselves.

Here’s what that might look like:

Note: For this example, certain fixtures (i.e. base_url and admin_credentials) are implied to exist else-
where. So for now, let’s assume they exist, and we’re just not looking at them.

from uuid import uuid4
from urllib.parse import urljoin

from selenium.webdriver import Chrome
import pytest

from src.utils.pages import LoginPage, LandingPage
from src.utils import AdminApiClient
from src.utils.data_types import User

@pytest.fixture
def admin_client(base_url, admin_credentials):

return AdminApiClient(base_url, **admin_credentials)

@pytest.fixture
def user(admin_client):

_user = User(name="Susan", username=f"testuser-{uuid4()}", password="P4$$word")
admin_client.create_user(_user)
yield _user
admin_client.delete_user(_user)

@pytest.fixture
def driver():

(continues on next page)

46 Chapter 5. pytest fixtures: explicit, modular, scalable

https://en.wikipedia.org/wiki/Transaction_processing


pytest Documentation, Release 6.2

(continued from previous page)

_driver = Chrome()
yield _driver
_driver.quit()

@pytest.fixture
def login(driver, base_url, user):

driver.get(urljoin(base_url, "/login"))
page = LoginPage(driver)
page.login(user)

@pytest.fixture
def landing_page(driver, login):

return LandingPage(driver)

def test_name_on_landing_page_after_login(landing_page, user):
assert landing_page.header == f"Welcome, {user.name}!"

The way the dependencies are laid out means it’s unclear if the user fixture would execute before the driver
fixture. But that’s ok, because those are atomic operations, and so it doesn’t matter which one runs first because the
sequence of events for the test is still linearizable. But what does matter is that, no matter which one runs first, if the
one raises an exception while the other would not have, neither will have left anything behind. If driver executes
before user, and user raises an exception, the driver will still quit, and the user was never made. And if driver
was the one to raise the exception, then the driver would never have been started and the user would never have been
made.

5.8 Fixture availability

Fixture availability is determined from the perspective of the test. A fixture is only available for tests to request if they
are in the scope that fixture is defined in. If a fixture is defined inside a class, it can only be requested by tests inside
that class. But if a fixture is defined inside the global scope of the module, than every test in that module, even if it’s
defined inside a class, can request it.

Similarly, a test can also only be affected by an autouse fixture if that test is in the same scope that autouse fixture is
defined in (see Autouse fixtures are executed first within their scope).

A fixture can also request any other fixture, no matter where it’s defined, so long as the test requesting them can see
all fixtures involved.

For example, here’s a test file with a fixture (outer) that requests a fixture (inner) from a scope it wasn’t defined
in:

import pytest

@pytest.fixture
def order():

return []

@pytest.fixture
def outer(order, inner):

(continues on next page)

5.8. Fixture availability 47

https://en.wikipedia.org/wiki/Linearizability


pytest Documentation, Release 6.2

(continued from previous page)

order.append("outer")

class TestOne:
@pytest.fixture
def inner(self, order):

order.append("one")

def test_order(self, order, outer):
assert order == ["one", "outer"]

class TestTwo:
@pytest.fixture
def inner(self, order):

order.append("two")

def test_order(self, order, outer):
assert order == ["two", "outer"]

From the tests’ perspectives, they have no problem seeing each of the fixtures they’re dependent on:

So when they run, outer will have no problem finding inner, because pytest searched from the tests’ perspectives.

Note: The scope a fixture is defined in has no bearing on the order it will be instantiated in: the order is mandated by
the logic described here.

5.8.1 conftest.py: sharing fixtures across multiple files

The conftest.py file serves as a means of providing fixtures for an entire directory. Fixtures defined in a
conftest.py can be used by any test in that package without needing to import them (pytest will automatically
discover them).

You can have multiple nested directories/packages containing your tests, and each directory can have its own
conftest.pywith its own fixtures, adding on to the ones provided by the conftest.py files in parent directories.

For example, given a test file structure like this:

tests/
__init__.py

conftest.py
# content of tests/conftest.py
import pytest

@pytest.fixture
def order():

return []

@pytest.fixture
def top(order, innermost):

order.append("top")

(continues on next page)

48 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

test_top.py
# content of tests/test_top.py
import pytest

@pytest.fixture
def innermost(order):

order.append("innermost top")

def test_order(order, top):
assert order == ["innermost top", "top"]

subpackage/
__init__.py

conftest.py
# content of tests/subpackage/conftest.py
import pytest

@pytest.fixture
def mid(order):

order.append("mid subpackage")

test_subpackage.py
# content of tests/subpackage/test_subpackage.py
import pytest

@pytest.fixture
def innermost(order, mid):

order.append("innermost subpackage")

def test_order(order, top):
assert order == ["mid subpackage", "innermost subpackage", "top"]

The boundaries of the scopes can be visualized like this:

The directories become their own sort of scope where fixtures that are defined in a conftest.py file in that directory
become available for that whole scope.

Tests are allowed to search upward (stepping outside a circle) for fixtures, but can never go down (stepping inside
a circle) to continue their search. So tests/subpackage/test_subpackage.py::test_order would
be able to find the innermost fixture defined in tests/subpackage/test_subpackage.py, but the one
defined in tests/test_top.py would be unavailable to it because it would have to step down a level (step inside
a circle) to find it.

The first fixture the test finds is the one that will be used, so fixtures can be overriden if you need to change or extend
what one does for a particular scope.

You can also use the conftest.py file to implement local per-directory plugins.

5.8. Fixture availability 49



pytest Documentation, Release 6.2

5.8.2 Fixtures from third-party plugins

Fixtures don’t have to be defined in this structure to be available for tests, though. They can also be provided by third-
party plugins that are installed, and this is how many pytest plugins operate. As long as those plugins are installed, the
fixtures they provide can be requested from anywhere in your test suite.

Because they’re provided from outside the structure of your test suite, third-party plugins don’t really provide a scope
like conftest.py files and the directories in your test suite do. As a result, pytest will search for fixtures stepping
out through scopes as explained previously, only reaching fixtures defined in plugins last.

For example, given the following file structure:

tests/
__init__.py

conftest.py
# content of tests/conftest.py
import pytest

@pytest.fixture
def order():

return []

subpackage/
__init__.py

conftest.py
# content of tests/subpackage/conftest.py
import pytest

@pytest.fixture(autouse=True)
def mid(order, b_fix):

order.append("mid subpackage")

test_subpackage.py
# content of tests/subpackage/test_subpackage.py
import pytest

@pytest.fixture
def inner(order, mid, a_fix):

order.append("inner subpackage")

def test_order(order, inner):
assert order == ["b_fix", "mid subpackage", "a_fix", "inner subpackage

→˓"]

If plugin_a is installed and provides the fixture a_fix, and plugin_b is installed and provides the fixture
b_fix, then this is what the test’s search for fixtures would look like:

pytest will only search for a_fix and b_fix in the plugins after searching for them first in the scopes inside tests/.

50 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

5.9 Sharing test data

If you want to make test data from files available to your tests, a good way to do this is by loading these data in a
fixture for use by your tests. This makes use of the automatic caching mechanisms of pytest.

Another good approach is by adding the data files in the tests folder. There are also community plugins available
to help managing this aspect of testing, e.g. pytest-datadir and pytest-datafiles.

5.10 Fixture instantiation order

When pytest wants to execute a test, once it knows what fixtures will be executed, it has to figure out the order they’ll
be executed in. To do this, it considers 3 factors:

1. scope

2. dependencies

3. autouse

Names of fixtures or tests, where they’re defined, the order they’re defined in, and the order fixtures are requested in
have no bearing on execution order beyond coincidence. While pytest will try to make sure coincidences like these
stay consistent from run to run, it’s not something that should be depended on. If you want to control the order, it’s
safest to rely on these 3 things and make sure dependencies are clearly established.

5.10.1 Higher-scoped fixtures are executed first

Within a function request for fixtures, those of higher-scopes (such as session) are executed before lower-scoped
fixtures (such as function or class).

Here’s an example:

import pytest

@pytest.fixture(scope="session")
def order():

return []

@pytest.fixture
def func(order):

order.append("function")

@pytest.fixture(scope="class")
def cls(order):

order.append("class")

@pytest.fixture(scope="module")
def mod(order):

order.append("module")

@pytest.fixture(scope="package")
(continues on next page)

5.9. Sharing test data 51

https://pypi.org/project/pytest-datadir/
https://pypi.org/project/pytest-datafiles/


pytest Documentation, Release 6.2

(continued from previous page)

def pack(order):
order.append("package")

@pytest.fixture(scope="session")
def sess(order):

order.append("session")

class TestClass:
def test_order(self, func, cls, mod, pack, sess, order):

assert order == ["session", "package", "module", "class", "function"]

The test will pass because the larger scoped fixtures are executing first.

The order breaks down to this:

5.10.2 Fixtures of the same order execute based on dependencies

When a fixture requests another fixture, the other fixture is executed first. So if fixture a requests fixture b, fixture b
will execute first, because a depends on b and can’t operate without it. Even if a doesn’t need the result of b, it can
still request b if it needs to make sure it is executed after b.

For example:

import pytest

@pytest.fixture
def order():

return []

@pytest.fixture
def a(order):

order.append("a")

@pytest.fixture
def b(a, order):

order.append("b")

@pytest.fixture
def c(a, b, order):

order.append("c")

@pytest.fixture
def d(c, b, order):

order.append("d")

@pytest.fixture
(continues on next page)

52 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

def e(d, b, order):
order.append("e")

@pytest.fixture
def f(e, order):

order.append("f")

@pytest.fixture
def g(f, c, order):

order.append("g")

def test_order(g, order):
assert order == ["a", "b", "c", "d", "e", "f", "g"]

If we map out what depends on what, we get something that look like this:

The rules provided by each fixture (as to what fixture(s) each one has to come after) are comprehensive enough that it
can be flattened to this:

Enough information has to be provided through these requests in order for pytest to be able to figure out a clear,
linear chain of dependencies, and as a result, an order of operations for a given test. If there’s any ambiguity, and the
order of operations can be interpreted more than one way, you should assume pytest could go with any one of those
interpretations at any point.

For example, if d didn’t request c, i.e.the graph would look like this:

Because nothing requested c other than g, and g also requests f, it’s now unclear if c should go before/after f, e, or
d. The only rules that were set for c is that it must execute after b and before g.

pytest doesn’t know where c should go in the case, so it should be assumed that it could go anywhere between g and
b.

This isn’t necessarily bad, but it’s something to keep in mind. If the order they execute in could affect the behavior a
test is targetting, or could otherwise influence the result of a test, then the order should be defined explicitely in a way
that allows pytest to linearize/”flatten” that order.

5.10.3 Autouse fixtures are executed first within their scope

Autouse fixtures are assumed to apply to every test that could reference them, so they are executed before other fixtures
in that scope. Fixtures that are requested by autouse fixtures effectively become autouse fixtures themselves for the
tests that the real autouse fixture applies to.

So if fixture a is autouse and fixture b is not, but fixture a requests fixture b, then fixture b will effectively be an
autouse fixture as well, but only for the tests that a applies to.

In the last example, the graph became unclear if d didn’t request c. But if c was autouse, then b and a would
effectively also be autouse because c depends on them. As a result, they would all be shifted above non-autouse
fixtures within that scope.

So if the test file looked like this:

5.10. Fixture instantiation order 53



pytest Documentation, Release 6.2

import pytest

@pytest.fixture
def order():

return []

@pytest.fixture
def a(order):

order.append("a")

@pytest.fixture
def b(a, order):

order.append("b")

@pytest.fixture(autouse=True)
def c(b, order):

order.append("c")

@pytest.fixture
def d(b, order):

order.append("d")

@pytest.fixture
def e(d, order):

order.append("e")

@pytest.fixture
def f(e, order):

order.append("f")

@pytest.fixture
def g(f, c, order):

order.append("g")

def test_order_and_g(g, order):
assert order == ["a", "b", "c", "d", "e", "f", "g"]

the graph would look like this:

Because c can now be put above d in the graph, pytest can once again linearize the graph to this:

In this example, c makes b and a effectively autouse fixtures as well.

Be careful with autouse, though, as an autouse fixture will automatically execute for every test that can reach it, even
if they don’t request it. For example, consider this file:

import pytest

(continues on next page)

54 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

@pytest.fixture(scope="class")
def order():

return []

@pytest.fixture(scope="class", autouse=True)
def c1(order):

order.append("c1")

@pytest.fixture(scope="class")
def c2(order):

order.append("c2")

@pytest.fixture(scope="class")
def c3(order, c1):

order.append("c3")

class TestClassWithC1Request:
def test_order(self, order, c1, c3):

assert order == ["c1", "c3"]

class TestClassWithoutC1Request:
def test_order(self, order, c2):

assert order == ["c1", "c2"]

Even though nothing in TestClassWithoutC1Request is requesting c1, it still is executed for the tests inside
it anyway:

But just because one autouse fixture requested a non-autouse fixture, that doesn’t mean the non-autouse fixture be-
comes an autouse fixture for all contexts that it can apply to. It only effectively becomes an auotuse fixture for the
contexts the real autouse fixture (the one that requested the non-autouse fixture) can apply to.

For example, take a look at this test file:

import pytest

@pytest.fixture
def order():

return []

@pytest.fixture
def c1(order):

order.append("c1")

@pytest.fixture
def c2(order):

order.append("c2")

(continues on next page)

5.10. Fixture instantiation order 55



pytest Documentation, Release 6.2

(continued from previous page)

class TestClassWithAutouse:
@pytest.fixture(autouse=True)
def c3(self, order, c2):

order.append("c3")

def test_req(self, order, c1):
assert order == ["c2", "c3", "c1"]

def test_no_req(self, order):
assert order == ["c2", "c3"]

class TestClassWithoutAutouse:
def test_req(self, order, c1):

assert order == ["c1"]

def test_no_req(self, order):
assert order == []

It would break down to something like this:

For test_req and test_no_req inside TestClassWithAutouse, c3 effectively makes c2 an autouse fix-
ture, which is why c2 and c3 are executed for both tests, despite not being requested, and why c2 and c3 are executed
before c1 for test_req.

If this made c2 an actual autouse fixture, then c2 would also execute for the tests inside
TestClassWithoutAutouse, since they can reference c2 if they wanted to. But it doesn’t, because from
the perspective of the TestClassWithoutAutouse tests, c2 isn’t an autouse fixture, since they can’t see c3.

5.11 Running multiple assert statements safely

Sometimes you may want to run multiple asserts after doing all that setup, which makes sense as, in more complex
systems, a single action can kick off multiple behaviors. pytest has a convenient way of handling this and it combines
a bunch of what we’ve gone over so far.

All that’s needed is stepping up to a larger scope, then having the act step defined as an autouse fixture, and finally,
making sure all the fixtures are targetting that highler level scope.

Let’s pull an example from above, and tweak it a bit. Let’s say that in addition to checking for a welcome message in
the header, we also want to check for a sign out button, and a link to the user’s profile.

Let’s take a look at how we can structure that so we can run multiple asserts without having to repeat all those steps
again.

Note: For this example, certain fixtures (i.e. base_url and admin_credentials) are implied to exist else-
where. So for now, let’s assume they exist, and we’re just not looking at them.

# contents of tests/end_to_end/test_login.py
from uuid import uuid4
from urllib.parse import urljoin

(continues on next page)

56 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

from selenium.webdriver import Chrome
import pytest

from src.utils.pages import LoginPage, LandingPage
from src.utils import AdminApiClient
from src.utils.data_types import User

@pytest.fixture(scope="class")
def admin_client(base_url, admin_credentials):

return AdminApiClient(base_url, **admin_credentials)

@pytest.fixture(scope="class")
def user(admin_client):

_user = User(name="Susan", username=f"testuser-{uuid4()}", password="P4$$word")
admin_client.create_user(_user)
yield _user
admin_client.delete_user(_user)

@pytest.fixture(scope="class")
def driver():

_driver = Chrome()
yield _driver
_driver.quit()

@pytest.fixture(scope="class")
def landing_page(driver, login):

return LandingPage(driver)

class TestLandingPageSuccess:
@pytest.fixture(scope="class", autouse=True)
def login(self, driver, base_url, user):

driver.get(urljoin(base_url, "/login"))
page = LoginPage(driver)
page.login(user)

def test_name_in_header(self, landing_page, user):
assert landing_page.header == f"Welcome, {user.name}!"

def test_sign_out_button(self, landing_page):
assert landing_page.sign_out_button.is_displayed()

def test_profile_link(self, landing_page, user):
profile_href = urljoin(base_url, f"/profile?id={user.profile_id}")
assert landing_page.profile_link.get_attribute("href") == profile_href

Notice that the methods are only referencing self in the signature as a formality. No state is tied to the actual test
class as it might be in the unittest.TestCase framework. Everything is managed by the pytest fixture system.

Each method only has to request the fixtures that it actually needs without worrying about order. This is because the
act fixture is an autouse fixture, and it made sure all the other fixtures executed before it. There’s no more changes
of state that need to take place, so the tests are free to make as many non-state-changing queries as they want without

5.11. Running multiple assert statements safely 57



pytest Documentation, Release 6.2

risking stepping on the toes of the other tests.

The login fixture is defined inside the class as well, because not every one of the other tests in the module will be
expecting a successful login, and the act may need to be handled a little differently for another test class. For example,
if we wanted to write another test scenario around submitting bad credentials, we could handle it by adding something
like this to the test file:

class TestLandingPageBadCredentials:
@pytest.fixture(scope="class")
def faux_user(self, user):

_user = deepcopy(user)
_user.password = "badpass"
return _user

def test_raises_bad_credentials_exception(self, login_page, faux_user):
with pytest.raises(BadCredentialsException):

login_page.login(faux_user)

5.12 Fixtures can introspect the requesting test context

Fixture functions can accept the request object to introspect the “requesting” test function, class or module context.
Further extending the previous smtp_connection fixture example, let’s read an optional server URL from the test
module which uses our fixture:

# content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module")
def smtp_connection(request):

server = getattr(request.module, "smtpserver", "smtp.gmail.com")
smtp_connection = smtplib.SMTP(server, 587, timeout=5)
yield smtp_connection
print("finalizing {} ({})".format(smtp_connection, server))
smtp_connection.close()

We use the request.module attribute to optionally obtain an smtpserver attribute from the test module. If we
just execute again, nothing much has changed:

$ pytest -s -q --tb=no
FFfinalizing <smtplib.SMTP object at 0xdeadbeef> (smtp.gmail.com)

========================= short test summary info ==========================
FAILED test_module.py::test_ehlo - assert 0
FAILED test_module.py::test_noop - assert 0
2 failed in 0.12s

Let’s quickly create another test module that actually sets the server URL in its module namespace:

# content of test_anothersmtp.py

smtpserver = "mail.python.org" # will be read by smtp fixture

(continues on next page)

58 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

def test_showhelo(smtp_connection):
assert 0, smtp_connection.helo()

Running it:

$ pytest -qq --tb=short test_anothersmtp.py
F [100%]
================================= FAILURES =================================
______________________________ test_showhelo _______________________________
test_anothersmtp.py:6: in test_showhelo

assert 0, smtp_connection.helo()
E AssertionError: (250, b'mail.python.org')
E assert 0
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef> (mail.python.org)
========================= short test summary info ==========================
FAILED test_anothersmtp.py::test_showhelo - AssertionError: (250, b'mail....

voila! The smtp_connection fixture function picked up our mail server name from the module namespace.

5.13 Using markers to pass data to fixtures

Using the request object, a fixture can also access markers which are applied to a test function. This can be useful
to pass data into a fixture from a test:

import pytest

@pytest.fixture
def fixt(request):

marker = request.node.get_closest_marker("fixt_data")
if marker is None:

# Handle missing marker in some way...
data = None

else:
data = marker.args[0]

# Do something with the data
return data

@pytest.mark.fixt_data(42)
def test_fixt(fixt):

assert fixt == 42

5.13. Using markers to pass data to fixtures 59



pytest Documentation, Release 6.2

5.14 Factories as fixtures

The “factory as fixture” pattern can help in situations where the result of a fixture is needed multiple times in a single
test. Instead of returning data directly, the fixture instead returns a function which generates the data. This function
can then be called multiple times in the test.

Factories can have parameters as needed:

@pytest.fixture
def make_customer_record():

def _make_customer_record(name):
return {"name": name, "orders": []}

return _make_customer_record

def test_customer_records(make_customer_record):
customer_1 = make_customer_record("Lisa")
customer_2 = make_customer_record("Mike")
customer_3 = make_customer_record("Meredith")

If the data created by the factory requires managing, the fixture can take care of that:

@pytest.fixture
def make_customer_record():

created_records = []

def _make_customer_record(name):
record = models.Customer(name=name, orders=[])
created_records.append(record)
return record

yield _make_customer_record

for record in created_records:
record.destroy()

def test_customer_records(make_customer_record):
customer_1 = make_customer_record("Lisa")
customer_2 = make_customer_record("Mike")
customer_3 = make_customer_record("Meredith")

5.15 Parametrizing fixtures

Fixture functions can be parametrized in which case they will be called multiple times, each time executing the set
of dependent tests, i. e. the tests that depend on this fixture. Test functions usually do not need to be aware of their
re-running. Fixture parametrization helps to write exhaustive functional tests for components which themselves can
be configured in multiple ways.

Extending the previous example, we can flag the fixture to create two smtp_connection fixture instances which
will cause all tests using the fixture to run twice. The fixture function gets access to each parameter through the special
request object:

60 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

# content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module", params=["smtp.gmail.com", "mail.python.org"])
def smtp_connection(request):

smtp_connection = smtplib.SMTP(request.param, 587, timeout=5)
yield smtp_connection
print("finalizing {}".format(smtp_connection))
smtp_connection.close()

The main change is the declaration of params with @pytest.fixture, a list of values for each of which the
fixture function will execute and can access a value via request.param. No test function code needs to change.
So let’s just do another run:

$ pytest -q test_module.py
FFFF [100%]
================================= FAILURES =================================
________________________ test_ehlo[smtp.gmail.com] _________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg

> assert 0 # for demo purposes
E assert 0

test_module.py:7: AssertionError
________________________ test_noop[smtp.gmail.com] _________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250

> assert 0 # for demo purposes
E assert 0

test_module.py:13: AssertionError
________________________ test_ehlo[mail.python.org] ________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250

> assert b"smtp.gmail.com" in msg
E AssertionError: assert b'smtp.gmail.com' in b'mail.python.org\nPIPELINING\
→˓nSIZE 51200000\nETRN\nSTARTTLS\nAUTH DIGEST-MD5 NTLM CRAM-MD5\nENHANCEDSTATUSCODES\
→˓n8BITMIME\nDSN\nSMTPUTF8\nCHUNKING'

test_module.py:6: AssertionError
-------------------------- Captured stdout setup ---------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>

(continues on next page)

5.15. Parametrizing fixtures 61



pytest Documentation, Release 6.2

(continued from previous page)

________________________ test_noop[mail.python.org] ________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250

> assert 0 # for demo purposes
E assert 0

test_module.py:13: AssertionError
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
========================= short test summary info ==========================
FAILED test_module.py::test_ehlo[smtp.gmail.com] - assert 0
FAILED test_module.py::test_noop[smtp.gmail.com] - assert 0
FAILED test_module.py::test_ehlo[mail.python.org] - AssertionError: asser...
FAILED test_module.py::test_noop[mail.python.org] - assert 0
4 failed in 0.12s

We see that our two test functions each ran twice, against the different smtp_connection instances. Note also,
that with the mail.python.org connection the second test fails in test_ehlo because a different server string
is expected than what arrived.

pytest will build a string that is the test ID for each fixture value in a parametrized fixture, e.g. test_ehlo[smtp.
gmail.com] and test_ehlo[mail.python.org] in the above examples. These IDs can be used with -k
to select specific cases to run, and they will also identify the specific case when one is failing. Running pytest with
--collect-only will show the generated IDs.

Numbers, strings, booleans and None will have their usual string representation used in the test ID. For other objects,
pytest will make a string based on the argument name. It is possible to customise the string used in a test ID for a
certain fixture value by using the ids keyword argument:

# content of test_ids.py
import pytest

@pytest.fixture(params=[0, 1], ids=["spam", "ham"])
def a(request):

return request.param

def test_a(a):
pass

def idfn(fixture_value):
if fixture_value == 0:

return "eggs"
else:

return None

@pytest.fixture(params=[0, 1], ids=idfn)
def b(request):

return request.param

(continues on next page)

62 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

def test_b(b):
pass

The above shows how ids can be either a list of strings to use or a function which will be called with the fixture value
and then has to return a string to use. In the latter case if the function returns None then pytest’s auto-generated ID
will be used.

Running the above tests results in the following test IDs being used:

$ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 10 items

<Module test_anothersmtp.py>
<Function test_showhelo[smtp.gmail.com]>
<Function test_showhelo[mail.python.org]>

<Module test_ids.py>
<Function test_a[spam]>
<Function test_a[ham]>
<Function test_b[eggs]>
<Function test_b[1]>

<Module test_module.py>
<Function test_ehlo[smtp.gmail.com]>
<Function test_noop[smtp.gmail.com]>
<Function test_ehlo[mail.python.org]>
<Function test_noop[mail.python.org]>

======================= 10 tests collected in 0.12s ========================

5.16 Using marks with parametrized fixtures

pytest.param() can be used to apply marks in values sets of parametrized fixtures in the same way that they can
be used with @pytest.mark.parametrize.

Example:

# content of test_fixture_marks.py
import pytest

@pytest.fixture(params=[0, 1, pytest.param(2, marks=pytest.mark.skip)])
def data_set(request):

return request.param

def test_data(data_set):
pass

Running this test will skip the invocation of data_set with value 2:

5.16. Using marks with parametrized fixtures 63



pytest Documentation, Release 6.2

$ pytest test_fixture_marks.py -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 3 items

test_fixture_marks.py::test_data[0] PASSED [ 33%]
test_fixture_marks.py::test_data[1] PASSED [ 66%]
test_fixture_marks.py::test_data[2] SKIPPED (unconditional skip) [100%]

======================= 2 passed, 1 skipped in 0.12s =======================

5.17 Modularity: using fixtures from a fixture function

In addition to using fixtures in test functions, fixture functions can use other fixtures themselves. This contributes
to a modular design of your fixtures and allows re-use of framework-specific fixtures across many projects. As a
simple example, we can extend the previous example and instantiate an object app where we stick the already defined
smtp_connection resource into it:

# content of test_appsetup.py

import pytest

class App:
def __init__(self, smtp_connection):

self.smtp_connection = smtp_connection

@pytest.fixture(scope="module")
def app(smtp_connection):

return App(smtp_connection)

def test_smtp_connection_exists(app):
assert app.smtp_connection

Here we declare an app fixture which receives the previously defined smtp_connection fixture and instantiates
an App object with it. Let’s run it:

$ pytest -v test_appsetup.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 2 items

test_appsetup.py::test_smtp_connection_exists[smtp.gmail.com] PASSED [ 50%]
test_appsetup.py::test_smtp_connection_exists[mail.python.org] PASSED [100%]

============================ 2 passed in 0.12s =============================

64 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

Due to the parametrization of smtp_connection, the test will run twice with two different App instances and
respective smtp servers. There is no need for the app fixture to be aware of the smtp_connection parametrization
because pytest will fully analyse the fixture dependency graph.

Note that the app fixture has a scope of module and uses a module-scoped smtp_connection fixture. The
example would still work if smtp_connection was cached on a session scope: it is fine for fixtures to use
“broader” scoped fixtures but not the other way round: A session-scoped fixture could not use a module-scoped one
in a meaningful way.

5.18 Automatic grouping of tests by fixture instances

pytest minimizes the number of active fixtures during test runs. If you have a parametrized fixture, then all the tests
using it will first execute with one instance and then finalizers are called before the next fixture instance is created.
Among other things, this eases testing of applications which create and use global state.

The following example uses two parametrized fixtures, one of which is scoped on a per-module basis, and all the
functions perform print calls to show the setup/teardown flow:

# content of test_module.py
import pytest

@pytest.fixture(scope="module", params=["mod1", "mod2"])
def modarg(request):

param = request.param
print(" SETUP modarg", param)
yield param
print(" TEARDOWN modarg", param)

@pytest.fixture(scope="function", params=[1, 2])
def otherarg(request):

param = request.param
print(" SETUP otherarg", param)
yield param
print(" TEARDOWN otherarg", param)

def test_0(otherarg):
print(" RUN test0 with otherarg", otherarg)

def test_1(modarg):
print(" RUN test1 with modarg", modarg)

def test_2(otherarg, modarg):
print(" RUN test2 with otherarg {} and modarg {}".format(otherarg, modarg))

Let’s run the tests in verbose mode and with looking at the print-output:

$ pytest -v -s test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache

(continues on next page)

5.18. Automatic grouping of tests by fixture instances 65



pytest Documentation, Release 6.2

(continued from previous page)

rootdir: $REGENDOC_TMPDIR
collecting ... collected 8 items

test_module.py::test_0[1] SETUP otherarg 1
RUN test0 with otherarg 1

PASSED TEARDOWN otherarg 1

test_module.py::test_0[2] SETUP otherarg 2
RUN test0 with otherarg 2

PASSED TEARDOWN otherarg 2

test_module.py::test_1[mod1] SETUP modarg mod1
RUN test1 with modarg mod1

PASSED
test_module.py::test_2[mod1-1] SETUP otherarg 1

RUN test2 with otherarg 1 and modarg mod1
PASSED TEARDOWN otherarg 1

test_module.py::test_2[mod1-2] SETUP otherarg 2
RUN test2 with otherarg 2 and modarg mod1

PASSED TEARDOWN otherarg 2

test_module.py::test_1[mod2] TEARDOWN modarg mod1
SETUP modarg mod2
RUN test1 with modarg mod2

PASSED
test_module.py::test_2[mod2-1] SETUP otherarg 1

RUN test2 with otherarg 1 and modarg mod2
PASSED TEARDOWN otherarg 1

test_module.py::test_2[mod2-2] SETUP otherarg 2
RUN test2 with otherarg 2 and modarg mod2

PASSED TEARDOWN otherarg 2
TEARDOWN modarg mod2

============================ 8 passed in 0.12s =============================

You can see that the parametrized module-scoped modarg resource caused an ordering of test execution that lead
to the fewest possible “active” resources. The finalizer for the mod1 parametrized resource was executed before the
mod2 resource was setup.

In particular notice that test_0 is completely independent and finishes first. Then test_1 is executed with mod1, then
test_2 with mod1, then test_1 with mod2 and finally test_2 with mod2.

The otherarg parametrized resource (having function scope) was set up before and teared down after every test that
used it.

66 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

5.19 Use fixtures in classes and modules with usefixtures

Sometimes test functions do not directly need access to a fixture object. For example, tests may require to operate
with an empty directory as the current working directory but otherwise do not care for the concrete directory. Here is
how you can use the standard tempfile and pytest fixtures to achieve it. We separate the creation of the fixture into a
conftest.py file:

# content of conftest.py

import os
import shutil
import tempfile

import pytest

@pytest.fixture
def cleandir():

old_cwd = os.getcwd()
newpath = tempfile.mkdtemp()
os.chdir(newpath)
yield
os.chdir(old_cwd)
shutil.rmtree(newpath)

and declare its use in a test module via a usefixtures marker:

# content of test_setenv.py
import os
import pytest

@pytest.mark.usefixtures("cleandir")
class TestDirectoryInit:

def test_cwd_starts_empty(self):
assert os.listdir(os.getcwd()) == []
with open("myfile", "w") as f:

f.write("hello")

def test_cwd_again_starts_empty(self):
assert os.listdir(os.getcwd()) == []

Due to the usefixtures marker, the cleandir fixture will be required for the execution of each test method, just
as if you specified a “cleandir” function argument to each of them. Let’s run it to verify our fixture is activated and the
tests pass:

$ pytest -q
.. [100%]
2 passed in 0.12s

You can specify multiple fixtures like this:

@pytest.mark.usefixtures("cleandir", "anotherfixture")
def test():

...

and you may specify fixture usage at the test module level using pytestmark:

5.19. Use fixtures in classes and modules with usefixtures 67

http://docs.python.org/library/tempfile.html


pytest Documentation, Release 6.2

pytestmark = pytest.mark.usefixtures("cleandir")

It is also possible to put fixtures required by all tests in your project into an ini-file:

# content of pytest.ini
[pytest]
usefixtures = cleandir

Warning: Note this mark has no effect in fixture functions. For example, this will not work as expected:

@pytest.mark.usefixtures("my_other_fixture")
@pytest.fixture
def my_fixture_that_sadly_wont_use_my_other_fixture():

...

Currently this will not generate any error or warning, but this is intended to be handled by #3664.

5.20 Overriding fixtures on various levels

In relatively large test suite, you most likely need to override a global or root fixture with a locally defined
one, keeping the test code readable and maintainable.

5.20.1 Override a fixture on a folder (conftest) level

Given the tests file structure is:

tests/
__init__.py

conftest.py
# content of tests/conftest.py
import pytest

@pytest.fixture
def username():

return 'username'

test_something.py
# content of tests/test_something.py
def test_username(username):

assert username == 'username'

subfolder/
__init__.py

conftest.py
# content of tests/subfolder/conftest.py
import pytest

@pytest.fixture
def username(username):

return 'overridden-' + username

(continues on next page)

68 Chapter 5. pytest fixtures: explicit, modular, scalable

https://github.com/pytest-dev/pytest/issues/3664


pytest Documentation, Release 6.2

(continued from previous page)

test_something.py
# content of tests/subfolder/test_something.py
def test_username(username):

assert username == 'overridden-username'

As you can see, a fixture with the same name can be overridden for certain test folder level. Note that the base or
super fixture can be accessed from the overriding fixture easily - used in the example above.

5.20.2 Override a fixture on a test module level

Given the tests file structure is:

tests/
__init__.py

conftest.py
# content of tests/conftest.py
import pytest

@pytest.fixture
def username():

return 'username'

test_something.py
# content of tests/test_something.py
import pytest

@pytest.fixture
def username(username):

return 'overridden-' + username

def test_username(username):
assert username == 'overridden-username'

test_something_else.py
# content of tests/test_something_else.py
import pytest

@pytest.fixture
def username(username):

return 'overridden-else-' + username

def test_username(username):
assert username == 'overridden-else-username'

In the example above, a fixture with the same name can be overridden for certain test module.

5.20. Overriding fixtures on various levels 69



pytest Documentation, Release 6.2

5.20.3 Override a fixture with direct test parametrization

Given the tests file structure is:

tests/
__init__.py

conftest.py
# content of tests/conftest.py
import pytest

@pytest.fixture
def username():

return 'username'

@pytest.fixture
def other_username(username):

return 'other-' + username

test_something.py
# content of tests/test_something.py
import pytest

@pytest.mark.parametrize('username', ['directly-overridden-username'])
def test_username(username):

assert username == 'directly-overridden-username'

@pytest.mark.parametrize('username', ['directly-overridden-username-other'])
def test_username_other(other_username):

assert other_username == 'other-directly-overridden-username-other'

In the example above, a fixture value is overridden by the test parameter value. Note that the value of the fixture can
be overridden this way even if the test doesn’t use it directly (doesn’t mention it in the function prototype).

5.20.4 Override a parametrized fixture with non-parametrized one and vice versa

Given the tests file structure is:

tests/
__init__.py

conftest.py
# content of tests/conftest.py
import pytest

@pytest.fixture(params=['one', 'two', 'three'])
def parametrized_username(request):

return request.param

@pytest.fixture
def non_parametrized_username(request):

return 'username'

test_something.py
# content of tests/test_something.py
import pytest

(continues on next page)

70 Chapter 5. pytest fixtures: explicit, modular, scalable



pytest Documentation, Release 6.2

(continued from previous page)

@pytest.fixture
def parametrized_username():

return 'overridden-username'

@pytest.fixture(params=['one', 'two', 'three'])
def non_parametrized_username(request):

return request.param

def test_username(parametrized_username):
assert parametrized_username == 'overridden-username'

def test_parametrized_username(non_parametrized_username):
assert non_parametrized_username in ['one', 'two', 'three']

test_something_else.py
# content of tests/test_something_else.py
def test_username(parametrized_username):

assert parametrized_username in ['one', 'two', 'three']

def test_username(non_parametrized_username):
assert non_parametrized_username == 'username'

In the example above, a parametrized fixture is overridden with a non-parametrized version, and a non-parametrized
fixture is overridden with a parametrized version for certain test module. The same applies for the test folder level
obviously.

5.21 Using fixtures from other projects

Usually projects that provide pytest support will use entry points, so just installing those projects into an environment
will make those fixtures available for use.

In case you want to use fixtures from a project that does not use entry points, you can define pytest_plugins in
your top conftest.py file to register that module as a plugin.

Suppose you have some fixtures in mylibrary.fixtures and you want to reuse them into your app/tests
directory.

All you need to do is to define pytest_plugins in app/tests/conftest.py pointing to that module.

pytest_plugins = "mylibrary.fixtures"

This effectively registers mylibrary.fixtures as a plugin, making all its fixtures and hooks available to tests in
app/tests.

Note: Sometimes users will import fixtures from other projects for use, however this is not recommended: importing
fixtures into a module will register them in pytest as defined in that module.

This has minor consequences, such as appearing multiple times in pytest --help, but it is not recommended
because this behavior might change/stop working in future versions.

5.21. Using fixtures from other projects 71



pytest Documentation, Release 6.2

72 Chapter 5. pytest fixtures: explicit, modular, scalable



CHAPTER

SIX

MARKING TEST FUNCTIONS WITH ATTRIBUTES

By using the pytest.mark helper you can easily set metadata on your test functions. You can find the full list of
builtin markers in the API Reference. Or you can list all the markers, including builtin and custom, using the CLI -
pytest --markers.

Here are some of the builtin markers:

• usefixtures - use fixtures on a test function or class

• filterwarnings - filter certain warnings of a test function

• skip - always skip a test function

• skipif - skip a test function if a certain condition is met

• xfail - produce an “expected failure” outcome if a certain condition is met

• parametrize - perform multiple calls to the same test function.

It’s easy to create custom markers or to apply markers to whole test classes or modules. Those markers can be used
by plugins, and also are commonly used to select tests on the command-line with the -m option.

See Working with custom markers for examples which also serve as documentation.

Note: Marks can only be applied to tests, having no effect on fixtures.

6.1 Registering marks

You can register custom marks in your pytest.ini file like this:

[pytest]
markers =

slow: marks tests as slow (deselect with '-m "not slow"')
serial

or in your pyproject.toml file like this:

[tool.pytest.ini_options]
markers = [

"slow: marks tests as slow (deselect with '-m \"not slow\"')",
"serial",

]

73



pytest Documentation, Release 6.2

Note that everything past the : after the mark name is an optional description.

Alternatively, you can register new markers programmatically in a pytest_configure hook:

def pytest_configure(config):
config.addinivalue_line(

"markers", "env(name): mark test to run only on named environment"
)

Registered marks appear in pytest’s help text and do not emit warnings (see the next section). It is recommended that
third-party plugins always register their markers.

6.2 Raising errors on unknown marks

Unregistered marks applied with the @pytest.mark.name_of_the_mark decorator will always emit a warning
in order to avoid silently doing something surprising due to mistyped names. As described in the previous section,
you can disable the warning for custom marks by registering them in your pytest.ini file or using a custom
pytest_configure hook.

When the --strict-markers command-line flag is passed, any unknown marks applied with the @pytest.
mark.name_of_the_mark decorator will trigger an error. You can enforce this validation in your project by
adding --strict-markers to addopts:

[pytest]
addopts = --strict-markers
markers =

slow: marks tests as slow (deselect with '-m "not slow"')
serial

74 Chapter 6. Marking test functions with attributes



CHAPTER

SEVEN

MONKEYPATCHING/MOCKING MODULES AND ENVIRONMENTS

Sometimes tests need to invoke functionality which depends on global settings or which invokes code which cannot be
easily tested such as network access. The monkeypatch fixture helps you to safely set/delete an attribute, dictionary
item or environment variable, or to modify sys.path for importing.

The monkeypatch fixture provides these helper methods for safely patching and mocking functionality in tests:

monkeypatch.setattr(obj, name, value, raising=True)
monkeypatch.delattr(obj, name, raising=True)
monkeypatch.setitem(mapping, name, value)
monkeypatch.delitem(obj, name, raising=True)
monkeypatch.setenv(name, value, prepend=False)
monkeypatch.delenv(name, raising=True)
monkeypatch.syspath_prepend(path)
monkeypatch.chdir(path)

All modifications will be undone after the requesting test function or fixture has finished. The raising parameter
determines if a KeyError or AttributeError will be raised if the target of the set/deletion operation does not
exist.

Consider the following scenarios:

1. Modifying the behavior of a function or the property of a class for a test e.g. there is an API call or database
connection you will not make for a test but you know what the expected output should be. Use monkeypatch.
setattr to patch the function or property with your desired testing behavior. This can include your own functions.
Use monkeypatch.delattr to remove the function or property for the test.

2. Modifying the values of dictionaries e.g. you have a global configuration that you want to modify for certain test
cases. Use monkeypatch.setitem to patch the dictionary for the test. monkeypatch.delitem can be used
to remove items.

3. Modifying environment variables for a test e.g. to test program behavior if an environment variable is missing, or
to set multiple values to a known variable. monkeypatch.setenv and monkeypatch.delenv can be used for
these patches.

4. Use monkeypatch.setenv("PATH", value, prepend=os.pathsep) to modify $PATH, and
monkeypatch.chdir to change the context of the current working directory during a test.

5. Use monkeypatch.syspath_prepend to modify sys.path which will also call pkg_resources.
fixup_namespace_packages and importlib.invalidate_caches().

See the monkeypatch blog post for some introduction material and a discussion of its motivation.

75

https://docs.python.org/3/library/importlib.html#importlib.invalidate_caches
http://tetamap.wordpress.com/2009/03/03/monkeypatching-in-unit-tests-done-right/


pytest Documentation, Release 6.2

7.1 Simple example: monkeypatching functions

Consider a scenario where you are working with user directories. In the context of testing, you do not want your test
to depend on the running user. monkeypatch can be used to patch functions dependent on the user to always return
a specific value.

In this example, monkeypatch.setattr is used to patch Path.home so that the known testing path Path("/
abc") is always used when the test is run. This removes any dependency on the running user for testing purposes.
monkeypatch.setattr must be called before the function which will use the patched function is called. After
the test function finishes the Path.home modification will be undone.

# contents of test_module.py with source code and the test
from pathlib import Path

def getssh():
"""Simple function to return expanded homedir ssh path."""
return Path.home() / ".ssh"

def test_getssh(monkeypatch):
# mocked return function to replace Path.home
# always return '/abc'
def mockreturn():

return Path("/abc")

# Application of the monkeypatch to replace Path.home
# with the behavior of mockreturn defined above.
monkeypatch.setattr(Path, "home", mockreturn)

# Calling getssh() will use mockreturn in place of Path.home
# for this test with the monkeypatch.
x = getssh()
assert x == Path("/abc/.ssh")

7.2 Monkeypatching returned objects: building mock classes

monkeypatch.setattr can be used in conjunction with classes to mock returned objects from functions instead
of values. Imagine a simple function to take an API url and return the json response.

# contents of app.py, a simple API retrieval example
import requests

def get_json(url):
"""Takes a URL, and returns the JSON."""
r = requests.get(url)
return r.json()

We need to mock r, the returned response object for testing purposes. The mock of r needs a .json() method
which returns a dictionary. This can be done in our test file by defining a class to represent r.

# contents of test_app.py, a simple test for our API retrieval
# import requests for the purposes of monkeypatching

(continues on next page)

76 Chapter 7. Monkeypatching/mocking modules and environments



pytest Documentation, Release 6.2

(continued from previous page)

import requests

# our app.py that includes the get_json() function
# this is the previous code block example
import app

# custom class to be the mock return value
# will override the requests.Response returned from requests.get
class MockResponse:

# mock json() method always returns a specific testing dictionary
@staticmethod
def json():

return {"mock_key": "mock_response"}

def test_get_json(monkeypatch):

# Any arguments may be passed and mock_get() will always return our
# mocked object, which only has the .json() method.
def mock_get(*args, **kwargs):

return MockResponse()

# apply the monkeypatch for requests.get to mock_get
monkeypatch.setattr(requests, "get", mock_get)

# app.get_json, which contains requests.get, uses the monkeypatch
result = app.get_json("https://fakeurl")
assert result["mock_key"] == "mock_response"

monkeypatch applies the mock for requests.get with our mock_get function. The mock_get function
returns an instance of the MockResponse class, which has a json() method defined to return a known testing
dictionary and does not require any outside API connection.

You can build the MockResponse class with the appropriate degree of complexity for the scenario you are testing.
For instance, it could include an ok property that always returns True, or return different values from the json()
mocked method based on input strings.

This mock can be shared across tests using a fixture:

# contents of test_app.py, a simple test for our API retrieval
import pytest
import requests

# app.py that includes the get_json() function
import app

# custom class to be the mock return value of requests.get()
class MockResponse:

@staticmethod
def json():

return {"mock_key": "mock_response"}

# monkeypatched requests.get moved to a fixture
@pytest.fixture
def mock_response(monkeypatch):

(continues on next page)

7.2. Monkeypatching returned objects: building mock classes 77



pytest Documentation, Release 6.2

(continued from previous page)

"""Requests.get() mocked to return {'mock_key':'mock_response'}."""

def mock_get(*args, **kwargs):
return MockResponse()

monkeypatch.setattr(requests, "get", mock_get)

# notice our test uses the custom fixture instead of monkeypatch directly
def test_get_json(mock_response):

result = app.get_json("https://fakeurl")
assert result["mock_key"] == "mock_response"

Furthermore, if the mock was designed to be applied to all tests, the fixture could be moved to a conftest.py
file and use the with autouse=True option.

7.3 Global patch example: preventing “requests” from remote oper-
ations

If you want to prevent the “requests” library from performing http requests in all your tests, you can do:

# contents of conftest.py
import pytest

@pytest.fixture(autouse=True)
def no_requests(monkeypatch):

"""Remove requests.sessions.Session.request for all tests."""
monkeypatch.delattr("requests.sessions.Session.request")

This autouse fixture will be executed for each test function and it will delete the method request.session.
Session.request so that any attempts within tests to create http requests will fail.

Note: Be advised that it is not recommended to patch builtin functions such as open, compile, etc., because it might
break pytest’s internals. If that’s unavoidable, passing --tb=native, --assert=plain and --capture=no
might help although there’s no guarantee.

Note: Mind that patching stdlib functions and some third-party libraries used by pytest might break pytest itself,
therefore in those cases it is recommended to use MonkeyPatch.context() to limit the patching to the block
you want tested:

import functools

def test_partial(monkeypatch):
with monkeypatch.context() as m:

m.setattr(functools, "partial", 3)
assert functools.partial == 3

See issue #3290 for details.

78 Chapter 7. Monkeypatching/mocking modules and environments

https://github.com/pytest-dev/pytest/issues/3290


pytest Documentation, Release 6.2

7.4 Monkeypatching environment variables

If you are working with environment variables you often need to safely change the values or delete them from the
system for testing purposes. monkeypatch provides a mechanism to do this using the setenv and delenv
method. Our example code to test:

# contents of our original code file e.g. code.py
import os

def get_os_user_lower():
"""Simple retrieval function.
Returns lowercase USER or raises OSError."""
username = os.getenv("USER")

if username is None:
raise OSError("USER environment is not set.")

return username.lower()

There are two potential paths. First, the USER environment variable is set to a value. Second, the USER environ-
ment variable does not exist. Using monkeypatch both paths can be safely tested without impacting the running
environment:

# contents of our test file e.g. test_code.py
import pytest

def test_upper_to_lower(monkeypatch):
"""Set the USER env var to assert the behavior."""
monkeypatch.setenv("USER", "TestingUser")
assert get_os_user_lower() == "testinguser"

def test_raise_exception(monkeypatch):
"""Remove the USER env var and assert OSError is raised."""
monkeypatch.delenv("USER", raising=False)

with pytest.raises(OSError):
_ = get_os_user_lower()

This behavior can be moved into fixture structures and shared across tests:

# contents of our test file e.g. test_code.py
import pytest

@pytest.fixture
def mock_env_user(monkeypatch):

monkeypatch.setenv("USER", "TestingUser")

@pytest.fixture
def mock_env_missing(monkeypatch):

monkeypatch.delenv("USER", raising=False)

(continues on next page)

7.4. Monkeypatching environment variables 79



pytest Documentation, Release 6.2

(continued from previous page)

# notice the tests reference the fixtures for mocks
def test_upper_to_lower(mock_env_user):

assert get_os_user_lower() == "testinguser"

def test_raise_exception(mock_env_missing):
with pytest.raises(OSError):

_ = get_os_user_lower()

7.5 Monkeypatching dictionaries

monkeypatch.setitem can be used to safely set the values of dictionaries to specific values during tests. Take
this simplified connection string example:

# contents of app.py to generate a simple connection string
DEFAULT_CONFIG = {"user": "user1", "database": "db1"}

def create_connection_string(config=None):
"""Creates a connection string from input or defaults."""
config = config or DEFAULT_CONFIG
return f"User Id={config['user']}; Location={config['database']};"

For testing purposes we can patch the DEFAULT_CONFIG dictionary to specific values.

# contents of test_app.py
# app.py with the connection string function (prior code block)
import app

def test_connection(monkeypatch):

# Patch the values of DEFAULT_CONFIG to specific
# testing values only for this test.
monkeypatch.setitem(app.DEFAULT_CONFIG, "user", "test_user")
monkeypatch.setitem(app.DEFAULT_CONFIG, "database", "test_db")

# expected result based on the mocks
expected = "User Id=test_user; Location=test_db;"

# the test uses the monkeypatched dictionary settings
result = app.create_connection_string()
assert result == expected

You can use the monkeypatch.delitem to remove values.

# contents of test_app.py
import pytest

# app.py with the connection string function
import app

def test_missing_user(monkeypatch):

(continues on next page)

80 Chapter 7. Monkeypatching/mocking modules and environments



pytest Documentation, Release 6.2

(continued from previous page)

# patch the DEFAULT_CONFIG t be missing the 'user' key
monkeypatch.delitem(app.DEFAULT_CONFIG, "user", raising=False)

# Key error expected because a config is not passed, and the
# default is now missing the 'user' entry.
with pytest.raises(KeyError):

_ = app.create_connection_string()

The modularity of fixtures gives you the flexibility to define separate fixtures for each potential mock and reference
them in the needed tests.

# contents of test_app.py
import pytest

# app.py with the connection string function
import app

# all of the mocks are moved into separated fixtures
@pytest.fixture
def mock_test_user(monkeypatch):

"""Set the DEFAULT_CONFIG user to test_user."""
monkeypatch.setitem(app.DEFAULT_CONFIG, "user", "test_user")

@pytest.fixture
def mock_test_database(monkeypatch):

"""Set the DEFAULT_CONFIG database to test_db."""
monkeypatch.setitem(app.DEFAULT_CONFIG, "database", "test_db")

@pytest.fixture
def mock_missing_default_user(monkeypatch):

"""Remove the user key from DEFAULT_CONFIG"""
monkeypatch.delitem(app.DEFAULT_CONFIG, "user", raising=False)

# tests reference only the fixture mocks that are needed
def test_connection(mock_test_user, mock_test_database):

expected = "User Id=test_user; Location=test_db;"

result = app.create_connection_string()
assert result == expected

def test_missing_user(mock_missing_default_user):

with pytest.raises(KeyError):
_ = app.create_connection_string()

7.5. Monkeypatching dictionaries 81



pytest Documentation, Release 6.2

7.6 API Reference

Consult the docs for the MonkeyPatch class.

82 Chapter 7. Monkeypatching/mocking modules and environments



CHAPTER

EIGHT

TEMPORARY DIRECTORIES AND FILES

8.1 The tmp_path fixture

You can use the tmp_path fixture which will provide a temporary directory unique to the test invocation, created in
the base temporary directory.

tmp_path is a pathlib.Path object. Here is an example test usage:

# content of test_tmp_path.py
CONTENT = "content"

def test_create_file(tmp_path):
d = tmp_path / "sub"
d.mkdir()
p = d / "hello.txt"
p.write_text(CONTENT)
assert p.read_text() == CONTENT
assert len(list(tmp_path.iterdir())) == 1
assert 0

Running this would result in a passed test except for the last assert 0 line which we use to look at values:

$ pytest test_tmp_path.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_tmp_path.py F [100%]

================================= FAILURES =================================
_____________________________ test_create_file _____________________________

tmp_path = PosixPath('PYTEST_TMPDIR/test_create_file0')

def test_create_file(tmp_path):
d = tmp_path / "sub"
d.mkdir()
p = d / "hello.txt"
p.write_text(CONTENT)
assert p.read_text() == CONTENT
assert len(list(tmp_path.iterdir())) == 1

(continues on next page)

83



pytest Documentation, Release 6.2

(continued from previous page)

> assert 0
E assert 0

test_tmp_path.py:11: AssertionError
========================= short test summary info ==========================
FAILED test_tmp_path.py::test_create_file - assert 0
============================ 1 failed in 0.12s =============================

8.2 The tmp_path_factory fixture

The tmp_path_factory is a session-scoped fixture which can be used to create arbitrary temporary directories
from any other fixture or test.

It is intended to replace tmpdir_factory, and returns pathlib.Path instances.

See tmp_path_factory API for details.

8.3 The ‘tmpdir’ fixture

You can use the tmpdir fixture which will provide a temporary directory unique to the test invocation, created in the
base temporary directory.

tmpdir is a py.path.local object which offers os.path methods and more. Here is an example test usage:

# content of test_tmpdir.py
def test_create_file(tmpdir):

p = tmpdir.mkdir("sub").join("hello.txt")
p.write("content")
assert p.read() == "content"
assert len(tmpdir.listdir()) == 1
assert 0

Running this would result in a passed test except for the last assert 0 line which we use to look at values:

$ pytest test_tmpdir.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_tmpdir.py F [100%]

================================= FAILURES =================================
_____________________________ test_create_file _____________________________

tmpdir = local('PYTEST_TMPDIR/test_create_file0')

def test_create_file(tmpdir):
p = tmpdir.mkdir("sub").join("hello.txt")
p.write("content")
assert p.read() == "content"
assert len(tmpdir.listdir()) == 1

(continues on next page)

84 Chapter 8. Temporary directories and files

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://py.readthedocs.io/en/latest/path.html


pytest Documentation, Release 6.2

(continued from previous page)

> assert 0
E assert 0

test_tmpdir.py:6: AssertionError
========================= short test summary info ==========================
FAILED test_tmpdir.py::test_create_file - assert 0
============================ 1 failed in 0.12s =============================

8.4 The ‘tmpdir_factory’ fixture

The tmpdir_factory is a session-scoped fixture which can be used to create arbitrary temporary directories from
any other fixture or test.

For example, suppose your test suite needs a large image on disk, which is generated procedurally. Instead of com-
puting the same image for each test that uses it into its own tmpdir, you can generate it once per-session to save
time:

# contents of conftest.py
import pytest

@pytest.fixture(scope="session")
def image_file(tmpdir_factory):

img = compute_expensive_image()
fn = tmpdir_factory.mktemp("data").join("img.png")
img.save(str(fn))
return fn

# contents of test_image.py
def test_histogram(image_file):

img = load_image(image_file)
# compute and test histogram

See tmpdir_factory API for details.

8.5 The default base temporary directory

Temporary directories are by default created as sub-directories of the system temporary directory. The base name
will be pytest-NUM where NUM will be incremented with each test run. Moreover, entries older than 3 temporary
directories will be removed.

You can override the default temporary directory setting like this:

pytest --basetemp=mydir

Warning: The contents of mydir will be completely removed, so make sure to use a directory for that purpose
only.

8.4. The ‘tmpdir_factory’ fixture 85



pytest Documentation, Release 6.2

When distributing tests on the local machine using pytest-xdist, care is taken to automatically configure a
basetemp directory for the sub processes such that all temporary data lands below a single per-test run basetemp
directory.

86 Chapter 8. Temporary directories and files



CHAPTER

NINE

CAPTURING OF THE STDOUT/STDERR OUTPUT

9.1 Default stdout/stderr/stdin capturing behaviour

During test execution any output sent to stdout and stderr is captured. If a test or a setup method fails its
according captured output will usually be shown along with the failure traceback. (this behavior can be configured by
the --show-capture command-line option).

In addition, stdin is set to a “null” object which will fail on attempts to read from it because it is rarely desired to
wait for interactive input when running automated tests.

By default capturing is done by intercepting writes to low level file descriptors. This allows to capture output from
simple print statements as well as output from a subprocess started by a test.

9.2 Setting capturing methods or disabling capturing

There are three ways in which pytest can perform capturing:

• fd (file descriptor) level capturing (default): All writes going to the operating system file descriptors 1 and 2
will be captured.

• sys level capturing: Only writes to Python files sys.stdout and sys.stderr will be captured. No
capturing of writes to filedescriptors is performed.

• tee-sys capturing: Python writes to sys.stdout and sys.stderr will be captured, however the writes
will also be passed-through to the actual sys.stdout and sys.stderr. This allows output to be ‘live
printed’ and captured for plugin use, such as junitxml (new in pytest 5.4).

You can influence output capturing mechanisms from the command line:

pytest -s # disable all capturing
pytest --capture=sys # replace sys.stdout/stderr with in-mem files
pytest --capture=fd # also point filedescriptors 1 and 2 to temp file
pytest --capture=tee-sys # combines 'sys' and '-s', capturing sys.stdout/stderr

# and passing it along to the actual sys.stdout/stderr

87



pytest Documentation, Release 6.2

9.3 Using print statements for debugging

One primary benefit of the default capturing of stdout/stderr output is that you can use print statements for debugging:

# content of test_module.py

def setup_function(function):
print("setting up", function)

def test_func1():
assert True

def test_func2():
assert False

and running this module will show you precisely the output of the failing function and hide the other one:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .F [100%]

================================= FAILURES =================================
________________________________ test_func2 ________________________________

def test_func2():
> assert False
E assert False

test_module.py:12: AssertionError
-------------------------- Captured stdout setup ---------------------------
setting up <function test_func2 at 0xdeadbeef>
========================= short test summary info ==========================
FAILED test_module.py::test_func2 - assert False
======================= 1 failed, 1 passed in 0.12s ========================

9.4 Accessing captured output from a test function

The capsys, capsysbinary, capfd, and capfdbinary fixtures allow access to stdout/stderr output created
during test execution. Here is an example test function that performs some output related checks:

def test_myoutput(capsys): # or use "capfd" for fd-level
print("hello")
sys.stderr.write("world\n")
captured = capsys.readouterr()
assert captured.out == "hello\n"
assert captured.err == "world\n"

(continues on next page)

88 Chapter 9. Capturing of the stdout/stderr output



pytest Documentation, Release 6.2

(continued from previous page)

print("next")
captured = capsys.readouterr()
assert captured.out == "next\n"

The readouterr() call snapshots the output so far - and capturing will be continued. After the test function finishes
the original streams will be restored. Using capsys this way frees your test from having to care about setting/resetting
output streams and also interacts well with pytest’s own per-test capturing.

If you want to capture on filedescriptor level you can use the capfd fixture which offers the exact same interface but
allows to also capture output from libraries or subprocesses that directly write to operating system level output streams
(FD1 and FD2).

The return value from readouterr changed to a namedtuple with two attributes, out and err.

If the code under test writes non-textual data, you can capture this using the capsysbinary fixture which instead
returns bytes from the readouterr method.

If the code under test writes non-textual data, you can capture this using the capfdbinary fixture which instead
returns bytes from the readouterr method. The capfdbinary fixture operates on the filedescriptor level.

To temporarily disable capture within a test, both capsys and capfd have a disabled() method that can be used
as a context manager, disabling capture inside the with block:

def test_disabling_capturing(capsys):
print("this output is captured")
with capsys.disabled():

print("output not captured, going directly to sys.stdout")
print("this output is also captured")

9.4. Accessing captured output from a test function 89



pytest Documentation, Release 6.2

90 Chapter 9. Capturing of the stdout/stderr output



CHAPTER

TEN

WARNINGS CAPTURE

Starting from version 3.1, pytest now automatically catches warnings during test execution and displays them at the
end of the session:

# content of test_show_warnings.py
import warnings

def api_v1():
warnings.warn(UserWarning("api v1, should use functions from v2"))
return 1

def test_one():
assert api_v1() == 1

Running pytest now produces this output:

$ pytest test_show_warnings.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_show_warnings.py . [100%]

============================= warnings summary =============================
test_show_warnings.py::test_one

$REGENDOC_TMPDIR/test_show_warnings.py:5: UserWarning: api v1, should use functions
→˓from v2

warnings.warn(UserWarning("api v1, should use functions from v2"))

-- Docs: https://docs.pytest.org/en/stable/warnings.html
======================= 1 passed, 1 warning in 0.12s =======================

The -W flag can be passed to control which warnings will be displayed or even turn them into errors:

$ pytest -q test_show_warnings.py -W error::UserWarning
F [100%]
================================= FAILURES =================================
_________________________________ test_one _________________________________

def test_one():
> assert api_v1() == 1

(continues on next page)

91



pytest Documentation, Release 6.2

(continued from previous page)

test_show_warnings.py:10:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

def api_v1():
> warnings.warn(UserWarning("api v1, should use functions from v2"))
E UserWarning: api v1, should use functions from v2

test_show_warnings.py:5: UserWarning
========================= short test summary info ==========================
FAILED test_show_warnings.py::test_one - UserWarning: api v1, should use ...
1 failed in 0.12s

The same option can be set in the pytest.ini or pyproject.toml file using the filterwarnings ini option.
For example, the configuration below will ignore all user warnings and specific deprecation warnings matching a regex,
but will transform all other warnings into errors.

# pytest.ini
[pytest]
filterwarnings =

error
ignore::UserWarning
ignore:function ham\(\) is deprecated:DeprecationWarning

# pyproject.toml
[tool.pytest.ini_options]
filterwarnings = [

"error",
"ignore::UserWarning",
# note the use of single quote below to denote "raw" strings in TOML
'ignore:function ham\(\) is deprecated:DeprecationWarning',

]

When a warning matches more than one option in the list, the action for the last matching option is performed.

Both -W command-line option and filterwarnings ini option are based on Python’s own -W option and warn-
ings.simplefilter, so please refer to those sections in the Python documentation for other examples and advanced usage.

10.1 @pytest.mark.filterwarnings

You can use the @pytest.mark.filterwarnings to add warning filters to specific test items, allowing you to
have finer control of which warnings should be captured at test, class or even module level:

import warnings

def api_v1():
warnings.warn(UserWarning("api v1, should use functions from v2"))
return 1

@pytest.mark.filterwarnings("ignore:api v1")
def test_one():

assert api_v1() == 1

92 Chapter 10. Warnings Capture

https://docs.python.org/3/using/cmdline.html#cmdoption-w
https://docs.python.org/3/library/warnings.html#warnings.simplefilter
https://docs.python.org/3/library/warnings.html#warnings.simplefilter


pytest Documentation, Release 6.2

Filters applied using a mark take precedence over filters passed on the command line or configured by the
filterwarnings ini option.

You may apply a filter to all tests of a class by using the filterwarnings mark as a class decorator or to all tests
in a module by setting the pytestmark variable:

# turns all warnings into errors for this module
pytestmark = pytest.mark.filterwarnings("error")

Credits go to Florian Schulze for the reference implementation in the pytest-warnings plugin.

10.2 Disabling warnings summary

Although not recommended, you can use the --disable-warnings command-line option to suppress the warning
summary entirely from the test run output.

10.3 Disabling warning capture entirely

This plugin is enabled by default but can be disabled entirely in your pytest.ini file with:

[pytest]
addopts = -p no:warnings

Or passing -p no:warnings in the command-line. This might be useful if your test suites handles warnings using
an external system.

10.4 DeprecationWarning and PendingDeprecationWarning

By default pytest will display DeprecationWarning and PendingDeprecationWarning warnings from
user code and third-party libraries, as recommended by PEP-0565. This helps users keep their code modern and avoid
breakages when deprecated warnings are effectively removed.

Sometimes it is useful to hide some specific deprecation warnings that happen in code that you have no control over
(such as third-party libraries), in which case you might use the warning filters options (ini or marks) to ignore those
warnings.

For example:

[pytest]
filterwarnings =

ignore:.*U.*mode is deprecated:DeprecationWarning

This will ignore all warnings of type DeprecationWarning where the start of the message matches the regular
expression ".*U.*mode is deprecated".

Note: If warnings are configured at the interpreter level, using the PYTHONWARNINGS environment variable or
the -W command-line option, pytest will not configure any filters by default.

Also pytest doesn’t follow PEP-0506 suggestion of resetting all warning filters because it might break test suites
that configure warning filters themselves by calling warnings.simplefilter (see issue #2430 for an example
of that).

10.2. Disabling warnings summary 93

https://github.com/fschulze/pytest-warnings
https://www.python.org/dev/peps/pep-0565
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONWARNINGS
https://github.com/pytest-dev/pytest/issues/2430


pytest Documentation, Release 6.2

10.5 Ensuring code triggers a deprecation warning

You can also use pytest.deprecated_call() for checking that a certain function call triggers a
DeprecationWarning or PendingDeprecationWarning:

import pytest

def test_myfunction_deprecated():
with pytest.deprecated_call():

myfunction(17)

This test will fail if myfunction does not issue a deprecation warning when called with a 17 argument.

10.6 Asserting warnings with the warns function

You can check that code raises a particular warning using func:pytest.warns, which works in a similar manner to
raises:

import warnings
import pytest

def test_warning():
with pytest.warns(UserWarning):

warnings.warn("my warning", UserWarning)

The test will fail if the warning in question is not raised. The keyword argument match to assert that the exception
matches a text or regex:

>>> with warns(UserWarning, match='must be 0 or None'):
... warnings.warn("value must be 0 or None", UserWarning)

>>> with warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("value must be 42", UserWarning)

>>> with warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("this is not here", UserWarning)
Traceback (most recent call last):

...
Failed: DID NOT WARN. No warnings of type ...UserWarning... was emitted...

You can also call func:pytest.warns on a function or code string:

pytest.warns(expected_warning, func, *args, **kwargs)
pytest.warns(expected_warning, "func(*args, **kwargs)")

The function also returns a list of all raised warnings (as warnings.WarningMessage objects), which you can
query for additional information:

with pytest.warns(RuntimeWarning) as record:
warnings.warn("another warning", RuntimeWarning)

# check that only one warning was raised

(continues on next page)

94 Chapter 10. Warnings Capture



pytest Documentation, Release 6.2

(continued from previous page)

assert len(record) == 1
# check that the message matches
assert record[0].message.args[0] == "another warning"

Alternatively, you can examine raised warnings in detail using the recwarn fixture (see below).

The recwarn fixture automatically ensures to reset the warnings filter at the end of the test, so no global state is leaked.

10.7 Recording warnings

You can record raised warnings either using func:pytest.warns or with the recwarn fixture.

To record with func:pytest.warns without asserting anything about the warnings, pass None as the expected
warning type:

with pytest.warns(None) as record:
warnings.warn("user", UserWarning)
warnings.warn("runtime", RuntimeWarning)

assert len(record) == 2
assert str(record[0].message) == "user"
assert str(record[1].message) == "runtime"

The recwarn fixture will record warnings for the whole function:

import warnings

def test_hello(recwarn):
warnings.warn("hello", UserWarning)
assert len(recwarn) == 1
w = recwarn.pop(UserWarning)
assert issubclass(w.category, UserWarning)
assert str(w.message) == "hello"
assert w.filename
assert w.lineno

Both recwarn and func:pytest.warns return the same interface for recorded warnings: a WarningsRecorder
instance. To view the recorded warnings, you can iterate over this instance, call len on it to get the number of
recorded warnings, or index into it to get a particular recorded warning.

Full API: WarningsRecorder.

10.8 Custom failure messages

Recording warnings provides an opportunity to produce custom test failure messages for when no warnings are issued
or other conditions are met.

def test():
with pytest.warns(Warning) as record:

f()
if not record:

pytest.fail("Expected a warning!")

10.7. Recording warnings 95



pytest Documentation, Release 6.2

If no warnings are issued when calling f, then not record will evaluate to True. You can then call pytest.
fail() with a custom error message.

10.9 Internal pytest warnings

pytest may generate its own warnings in some situations, such as improper usage or deprecated features.

For example, pytest will emit a warning if it encounters a class that matches python_classes but also defines an
__init__ constructor, as this prevents the class from being instantiated:

# content of test_pytest_warnings.py
class Test:

def __init__(self):
pass

def test_foo(self):
assert 1 == 1

$ pytest test_pytest_warnings.py -q

============================= warnings summary =============================
test_pytest_warnings.py:1

$REGENDOC_TMPDIR/test_pytest_warnings.py:1: PytestCollectionWarning: cannot collect
→˓test class 'Test' because it has a __init__ constructor (from: test_pytest_warnings.
→˓py)

class Test:

-- Docs: https://docs.pytest.org/en/stable/warnings.html
1 warning in 0.12s

These warnings might be filtered using the same builtin mechanisms used to filter other types of warnings.

Please read our Backwards Compatibility Policy to learn how we proceed about deprecating and eventually removing
features.

The full list of warnings is listed in the reference documentation.

96 Chapter 10. Warnings Capture



CHAPTER

ELEVEN

DOCTEST INTEGRATION FOR MODULES AND TEST FILES

By default, all files matching the test*.txt pattern will be run through the python standard doctest module.
You can change the pattern by issuing:

pytest --doctest-glob="*.rst"

on the command line. --doctest-glob can be given multiple times in the command-line.

If you then have a text file like this:

# content of test_example.txt

hello this is a doctest
>>> x = 3
>>> x
3

then you can just invoke pytest directly:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_example.txt . [100%]

============================ 1 passed in 0.12s =============================

By default, pytest will collect test*.txt files looking for doctest directives, but you can pass additional globs using
the --doctest-glob option (multi-allowed).

In addition to text files, you can also execute doctests directly from docstrings of your classes and functions, including
from test modules:

# content of mymodule.py
def something():

""" a doctest in a docstring
>>> something()
42
"""
return 42

97



pytest Documentation, Release 6.2

$ pytest --doctest-modules
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

mymodule.py . [ 50%]
test_example.txt . [100%]

============================ 2 passed in 0.12s =============================

You can make these changes permanent in your project by putting them into a pytest.ini file like this:

# content of pytest.ini
[pytest]
addopts = --doctest-modules

11.1 Encoding

The default encoding is UTF-8, but you can specify the encoding that will be used for those doctest files using the
doctest_encoding ini option:

# content of pytest.ini
[pytest]
doctest_encoding = latin1

11.2 Using ‘doctest’ options

Python’s standard doctest module provides some options to configure the strictness of doctest tests. In pytest, you
can enable those flags using the configuration file.

For example, to make pytest ignore trailing whitespaces and ignore lengthy exception stack traces you can just write:

[pytest]
doctest_optionflags = NORMALIZE_WHITESPACE IGNORE_EXCEPTION_DETAIL

Alternatively, options can be enabled by an inline comment in the doc test itself:

>>> something_that_raises() # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
ValueError: ...

pytest also introduces new options:

• ALLOW_UNICODE: when enabled, the u prefix is stripped from unicode strings in expected doctest output. This
allows doctests to run in Python 2 and Python 3 unchanged.

• ALLOW_BYTES: similarly, the b prefix is stripped from byte strings in expected doctest output.

• NUMBER: when enabled, floating-point numbers only need to match as far as the precision you have written in
the expected doctest output. For example, the following output would only need to match to 2 decimal places:

98 Chapter 11. Doctest integration for modules and test files

https://docs.python.org/3/library/doctest.html#option-flags


pytest Documentation, Release 6.2

>>> math.pi
3.14

If you wrote 3.1416 then the actual output would need to match to 4 decimal places; and so on.

This avoids false positives caused by limited floating-point precision, like this:

Expected:
0.233

Got:
0.23300000000000001

NUMBER also supports lists of floating-point numbers – in fact, it matches floating-point numbers appearing
anywhere in the output, even inside a string! This means that it may not be appropriate to enable globally in
doctest_optionflags in your configuration file.

New in version 5.1.

11.3 Continue on failure

By default, pytest would report only the first failure for a given doctest. If you want to continue the test even when
you have failures, do:

pytest --doctest-modules --doctest-continue-on-failure

11.4 Output format

You can change the diff output format on failure for your doctests by using one of standard doctest modules
format in options (see doctest.REPORT_UDIFF, doctest.REPORT_CDIFF, doctest.REPORT_NDIFF,
doctest.REPORT_ONLY_FIRST_FAILURE):

pytest --doctest-modules --doctest-report none
pytest --doctest-modules --doctest-report udiff
pytest --doctest-modules --doctest-report cdiff
pytest --doctest-modules --doctest-report ndiff
pytest --doctest-modules --doctest-report only_first_failure

11.5 pytest-specific features

Some features are provided to make writing doctests easier or with better integration with your existing test suite. Keep
in mind however that by using those features you will make your doctests incompatible with the standard doctests
module.

11.3. Continue on failure 99

https://docs.python.org/3/library/doctest.html#doctest.REPORT_UDIFF
https://docs.python.org/3/library/doctest.html#doctest.REPORT_CDIFF
https://docs.python.org/3/library/doctest.html#doctest.REPORT_NDIFF
https://docs.python.org/3/library/doctest.html#doctest.REPORT_ONLY_FIRST_FAILURE


pytest Documentation, Release 6.2

11.5.1 Using fixtures

It is possible to use fixtures using the getfixture helper:

# content of example.rst
>>> tmp = getfixture('tmpdir')
>>> ...
>>>

Note that the fixture needs to be defined in a place visible by pytest, for example, a conftest.py file or plu-
gin; normal python files containing docstrings are not normally scanned for fixtures unless explicitly configured by
python_files.

Also, the usefixtures mark and fixtures marked as autouse are supported when executing text doctest files.

11.5.2 ‘doctest_namespace’ fixture

The doctest_namespace fixture can be used to inject items into the namespace in which your doctests run. It is
intended to be used within your own fixtures to provide the tests that use them with context.

doctest_namespace is a standard dict object into which you place the objects you want to appear in the doctest
namespace:

# content of conftest.py
import numpy

@pytest.fixture(autouse=True)
def add_np(doctest_namespace):

doctest_namespace["np"] = numpy

which can then be used in your doctests directly:

# content of numpy.py
def arange():

"""
>>> a = np.arange(10)
>>> len(a)
10
"""
pass

Note that like the normal conftest.py, the fixtures are discovered in the directory tree conftest is in. Meaning that
if you put your doctest with your source code, the relevant conftest.py needs to be in the same directory tree. Fixtures
will not be discovered in a sibling directory tree!

100 Chapter 11. Doctest integration for modules and test files



pytest Documentation, Release 6.2

11.5.3 Skipping tests

For the same reasons one might want to skip normal tests, it is also possible to skip tests inside doctests.

To skip a single check inside a doctest you can use the standard doctest.SKIP directive:

def test_random(y):
"""
>>> random.random() # doctest: +SKIP
0.156231223

>>> 1 + 1
2
"""

This will skip the first check, but not the second.

pytest also allows using the standard pytest functions pytest.skip() and pytest.xfail() inside doctests,
which might be useful because you can then skip/xfail tests based on external conditions:

>>> import sys, pytest
>>> if sys.platform.startswith('win'):
... pytest.skip('this doctest does not work on Windows')
...
>>> import fcntl
>>> ...

However using those functions is discouraged because it reduces the readability of the docstring.

Note: pytest.skip() and pytest.xfail() behave differently depending if the doctests are in a Python file
(in docstrings) or a text file containing doctests intermingled with text:

• Python modules (docstrings): the functions only act in that specific docstring, letting the other docstrings in the
same module execute as normal.

• Text files: the functions will skip/xfail the checks for the rest of the entire file.

11.6 Alternatives

While the built-in pytest support provides a good set of functionalities for using doctests, if you use them extensively
you might be interested in those external packages which add many more features, and include pytest integration:

• pytest-doctestplus: provides advanced doctest support and enables the testing of reStructuredText (“.rst”) files.

• Sybil: provides a way to test examples in your documentation by parsing them from the documentation source
and evaluating the parsed examples as part of your normal test run.

11.6. Alternatives 101

https://docs.python.org/3/library/doctest.html#doctest.SKIP
https://github.com/astropy/pytest-doctestplus
https://sybil.readthedocs.io


pytest Documentation, Release 6.2

102 Chapter 11. Doctest integration for modules and test files



CHAPTER

TWELVE

SKIP AND XFAIL: DEALING WITH TESTS THAT CANNOT SUCCEED

You can mark test functions that cannot be run on certain platforms or that you expect to fail so pytest can deal with
them accordingly and present a summary of the test session, while keeping the test suite green.

A skip means that you expect your test to pass only if some conditions are met, otherwise pytest should skip running
the test altogether. Common examples are skipping windows-only tests on non-windows platforms, or skipping tests
that depend on an external resource which is not available at the moment (for example a database).

An xfail means that you expect a test to fail for some reason. A common example is a test for a feature not yet
implemented, or a bug not yet fixed. When a test passes despite being expected to fail (marked with pytest.mark.
xfail), it’s an xpass and will be reported in the test summary.

pytest counts and lists skip and xfail tests separately. Detailed information about skipped/xfailed tests is not shown
by default to avoid cluttering the output. You can use the -r option to see details corresponding to the “short” letters
shown in the test progress:

pytest -rxXs # show extra info on xfailed, xpassed, and skipped tests

More details on the -r option can be found by running pytest -h.

(See Builtin configuration file options)

12.1 Skipping test functions

The simplest way to skip a test function is to mark it with the skip decorator which may be passed an optional
reason:

@pytest.mark.skip(reason="no way of currently testing this")
def test_the_unknown():

...

Alternatively, it is also possible to skip imperatively during test execution or setup by calling the pytest.
skip(reason) function:

def test_function():
if not valid_config():

pytest.skip("unsupported configuration")

The imperative method is useful when it is not possible to evaluate the skip condition during import time.

It is also possible to skip the whole module using pytest.skip(reason, allow_module_level=True)
at the module level:

103



pytest Documentation, Release 6.2

import sys
import pytest

if not sys.platform.startswith("win"):
pytest.skip("skipping windows-only tests", allow_module_level=True)

Reference: pytest.mark.skip

12.1.1 skipif

If you wish to skip something conditionally then you can use skipif instead. Here is an example of marking a test
function to be skipped when run on an interpreter earlier than Python3.6:

import sys

@pytest.mark.skipif(sys.version_info < (3, 7), reason="requires python3.7 or higher")
def test_function():

...

If the condition evaluates to True during collection, the test function will be skipped, with the specified reason
appearing in the summary when using -rs.

You can share skipif markers between modules. Consider this test module:

# content of test_mymodule.py
import mymodule

minversion = pytest.mark.skipif(
mymodule.__versioninfo__ < (1, 1), reason="at least mymodule-1.1 required"

)

@minversion
def test_function():

...

You can import the marker and reuse it in another test module:

# test_myothermodule.py
from test_mymodule import minversion

@minversion
def test_anotherfunction():

...

For larger test suites it’s usually a good idea to have one file where you define the markers which you then consistently
apply throughout your test suite.

Alternatively, you can use condition strings instead of booleans, but they can’t be shared between modules easily so
they are supported mainly for backward compatibility reasons.

Reference: pytest.mark.skipif

104 Chapter 12. Skip and xfail: dealing with tests that cannot succeed



pytest Documentation, Release 6.2

12.1.2 Skip all test functions of a class or module

You can use the skipif marker (as any other marker) on classes:

@pytest.mark.skipif(sys.platform == "win32", reason="does not run on windows")
class TestPosixCalls:

def test_function(self):
"will not be setup or run under 'win32' platform"

If the condition is True, this marker will produce a skip result for each of the test methods of that class.

If you want to skip all test functions of a module, you may use the pytestmark global:

# test_module.py
pytestmark = pytest.mark.skipif(...)

If multiple skipif decorators are applied to a test function, it will be skipped if any of the skip conditions is true.

12.1.3 Skipping files or directories

Sometimes you may need to skip an entire file or directory, for example if the tests rely on Python version-specific
features or contain code that you do not wish pytest to run. In this case, you must exclude the files and directories
from collection. Refer to Customizing test collection for more information.

12.1.4 Skipping on a missing import dependency

You can skip tests on a missing import by using pytest.importorskip at module level, within a test, or test setup function.

docutils = pytest.importorskip("docutils")

If docutils cannot be imported here, this will lead to a skip outcome of the test. You can also skip based on the
version number of a library:

docutils = pytest.importorskip("docutils", minversion="0.3")

The version will be read from the specified module’s __version__ attribute.

12.1.5 Summary

Here’s a quick guide on how to skip tests in a module in different situations:

1. Skip all tests in a module unconditionally:

pytestmark = pytest.mark.skip("all tests still WIP")

2. Skip all tests in a module based on some condition:

pytestmark = pytest.mark.skipif(sys.platform == "win32", reason="tests for
→˓linux only")

3. Skip all tests in a module if some import is missing:

pexpect = pytest.importorskip("pexpect")

12.1. Skipping test functions 105



pytest Documentation, Release 6.2

12.2 XFail: mark test functions as expected to fail

You can use the xfail marker to indicate that you expect a test to fail:

@pytest.mark.xfail
def test_function():

...

This test will run but no traceback will be reported when it fails. Instead, terminal reporting will list it in the “expected
to fail” (XFAIL) or “unexpectedly passing” (XPASS) sections.

Alternatively, you can also mark a test as XFAIL from within the test or its setup function imperatively:

def test_function():
if not valid_config():

pytest.xfail("failing configuration (but should work)")

def test_function2():
import slow_module

if slow_module.slow_function():
pytest.xfail("slow_module taking too long")

These two examples illustrate situations where you don’t want to check for a condition at the module level, which is
when a condition would otherwise be evaluated for marks.

This will make test_function XFAIL. Note that no other code is executed after the pytest.xfail() call,
differently from the marker. That’s because it is implemented internally by raising a known exception.

Reference: pytest.mark.xfail

12.2.1 condition parameter

If a test is only expected to fail under a certain condition, you can pass that condition as the first parameter:

@pytest.mark.xfail(sys.platform == "win32", reason="bug in a 3rd party library")
def test_function():

...

Note that you have to pass a reason as well (see the parameter description at pytest.mark.xfail).

12.2.2 reason parameter

You can specify the motive of an expected failure with the reason parameter:

@pytest.mark.xfail(reason="known parser issue")
def test_function():

...

106 Chapter 12. Skip and xfail: dealing with tests that cannot succeed



pytest Documentation, Release 6.2

12.2.3 raises parameter

If you want to be more specific as to why the test is failing, you can specify a single exception, or a tuple of exceptions,
in the raises argument.

@pytest.mark.xfail(raises=RuntimeError)
def test_function():

...

Then the test will be reported as a regular failure if it fails with an exception not mentioned in raises.

12.2.4 run parameter

If a test should be marked as xfail and reported as such but should not be even executed, use the run parameter as
False:

@pytest.mark.xfail(run=False)
def test_function():

...

This is specially useful for xfailing tests that are crashing the interpreter and should be investigated later.

12.2.5 strict parameter

Both XFAIL and XPASS don’t fail the test suite by default. You can change this by setting the strict keyword-only
parameter to True:

@pytest.mark.xfail(strict=True)
def test_function():

...

This will make XPASS (“unexpectedly passing”) results from this test to fail the test suite.

You can change the default value of the strict parameter using the xfail_strict ini option:

[pytest]
xfail_strict=true

12.2.6 Ignoring xfail

By specifying on the commandline:

pytest --runxfail

you can force the running and reporting of an xfail marked test as if it weren’t marked at all. This also causes
pytest.xfail() to produce no effect.

12.2. XFail: mark test functions as expected to fail 107



pytest Documentation, Release 6.2

12.2.7 Examples

Here is a simple test file with the several usages:

import pytest

xfail = pytest.mark.xfail

@xfail
def test_hello():

assert 0

@xfail(run=False)
def test_hello2():

assert 0

@xfail("hasattr(os, 'sep')")
def test_hello3():

assert 0

@xfail(reason="bug 110")
def test_hello4():

assert 0

@xfail('pytest.__version__[0] != "17"')
def test_hello5():

assert 0

def test_hello6():
pytest.xfail("reason")

@xfail(raises=IndexError)
def test_hello7():

x = []
x[1] = 1

Running it with the report-on-xfail option gives this output:

example $ pytest -rx xfail_demo.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/example
collected 7 items

xfail_demo.py xxxxxxx [100%]

========================= short test summary info ==========================
XFAIL xfail_demo.py::test_hello
XFAIL xfail_demo.py::test_hello2

reason: [NOTRUN]

(continues on next page)

108 Chapter 12. Skip and xfail: dealing with tests that cannot succeed



pytest Documentation, Release 6.2

(continued from previous page)

XFAIL xfail_demo.py::test_hello3
condition: hasattr(os, 'sep')

XFAIL xfail_demo.py::test_hello4
bug 110

XFAIL xfail_demo.py::test_hello5
condition: pytest.__version__[0] != "17"

XFAIL xfail_demo.py::test_hello6
reason: reason

XFAIL xfail_demo.py::test_hello7
============================ 7 xfailed in 0.12s ============================

12.3 Skip/xfail with parametrize

It is possible to apply markers like skip and xfail to individual test instances when using parametrize:

import pytest

@pytest.mark.parametrize(
("n", "expected"),
[

(1, 2),
pytest.param(1, 0, marks=pytest.mark.xfail),
pytest.param(1, 3, marks=pytest.mark.xfail(reason="some bug")),
(2, 3),
(3, 4),
(4, 5),
pytest.param(

10, 11, marks=pytest.mark.skipif(sys.version_info >= (3, 0), reason="py2k
→˓")

),
],

)
def test_increment(n, expected):

assert n + 1 == expected

12.3. Skip/xfail with parametrize 109



pytest Documentation, Release 6.2

110 Chapter 12. Skip and xfail: dealing with tests that cannot succeed



CHAPTER

THIRTEEN

PARAMETRIZING FIXTURES AND TEST FUNCTIONS

pytest enables test parametrization at several levels:

• pytest.fixture() allows one to parametrize fixture functions.

• @pytest.mark.parametrize allows one to define multiple sets of arguments and fixtures at the test function or
class.

• pytest_generate_tests allows one to define custom parametrization schemes or extensions.

13.1 @pytest.mark.parametrize: parametrizing test functions

The builtin pytest.mark.parametrize decorator enables parametrization of arguments for a test function. Here is a
typical example of a test function that implements checking that a certain input leads to an expected output:

# content of test_expectation.py
import pytest

@pytest.mark.parametrize("test_input,expected", [("3+5", 8), ("2+4", 6), ("6*9", 42)])
def test_eval(test_input, expected):

assert eval(test_input) == expected

Here, the @parametrize decorator defines three different (test_input,expected) tuples so that the
test_eval function will run three times using them in turn:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_expectation.py ..F [100%]

================================= FAILURES =================================
____________________________ test_eval[6*9-42] _____________________________

test_input = '6*9', expected = 42

@pytest.mark.parametrize("test_input,expected", [("3+5", 8), ("2+4", 6), ("6*9",
→˓42)])

def test_eval(test_input, expected):

(continues on next page)

111



pytest Documentation, Release 6.2

(continued from previous page)

> assert eval(test_input) == expected
E AssertionError: assert 54 == 42
E + where 54 = eval('6*9')

test_expectation.py:6: AssertionError
========================= short test summary info ==========================
FAILED test_expectation.py::test_eval[6*9-42] - AssertionError: assert 54...
======================= 1 failed, 2 passed in 0.12s ========================

Note: Parameter values are passed as-is to tests (no copy whatsoever).

For example, if you pass a list or a dict as a parameter value, and the test case code mutates it, the mutations will be
reflected in subsequent test case calls.

Note: pytest by default escapes any non-ascii characters used in unicode strings for the parametrization because it has
several downsides. If however you would like to use unicode strings in parametrization and see them in the terminal
as is (non-escaped), use this option in your pytest.ini:

[pytest]
disable_test_id_escaping_and_forfeit_all_rights_to_community_support = True

Keep in mind however that this might cause unwanted side effects and even bugs depending on the OS used and
plugins currently installed, so use it at your own risk.

As designed in this example, only one pair of input/output values fails the simple test function. And as usual with test
function arguments, you can see the input and output values in the traceback.

Note that you could also use the parametrize marker on a class or a module (see Marking test functions with attributes)
which would invoke several functions with the argument sets.

It is also possible to mark individual test instances within parametrize, for example with the builtin mark.xfail:

# content of test_expectation.py
import pytest

@pytest.mark.parametrize(
"test_input,expected",
[("3+5", 8), ("2+4", 6), pytest.param("6*9", 42, marks=pytest.mark.xfail)],

)
def test_eval(test_input, expected):

assert eval(test_input) == expected

Let’s run this:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_expectation.py ..x [100%]

(continues on next page)

112 Chapter 13. Parametrizing fixtures and test functions



pytest Documentation, Release 6.2

(continued from previous page)

======================= 2 passed, 1 xfailed in 0.12s =======================

The one parameter set which caused a failure previously now shows up as an “xfailed” (expected to fail) test.

In case the values provided to parametrize result in an empty list - for example, if they’re dynamically generated
by some function - the behaviour of pytest is defined by the empty_parameter_set_mark option.

To get all combinations of multiple parametrized arguments you can stack parametrize decorators:

import pytest

@pytest.mark.parametrize("x", [0, 1])
@pytest.mark.parametrize("y", [2, 3])
def test_foo(x, y):

pass

This will run the test with the arguments set to x=0/y=2, x=1/y=2, x=0/y=3, and x=1/y=3 exhausting parame-
ters in the order of the decorators.

13.2 Basic pytest_generate_tests example

Sometimes you may want to implement your own parametrization scheme or implement some dynamism for deter-
mining the parameters or scope of a fixture. For this, you can use the pytest_generate_tests hook which is
called when collecting a test function. Through the passed in metafunc object you can inspect the requesting test
context and, most importantly, you can call metafunc.parametrize() to cause parametrization.

For example, let’s say we want to run a test taking string inputs which we want to set via a new pytest command
line option. Let’s first write a simple test accepting a stringinput fixture function argument:

# content of test_strings.py

def test_valid_string(stringinput):
assert stringinput.isalpha()

Now we add a conftest.py file containing the addition of a command line option and the parametrization of our
test function:

# content of conftest.py

def pytest_addoption(parser):
parser.addoption(

"--stringinput",
action="append",
default=[],
help="list of stringinputs to pass to test functions",

)

def pytest_generate_tests(metafunc):
if "stringinput" in metafunc.fixturenames:

metafunc.parametrize("stringinput", metafunc.config.getoption("stringinput"))

13.2. Basic pytest_generate_tests example 113



pytest Documentation, Release 6.2

If we now pass two stringinput values, our test will run twice:

$ pytest -q --stringinput="hello" --stringinput="world" test_strings.py
.. [100%]
2 passed in 0.12s

Let’s also run with a stringinput that will lead to a failing test:

$ pytest -q --stringinput="!" test_strings.py
F [100%]
================================= FAILURES =================================
___________________________ test_valid_string[!] ___________________________

stringinput = '!'

def test_valid_string(stringinput):
> assert stringinput.isalpha()
E AssertionError: assert False
E + where False = <built-in method isalpha of str object at 0xdeadbeef>()
E + where <built-in method isalpha of str object at 0xdeadbeef> = '!'.
→˓isalpha

test_strings.py:4: AssertionError
========================= short test summary info ==========================
FAILED test_strings.py::test_valid_string[!] - AssertionError: assert False
1 failed in 0.12s

As expected our test function fails.

If you don’t specify a stringinput it will be skipped because metafunc.parametrize() will be called with an
empty parameter list:

$ pytest -q -rs test_strings.py
s [100%]
========================= short test summary info ==========================
SKIPPED [1] test_strings.py: got empty parameter set ['stringinput'], function test_
→˓valid_string at $REGENDOC_TMPDIR/test_strings.py:2
1 skipped in 0.12s

Note that when calling metafunc.parametrizemultiple times with different parameter sets, all parameter names
across those sets cannot be duplicated, otherwise an error will be raised.

13.3 More examples

For further examples, you might want to look at more parametrization examples.

114 Chapter 13. Parametrizing fixtures and test functions



CHAPTER

FOURTEEN

CACHE: WORKING WITH CROSS-TESTRUN STATE

14.1 Usage

The plugin provides two command line options to rerun failures from the last pytest invocation:

• --lf, --last-failed - to only re-run the failures.

• --ff, --failed-first - to run the failures first and then the rest of the tests.

For cleanup (usually not needed), a --cache-clear option allows to remove all cross-session cache contents ahead
of a test run.

Other plugins may access the config.cache object to set/get json encodable values between pytest invocations.

Note: This plugin is enabled by default, but can be disabled if needed: see Deactivating / unregistering a plugin by
name (the internal name for this plugin is cacheprovider).

14.2 Rerunning only failures or failures first

First, let’s create 50 test invocation of which only 2 fail:

# content of test_50.py
import pytest

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
pytest.fail("bad luck")

If you run this for the first time you will see two failures:

$ pytest -q
.................F.......F........................ [100%]
================================= FAILURES =================================
_______________________________ test_num[17] _______________________________

i = 17

@pytest.mark.parametrize("i", range(50))
def test_num(i):

(continues on next page)

115



pytest Documentation, Release 6.2

(continued from previous page)

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:7: Failed
_______________________________ test_num[25] _______________________________

i = 25

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:7: Failed
========================= short test summary info ==========================
FAILED test_50.py::test_num[17] - Failed: bad luck
FAILED test_50.py::test_num[25] - Failed: bad luck
2 failed, 48 passed in 0.12s

If you then run it with --lf:

$ pytest --lf
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items
run-last-failure: rerun previous 2 failures

test_50.py FF [100%]

================================= FAILURES =================================
_______________________________ test_num[17] _______________________________

i = 17

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:7: Failed
_______________________________ test_num[25] _______________________________

i = 25

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:7: Failed
========================= short test summary info ==========================

(continues on next page)

116 Chapter 14. Cache: working with cross-testrun state



pytest Documentation, Release 6.2

(continued from previous page)

FAILED test_50.py::test_num[17] - Failed: bad luck
FAILED test_50.py::test_num[25] - Failed: bad luck
============================ 2 failed in 0.12s =============================

You have run only the two failing tests from the last run, while the 48 passing tests have not been run (“deselected”).

Now, if you run with the --ff option, all tests will be run but the first previous failures will be executed first (as can
be seen from the series of FF and dots):

$ pytest --ff
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 50 items
run-last-failure: rerun previous 2 failures first

test_50.py FF................................................ [100%]

================================= FAILURES =================================
_______________________________ test_num[17] _______________________________

i = 17

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:7: Failed
_______________________________ test_num[25] _______________________________

i = 25

@pytest.mark.parametrize("i", range(50))
def test_num(i):

if i in (17, 25):
> pytest.fail("bad luck")
E Failed: bad luck

test_50.py:7: Failed
========================= short test summary info ==========================
FAILED test_50.py::test_num[17] - Failed: bad luck
FAILED test_50.py::test_num[25] - Failed: bad luck
======================= 2 failed, 48 passed in 0.12s =======================

New --nf, --new-first options: run new tests first followed by the rest of the tests, in both cases tests are also
sorted by the file modified time, with more recent files coming first.

14.2. Rerunning only failures or failures first 117



pytest Documentation, Release 6.2

14.3 Behavior when no tests failed in the last run

When no tests failed in the last run, or when no cached lastfailed data was found, pytest can be configured
either to run all of the tests or no tests, using the --last-failed-no-failures option, which takes one of the
following values:

pytest --last-failed --last-failed-no-failures all # run all tests (default
→˓behavior)
pytest --last-failed --last-failed-no-failures none # run no tests and exit

14.4 The new config.cache object

Plugins or conftest.py support code can get a cached value using the pytest config object. Here is a basic example
plugin which implements a fixture which re-uses previously created state across pytest invocations:

# content of test_caching.py
import pytest
import time

def expensive_computation():
print("running expensive computation...")

@pytest.fixture
def mydata(request):

val = request.config.cache.get("example/value", None)
if val is None:

expensive_computation()
val = 42
request.config.cache.set("example/value", val)

return val

def test_function(mydata):
assert mydata == 23

If you run this command for the first time, you can see the print statement:

$ pytest -q
F [100%]
================================= FAILURES =================================
______________________________ test_function _______________________________

mydata = 42

def test_function(mydata):
> assert mydata == 23
E assert 42 == 23

test_caching.py:20: AssertionError
-------------------------- Captured stdout setup ---------------------------
running expensive computation...
========================= short test summary info ==========================

(continues on next page)

118 Chapter 14. Cache: working with cross-testrun state



pytest Documentation, Release 6.2

(continued from previous page)

FAILED test_caching.py::test_function - assert 42 == 23
1 failed in 0.12s

If you run it a second time, the value will be retrieved from the cache and nothing will be printed:

$ pytest -q
F [100%]
================================= FAILURES =================================
______________________________ test_function _______________________________

mydata = 42

def test_function(mydata):
> assert mydata == 23
E assert 42 == 23

test_caching.py:20: AssertionError
========================= short test summary info ==========================
FAILED test_caching.py::test_function - assert 42 == 23
1 failed in 0.12s

See the config.cache fixture for more details.

14.5 Inspecting Cache content

You can always peek at the content of the cache using the --cache-show command line option:

$ pytest --cache-show
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
cachedir: $PYTHON_PREFIX/.pytest_cache
--------------------------- cache values for '*' ---------------------------
cache/lastfailed contains:

{'test_50.py::test_num[17]': True,
'test_50.py::test_num[25]': True,
'test_assert1.py::test_function': True,
'test_assert2.py::test_set_comparison': True,
'test_caching.py::test_function': True,
'test_foocompare.py::test_compare': True}

cache/nodeids contains:
['test_50.py::test_num[0]',
'test_50.py::test_num[10]',
'test_50.py::test_num[11]',
'test_50.py::test_num[12]',
'test_50.py::test_num[13]',
'test_50.py::test_num[14]',
'test_50.py::test_num[15]',
'test_50.py::test_num[16]',
'test_50.py::test_num[17]',
'test_50.py::test_num[18]',
'test_50.py::test_num[19]',
'test_50.py::test_num[1]',

(continues on next page)

14.5. Inspecting Cache content 119



pytest Documentation, Release 6.2

(continued from previous page)

'test_50.py::test_num[20]',
'test_50.py::test_num[21]',
'test_50.py::test_num[22]',
'test_50.py::test_num[23]',
'test_50.py::test_num[24]',
'test_50.py::test_num[25]',
'test_50.py::test_num[26]',
'test_50.py::test_num[27]',
'test_50.py::test_num[28]',
'test_50.py::test_num[29]',
'test_50.py::test_num[2]',
'test_50.py::test_num[30]',
'test_50.py::test_num[31]',
'test_50.py::test_num[32]',
'test_50.py::test_num[33]',
'test_50.py::test_num[34]',
'test_50.py::test_num[35]',
'test_50.py::test_num[36]',
'test_50.py::test_num[37]',
'test_50.py::test_num[38]',
'test_50.py::test_num[39]',
'test_50.py::test_num[3]',
'test_50.py::test_num[40]',
'test_50.py::test_num[41]',
'test_50.py::test_num[42]',
'test_50.py::test_num[43]',
'test_50.py::test_num[44]',
'test_50.py::test_num[45]',
'test_50.py::test_num[46]',
'test_50.py::test_num[47]',
'test_50.py::test_num[48]',
'test_50.py::test_num[49]',
'test_50.py::test_num[4]',
'test_50.py::test_num[5]',
'test_50.py::test_num[6]',
'test_50.py::test_num[7]',
'test_50.py::test_num[8]',
'test_50.py::test_num[9]',
'test_assert1.py::test_function',
'test_assert2.py::test_set_comparison',
'test_caching.py::test_function',
'test_foocompare.py::test_compare']

cache/stepwise contains:
[]

example/value contains:
42

========================== no tests ran in 0.12s ===========================

--cache-show takes an optional argument to specify a glob pattern for filtering:

$ pytest --cache-show example/*
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
cachedir: $PYTHON_PREFIX/.pytest_cache

(continues on next page)

120 Chapter 14. Cache: working with cross-testrun state



pytest Documentation, Release 6.2

(continued from previous page)

----------------------- cache values for 'example/*' -----------------------
example/value contains:

42

========================== no tests ran in 0.12s ===========================

14.6 Clearing Cache content

You can instruct pytest to clear all cache files and values by adding the --cache-clear option like this:

pytest --cache-clear

This is recommended for invocations from Continuous Integration servers where isolation and correctness is more
important than speed.

14.7 Stepwise

As an alternative to --lf -x, especially for cases where you expect a large part of the test suite will fail, --sw,
--stepwise allows you to fix them one at a time. The test suite will run until the first failure and then stop. At the
next invocation, tests will continue from the last failing test and then run until the next failing test. You may use the
--stepwise-skip option to ignore one failing test and stop the test execution on the second failing test instead.
This is useful if you get stuck on a failing test and just want to ignore it until later.

14.6. Clearing Cache content 121



pytest Documentation, Release 6.2

122 Chapter 14. Cache: working with cross-testrun state



CHAPTER

FIFTEEN

UNITTEST.TESTCASE SUPPORT

pytest supports running Python unittest-based tests out of the box. It’s meant for leveraging existing
unittest-based test suites to use pytest as a test runner and also allow to incrementally adapt the test suite to
take full advantage of pytest’s features.

To run an existing unittest-style test suite using pytest, type:

pytest tests

pytest will automatically collect unittest.TestCase subclasses and their test methods in test_*.py or
*_test.py files.

Almost all unittest features are supported:

• @unittest.skip style decorators;

• setUp/tearDown;

• setUpClass/tearDownClass;

• setUpModule/tearDownModule;

Up to this point pytest does not have support for the following features:

• load_tests protocol;

• subtests;

15.1 Benefits out of the box

By running your test suite with pytest you can make use of several features, in most cases without having to modify
existing code:

• Obtain more informative tracebacks;

• stdout and stderr capturing;

• Test selection options using -k and -m flags;

• Stopping after the first (or N) failures;

• –pdb command-line option for debugging on test failures (see note below);

• Distribute tests to multiple CPUs using the pytest-xdist plugin;

• Use plain assert-statements instead of self.assert* functions (unittest2pytest is immensely helpful in this);

123

https://docs.python.org/3/library/unittest.html#load-tests-protocol
https://docs.python.org/3/library/unittest.html#distinguishing-test-iterations-using-subtests
https://pypi.org/project/pytest-xdist/
https://pypi.org/project/unittest2pytest/


pytest Documentation, Release 6.2

15.2 pytest features in unittest.TestCase subclasses

The following pytest features work in unittest.TestCase subclasses:

• Marks: skip, skipif , xfail;

• Auto-use fixtures;

The following pytest features do not work, and probably never will due to different design philosophies:

• Fixtures (except for autouse fixtures, see below);

• Parametrization;

• Custom hooks;

Third party plugins may or may not work well, depending on the plugin and the test suite.

15.3 Mixing pytest fixtures into unittest.TestCase subclasses us-
ing marks

Running your unittest with pytest allows you to use its fixture mechanism with unittest.TestCase style tests.
Assuming you have at least skimmed the pytest fixture features, let’s jump-start into an example that integrates a pytest
db_class fixture, setting up a class-cached database object, and then reference it from a unittest-style test:

# content of conftest.py

# we define a fixture function below and it will be "used" by
# referencing its name from tests

import pytest

@pytest.fixture(scope="class")
def db_class(request):

class DummyDB:
pass

# set a class attribute on the invoking test context
request.cls.db = DummyDB()

This defines a fixture function db_class which - if used - is called once for each test class and which sets the class-
level db attribute to a DummyDB instance. The fixture function achieves this by receiving a special request object
which gives access to the requesting test context such as the cls attribute, denoting the class from which the fixture is
used. This architecture de-couples fixture writing from actual test code and allows re-use of the fixture by a minimal
reference, the fixture name. So let’s write an actual unittest.TestCase class using our fixture definition:

# content of test_unittest_db.py

import unittest
import pytest

@pytest.mark.usefixtures("db_class")
class MyTest(unittest.TestCase):

def test_method1(self):

(continues on next page)

124 Chapter 15. unittest.TestCase Support



pytest Documentation, Release 6.2

(continued from previous page)

assert hasattr(self, "db")
assert 0, self.db # fail for demo purposes

def test_method2(self):
assert 0, self.db # fail for demo purposes

The @pytest.mark.usefixtures("db_class") class-decorator makes sure that the pytest fixture function
db_class is called once per class. Due to the deliberately failing assert statements, we can take a look at the
self.db values in the traceback:

$ pytest test_unittest_db.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_unittest_db.py FF [100%]

================================= FAILURES =================================
___________________________ MyTest.test_method1 ____________________________

self = <test_unittest_db.MyTest testMethod=test_method1>

def test_method1(self):
assert hasattr(self, "db")

> assert 0, self.db # fail for demo purposes
E AssertionError: <conftest.db_class.<locals>.DummyDB object at 0xdeadbeef>
E assert 0

test_unittest_db.py:10: AssertionError
___________________________ MyTest.test_method2 ____________________________

self = <test_unittest_db.MyTest testMethod=test_method2>

def test_method2(self):
> assert 0, self.db # fail for demo purposes
E AssertionError: <conftest.db_class.<locals>.DummyDB object at 0xdeadbeef>
E assert 0

test_unittest_db.py:13: AssertionError
========================= short test summary info ==========================
FAILED test_unittest_db.py::MyTest::test_method1 - AssertionError: <conft...
FAILED test_unittest_db.py::MyTest::test_method2 - AssertionError: <conft...
============================ 2 failed in 0.12s =============================

This default pytest traceback shows that the two test methods share the same self.db instance which was our
intention when writing the class-scoped fixture function above.

15.3. Mixing pytest fixtures into unittest.TestCase subclasses using marks 125



pytest Documentation, Release 6.2

15.4 Using autouse fixtures and accessing other fixtures

Although it’s usually better to explicitly declare use of fixtures you need for a given test, you may sometimes want to
have fixtures that are automatically used in a given context. After all, the traditional style of unittest-setup mandates
the use of this implicit fixture writing and chances are, you are used to it or like it.

You can flag fixture functions with @pytest.fixture(autouse=True) and define the fixture function in the
context where you want it used. Let’s look at an initdir fixture which makes all test methods of a TestCase
class execute in a temporary directory with a pre-initialized samplefile.ini. Our initdir fixture itself uses
the pytest builtin tmpdir fixture to delegate the creation of a per-test temporary directory:

# content of test_unittest_cleandir.py
import pytest
import unittest

class MyTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def initdir(self, tmpdir):

tmpdir.chdir() # change to pytest-provided temporary directory
tmpdir.join("samplefile.ini").write("# testdata")

def test_method(self):
with open("samplefile.ini") as f:

s = f.read()
assert "testdata" in s

Due to the autouse flag the initdir fixture function will be used for all methods of the class where it is de-
fined. This is a shortcut for using a @pytest.mark.usefixtures("initdir") marker on the class like in
the previous example.

Running this test module . . . :

$ pytest -q test_unittest_cleandir.py
. [100%]
1 passed in 0.12s

. . . gives us one passed test because the initdir fixture function was executed ahead of the test_method.

Note: unittest.TestCase methods cannot directly receive fixture arguments as implementing that is likely to
inflict on the ability to run general unittest.TestCase test suites.

The above usefixtures and autouse examples should help to mix in pytest fixtures into unittest suites.

You can also gradually move away from subclassing from unittest.TestCase to plain asserts and then start to
benefit from the full pytest feature set step by step.

Note: Due to architectural differences between the two frameworks, setup and teardown for unittest-based tests
is performed during the call phase of testing instead of in pytest’s standard setup and teardown stages.
This can be important to understand in some situations, particularly when reasoning about errors. For example, if a
unittest-based suite exhibits errors during setup, pytest will report no errors during its setup phase and will
instead raise the error during call.

126 Chapter 15. unittest.TestCase Support



CHAPTER

SIXTEEN

RUNNING TESTS WRITTEN FOR NOSE

pytest has basic support for running tests written for nose.

16.1 Usage

After Install pytest type:

python setup.py develop # make sure tests can import our package
pytest # instead of 'nosetests'

and you should be able to run your nose style tests and make use of pytest’s capabilities.

16.2 Supported nose Idioms

• setup and teardown at module/class/method level

• SkipTest exceptions and markers

• setup/teardown decorators

• __test__ attribute on modules/classes/functions

• general usage of nose utilities

16.3 Unsupported idioms / known issues

• unittest-style setUp, tearDown, setUpClass, tearDownClass are recognized only on
unittest.TestCase classes but not on plain classes. nose supports these methods also on plain
classes but pytest deliberately does not. As nose and pytest already both support setup_class,
teardown_class, setup_method, teardown_method it doesn’t seem useful to duplicate the
unittest-API like nose does. If you however rather think pytest should support the unittest-spelling on plain
classes please post to this issue.

• nose imports test modules with the same import path (e.g. tests.test_mode) but different file system
paths (e.g. tests/test_mode.py and other/tests/test_mode.py) by extending sys.path/import
semantics. pytest does not do that but there is discussion in #268 for adding some support. Note that nose2
choose to avoid this sys.path/import hackery.

127

https://nose.readthedocs.io/en/latest/
https://github.com/pytest-dev/pytest/issues/377/
https://github.com/pytest-dev/pytest/issues/268
https://nose2.readthedocs.io/en/latest/differences.html#test-discovery-and-loading
https://nose2.readthedocs.io/en/latest/differences.html#test-discovery-and-loading


pytest Documentation, Release 6.2

If you place a conftest.py file in the root directory of your project (as determined by pytest) pytest will run tests
“nose style” against the code below that directory by adding it to your sys.path instead of running against
your installed code.

You may find yourself wanting to do this if you ran python setup.py install to set up your project,
as opposed to python setup.py develop or any of the package manager equivalents. Installing with
develop in a virtual environment like tox is recommended over this pattern.

• nose-style doctests are not collected and executed correctly, also doctest fixtures don’t work.

• no nose-configuration is recognized.

• yield-based methods are unsupported as of pytest 4.1.0. They are fundamentally incompatible with pytest
because they don’t support fixtures properly since collection and test execution are separated.

16.4 Migrating from nose to pytest

nose2pytest is a Python script and pytest plugin to help convert Nose-based tests into pytest-based tests. Specifically,
the script transforms nose.tools.assert_* function calls into raw assert statements, while preserving format of original
arguments as much as possible.

128 Chapter 16. Running tests written for nose

https://github.com/pytest-dev/nose2pytest


CHAPTER

SEVENTEEN

CLASSIC XUNIT-STYLE SETUP

This section describes a classic and popular way how you can implement fixtures (setup and teardown test state) on a
per-module/class/function basis.

Note: While these setup/teardown methods are simple and familiar to those coming from a unittest or nose
background, you may also consider using pytest’s more powerful fixture mechanism which leverages the concept of
dependency injection, allowing for a more modular and more scalable approach for managing test state, especially for
larger projects and for functional testing. You can mix both fixture mechanisms in the same file but test methods of
unittest.TestCase subclasses cannot receive fixture arguments.

17.1 Module level setup/teardown

If you have multiple test functions and test classes in a single module you can optionally implement the following
fixture methods which will usually be called once for all the functions:

def setup_module(module):
""" setup any state specific to the execution of the given module."""

def teardown_module(module):
""" teardown any state that was previously setup with a setup_module
method.
"""

As of pytest-3.0, the module parameter is optional.

17.2 Class level setup/teardown

Similarly, the following methods are called at class level before and after all test methods of the class are called:

@classmethod
def setup_class(cls):

""" setup any state specific to the execution of the given class (which
usually contains tests).
"""

@classmethod
(continues on next page)

129



pytest Documentation, Release 6.2

(continued from previous page)

def teardown_class(cls):
""" teardown any state that was previously setup with a call to
setup_class.
"""

17.3 Method and function level setup/teardown

Similarly, the following methods are called around each method invocation:

def setup_method(self, method):
""" setup any state tied to the execution of the given method in a
class. setup_method is invoked for every test method of a class.
"""

def teardown_method(self, method):
""" teardown any state that was previously setup with a setup_method
call.
"""

As of pytest-3.0, the method parameter is optional.

If you would rather define test functions directly at module level you can also use the following functions to implement
fixtures:

def setup_function(function):
""" setup any state tied to the execution of the given function.
Invoked for every test function in the module.
"""

def teardown_function(function):
""" teardown any state that was previously setup with a setup_function
call.
"""

As of pytest-3.0, the function parameter is optional.

Remarks:

• It is possible for setup/teardown pairs to be invoked multiple times per testing process.

• teardown functions are not called if the corresponding setup function existed and failed/was skipped.

• Prior to pytest-4.2, xunit-style functions did not obey the scope rules of fixtures, so it was possible, for example,
for a setup_method to be called before a session-scoped autouse fixture.

Now the xunit-style functions are integrated with the fixture mechanism and obey the proper scope rules of
fixtures involved in the call.

130 Chapter 17. classic xunit-style setup



CHAPTER

EIGHTEEN

INSTALLING AND USING PLUGINS

This section talks about installing and using third party plugins. For writing your own plugins, please refer to Writing
plugins.

Installing a third party plugin can be easily done with pip:

pip install pytest-NAME
pip uninstall pytest-NAME

If a plugin is installed, pytest automatically finds and integrates it, there is no need to activate it.

Here is a little annotated list for some popular plugins:

• pytest-django: write tests for django apps, using pytest integration.

• pytest-twisted: write tests for twisted apps, starting a reactor and processing deferreds from test functions.

• pytest-cov: coverage reporting, compatible with distributed testing

• pytest-xdist: to distribute tests to CPUs and remote hosts, to run in boxed mode which allows to survive seg-
mentation faults, to run in looponfailing mode, automatically re-running failing tests on file changes.

• pytest-instafail: to report failures while the test run is happening.

• pytest-bdd: to write tests using behaviour-driven testing.

• pytest-timeout: to timeout tests based on function marks or global definitions.

• pytest-pep8: a --pep8 option to enable PEP8 compliance checking.

• pytest-flakes: check source code with pyflakes.

• oejskit: a plugin to run javascript unittests in live browsers.

To see a complete list of all plugins with their latest testing status against different pytest and Python versions, please
visit plugincompat.

You may also discover more plugins through a pytest- pypi.org search.

131

https://pypi.org/project/pytest-django/
https://www.djangoproject.com/
https://pypi.org/project/pytest-twisted/
http://twistedmatrix.com
https://pypi.org/project/pytest-cov/
https://pypi.org/project/pytest-xdist/
https://pypi.org/project/pytest-instafail/
https://pypi.org/project/pytest-bdd/
https://pypi.org/project/pytest-timeout/
https://pypi.org/project/pytest-pep8/
https://pypi.org/project/pytest-flakes/
https://pypi.org/project/oejskit/
http://plugincompat.herokuapp.com/
https://pypi.org/search/?q=pytest-


pytest Documentation, Release 6.2

18.1 Requiring/Loading plugins in a test module or conftest file

You can require plugins in a test module or a conftest file using pytest_plugins:

pytest_plugins = ("myapp.testsupport.myplugin",)

When the test module or conftest plugin is loaded the specified plugins will be loaded as well.

Note: Requiring plugins using a pytest_plugins variable in non-root conftest.py files is deprecated. See
full explanation in the Writing plugins section.

Note: The name pytest_plugins is reserved and should not be used as a name for a custom plugin module.

18.2 Finding out which plugins are active

If you want to find out which plugins are active in your environment you can type:

pytest --trace-config

and will get an extended test header which shows activated plugins and their names. It will also print local plugins aka
conftest.py files when they are loaded.

18.3 Deactivating / unregistering a plugin by name

You can prevent plugins from loading or unregister them:

pytest -p no:NAME

This means that any subsequent try to activate/load the named plugin will not work.

If you want to unconditionally disable a plugin for a project, you can add this option to your pytest.ini file:

[pytest]
addopts = -p no:NAME

Alternatively to disable it only in certain environments (for example in a CI server), you can set PYTEST_ADDOPTS
environment variable to -p no:name.

See Finding out which plugins are active for how to obtain the name of a plugin.

132 Chapter 18. Installing and Using plugins



CHAPTER

NINETEEN

WRITING PLUGINS

It is easy to implement local conftest plugins for your own project or pip-installable plugins that can be used throughout
many projects, including third party projects. Please refer to Installing and Using plugins if you only want to use but
not write plugins.

A plugin contains one or multiple hook functions. Writing hooks explains the basics and details of how you can write a
hook function yourself. pytest implements all aspects of configuration, collection, running and reporting by calling
well specified hooks of the following plugins:

• builtin plugins: loaded from pytest’s internal _pytest directory.

• external plugins: modules discovered through setuptools entry points

• conftest.py plugins: modules auto-discovered in test directories

In principle, each hook call is a 1:N Python function call where N is the number of registered implementation functions
for a given specification. All specifications and implementations follow the pytest_ prefix naming convention,
making them easy to distinguish and find.

19.1 Plugin discovery order at tool startup

pytest loads plugin modules at tool startup in the following way:

1. by scanning the command line for the -p no:name option and blocking that plugin from being loaded (even
builtin plugins can be blocked this way). This happens before normal command-line parsing.

2. by loading all builtin plugins.

3. by scanning the command line for the -p name option and loading the specified plugin. This happens before
normal command-line parsing.

4. by loading all plugins registered through setuptools entry points.

5. by loading all plugins specified through the PYTEST_PLUGINS environment variable.

6. by loading all conftest.py files as inferred by the command line invocation:

• if no test paths are specified, use the current dir as a test path

• if exists, load conftest.py and test*/conftest.py relative to the directory part of the first test
path. After the conftest.py file is loaded, load all plugins specified in its pytest_plugins variable
if present.

Note that pytest does not find conftest.py files in deeper nested sub directories at tool startup. It is usually
a good idea to keep your conftest.py file in the top level test or project root directory.

7. by recursively loading all plugins specified by the pytest_plugins variable in conftest.py files.

133



pytest Documentation, Release 6.2

19.2 conftest.py: local per-directory plugins

Local conftest.py plugins contain directory-specific hook implementations. Hook Session and test running activi-
ties will invoke all hooks defined in conftest.py files closer to the root of the filesystem. Example of implementing
the pytest_runtest_setup hook so that is called for tests in the a sub directory but not for other directories:

a/conftest.py:
def pytest_runtest_setup(item):

# called for running each test in 'a' directory
print("setting up", item)

a/test_sub.py:
def test_sub():

pass

test_flat.py:
def test_flat():

pass

Here is how you might run it:

pytest test_flat.py --capture=no # will not show "setting up"
pytest a/test_sub.py --capture=no # will show "setting up"

Note: If you have conftest.py files which do not reside in a python package directory (i.e. one containing an
__init__.py) then “import conftest” can be ambiguous because there might be other conftest.py files as well
on your PYTHONPATH or sys.path. It is thus good practice for projects to either put conftest.py under a
package scope or to never import anything from a conftest.py file.

See also: pytest import mechanisms and sys.path/PYTHONPATH.

Note: Some hooks should be implemented only in plugins or conftest.py files situated at the tests root directory due
to how pytest discovers plugins during startup, see the documentation of each hook for details.

19.3 Writing your own plugin

If you want to write a plugin, there are many real-life examples you can copy from:

• a custom collection example plugin: A basic example for specifying tests in Yaml files

• builtin plugins which provide pytest’s own functionality

• many external plugins providing additional features

All of these plugins implement hooks and/or fixtures to extend and add functionality.

Note: Make sure to check out the excellent cookiecutter-pytest-plugin project, which is a cookiecutter template for
authoring plugins.

The template provides an excellent starting point with a working plugin, tests running with tox, a comprehensive
README file as well as a pre-configured entry-point.

134 Chapter 19. Writing plugins

http://plugincompat.herokuapp.com
https://github.com/pytest-dev/cookiecutter-pytest-plugin
https://github.com/audreyr/cookiecutter


pytest Documentation, Release 6.2

Also consider contributing your plugin to pytest-dev once it has some happy users other than yourself.

19.4 Making your plugin installable by others

If you want to make your plugin externally available, you may define a so-called entry point for your distribution so
that pytest finds your plugin module. Entry points are a feature that is provided by setuptools. pytest looks up
the pytest11 entrypoint to discover its plugins and you can thus make your plugin available by defining it in your
setuptools-invocation:

# sample ./setup.py file
from setuptools import setup

setup(
name="myproject",
packages=["myproject"],
# the following makes a plugin available to pytest
entry_points={"pytest11": ["name_of_plugin = myproject.pluginmodule"]},
# custom PyPI classifier for pytest plugins
classifiers=["Framework :: Pytest"],

)

If a package is installed this way, pytest will load myproject.pluginmodule as a plugin which can define
hooks.

Note: Make sure to include Framework :: Pytest in your list of PyPI classifiers to make it easy for users to
find your plugin.

19.5 Assertion Rewriting

One of the main features of pytest is the use of plain assert statements and the detailed introspection of expressions
upon assertion failures. This is provided by “assertion rewriting” which modifies the parsed AST before it gets com-
piled to bytecode. This is done via a PEP 302 import hook which gets installed early on when pytest starts up and
will perform this rewriting when modules get imported. However, since we do not want to test different bytecode from
what you will run in production, this hook only rewrites test modules themselves (as defined by the python_files
configuration option), and any modules which are part of plugins. Any other imported module will not be rewritten
and normal assertion behaviour will happen.

If you have assertion helpers in other modules where you would need assertion rewriting to be enabled you need to
ask pytest explicitly to rewrite this module before it gets imported.

register_assert_rewrite(*names: str)→ None
Register one or more module names to be rewritten on import.

This function will make sure that this module or all modules inside the package will get their assert statements
rewritten. Thus you should make sure to call this before the module is actually imported, usually in your
__init__.py if you are a plugin using a package.

Raises TypeError – If the given module names are not strings.

This is especially important when you write a pytest plugin which is created using a package. The import hook only
treats conftest.py files and any modules which are listed in the pytest11 entrypoint as plugins. As an example
consider the following package:

19.4. Making your plugin installable by others 135

https://pypi.org/project/setuptools/
https://pypi.org/classifiers/
https://www.python.org/dev/peps/pep-0302
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError


pytest Documentation, Release 6.2

pytest_foo/__init__.py
pytest_foo/plugin.py
pytest_foo/helper.py

With the following typical setup.py extract:

setup(..., entry_points={"pytest11": ["foo = pytest_foo.plugin"]}, ...)

In this case only pytest_foo/plugin.py will be rewritten. If the helper module also contains assert statements
which need to be rewritten it needs to be marked as such, before it gets imported. This is easiest by marking it
for rewriting inside the __init__.py module, which will always be imported first when a module inside a pack-
age is imported. This way plugin.py can still import helper.py normally. The contents of pytest_foo/
__init__.py will then need to look like this:

import pytest

pytest.register_assert_rewrite("pytest_foo.helper")

19.6 Requiring/Loading plugins in a test module or conftest file

You can require plugins in a test module or a conftest.py file using pytest_plugins:

pytest_plugins = ["name1", "name2"]

When the test module or conftest plugin is loaded the specified plugins will be loaded as well. Any module can be
blessed as a plugin, including internal application modules:

pytest_plugins = "myapp.testsupport.myplugin"

pytest_plugins are processed recursively, so note that in the example above if myapp.testsupport.
myplugin also declares pytest_plugins, the contents of the variable will also be loaded as plugins, and so
on.

Note: Requiring plugins using pytest_plugins variable in non-root conftest.py files is deprecated.

This is important because conftest.py files implement per-directory hook implementations, but once a plugin is
imported, it will affect the entire directory tree. In order to avoid confusion, defining pytest_plugins in any
conftest.py file which is not located in the tests root directory is deprecated, and will raise a warning.

This mechanism makes it easy to share fixtures within applications or even external applications without the need to
create external plugins using the setuptools’s entry point technique.

Plugins imported by pytest_plugins will also automatically be marked for assertion rewriting (see pytest.
register_assert_rewrite()). However for this to have any effect the module must not be imported already; if
it was already imported at the time the pytest_plugins statement is processed, a warning will result and assertions
inside the plugin will not be rewritten. To fix this you can either call pytest.register_assert_rewrite()
yourself before the module is imported, or you can arrange the code to delay the importing until after the plugin is
registered.

136 Chapter 19. Writing plugins



pytest Documentation, Release 6.2

19.7 Accessing another plugin by name

If a plugin wants to collaborate with code from another plugin it can obtain a reference through the plugin manager
like this:

plugin = config.pluginmanager.get_plugin("name_of_plugin")

If you want to look at the names of existing plugins, use the --trace-config option.

19.8 Registering custom markers

If your plugin uses any markers, you should register them so that they appear in pytest’s help text and do not cause
spurious warnings. For example, the following plugin would register cool_marker and mark_with for all users:

def pytest_configure(config):
config.addinivalue_line("markers", "cool_marker: this one is for cool tests.")
config.addinivalue_line(

"markers", "mark_with(arg, arg2): this marker takes arguments."
)

19.9 Testing plugins

pytest comes with a plugin named pytester that helps you write tests for your plugin code. The plugin is disabled
by default, so you will have to enable it before you can use it.

You can do so by adding the following line to a conftest.py file in your testing directory:

# content of conftest.py

pytest_plugins = ["pytester"]

Alternatively you can invoke pytest with the -p pytester command line option.

This will allow you to use the testdir fixture for testing your plugin code.

Let’s demonstrate what you can do with the plugin with an example. Imagine we developed a plugin that provides a
fixture hello which yields a function and we can invoke this function with one optional parameter. It will return a
string value of Hello World! if we do not supply a value or Hello {value}! if we do supply a string value.

import pytest

def pytest_addoption(parser):
group = parser.getgroup("helloworld")
group.addoption(

"--name",
action="store",
dest="name",
default="World",
help='Default "name" for hello().',

)

(continues on next page)

19.7. Accessing another plugin by name 137



pytest Documentation, Release 6.2

(continued from previous page)

@pytest.fixture
def hello(request):

name = request.config.getoption("name")

def _hello(name=None):
if not name:

name = request.config.getoption("name")
return "Hello {name}!".format(name=name)

return _hello

Now the testdir fixture provides a convenient API for creating temporary conftest.py files and test files. It
also allows us to run the tests and return a result object, with which we can assert the tests’ outcomes.

def test_hello(testdir):
"""Make sure that our plugin works."""

# create a temporary conftest.py file
testdir.makeconftest(

"""
import pytest

@pytest.fixture(params=[
"Brianna",
"Andreas",
"Floris",

])
def name(request):

return request.param
"""
)

# create a temporary pytest test file
testdir.makepyfile(

"""
def test_hello_default(hello):

assert hello() == "Hello World!"

def test_hello_name(hello, name):
assert hello(name) == "Hello {0}!".format(name)

"""
)

# run all tests with pytest
result = testdir.runpytest()

# check that all 4 tests passed
result.assert_outcomes(passed=4)

Additionally it is possible to copy examples for an example folder before running pytest on it.

# content of pytest.ini
[pytest]
pytester_example_dir = .

# content of test_example.py

(continues on next page)

138 Chapter 19. Writing plugins



pytest Documentation, Release 6.2

(continued from previous page)

def test_plugin(testdir):
testdir.copy_example("test_example.py")
testdir.runpytest("-k", "test_example")

def test_example():
pass

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, configfile: pytest.ini
collected 2 items

test_example.py .. [100%]

============================ 2 passed in 0.12s =============================

For more information about the result object that runpytest() returns, and the methods that it provides please
check out the RunResult documentation.

19.9. Testing plugins 139



pytest Documentation, Release 6.2

140 Chapter 19. Writing plugins



CHAPTER

TWENTY

WRITING HOOK FUNCTIONS

20.1 hook function validation and execution

pytest calls hook functions from registered plugins for any given hook specification. Let’s look at a typical hook func-
tion for the pytest_collection_modifyitems(session, config, items) hook which pytest calls
after collection of all test items is completed.

When we implement a pytest_collection_modifyitems function in our plugin pytest will during registra-
tion verify that you use argument names which match the specification and bail out if not.

Let’s look at a possible implementation:

def pytest_collection_modifyitems(config, items):
# called after collection is completed
# you can modify the ``items`` list
...

Here, pytest will pass in config (the pytest config object) and items (the list of collected test items) but will
not pass in the session argument because we didn’t list it in the function signature. This dynamic “pruning” of
arguments allows pytest to be “future-compatible”: we can introduce new hook named parameters without breaking
the signatures of existing hook implementations. It is one of the reasons for the general long-lived compatibility of
pytest plugins.

Note that hook functions other than pytest_runtest_* are not allowed to raise exceptions. Doing so will break
the pytest run.

20.2 firstresult: stop at first non-None result

Most calls to pytest hooks result in a list of results which contains all non-None results of the called hook functions.

Some hook specifications use the firstresult=True option so that the hook call only executes until the first of
N registered functions returns a non-None result which is then taken as result of the overall hook call. The remaining
hook functions will not be called in this case.

141



pytest Documentation, Release 6.2

20.3 hookwrapper: executing around other hooks

pytest plugins can implement hook wrappers which wrap the execution of other hook implementations. A hook
wrapper is a generator function which yields exactly once. When pytest invokes hooks it first executes hook wrappers
and passes the same arguments as to the regular hooks.

At the yield point of the hook wrapper pytest will execute the next hook implementations and return their result to the
yield point in the form of a Result instance which encapsulates a result or exception info. The yield point itself will
thus typically not raise exceptions (unless there are bugs).

Here is an example definition of a hook wrapper:

import pytest

@pytest.hookimpl(hookwrapper=True)
def pytest_pyfunc_call(pyfuncitem):

do_something_before_next_hook_executes()

outcome = yield
# outcome.excinfo may be None or a (cls, val, tb) tuple

res = outcome.get_result() # will raise if outcome was exception

post_process_result(res)

outcome.force_result(new_res) # to override the return value to the plugin system

Note that hook wrappers don’t return results themselves, they merely perform tracing or other side effects around the
actual hook implementations. If the result of the underlying hook is a mutable object, they may modify that result but
it’s probably better to avoid it.

For more information, consult the pluggy documentation about hookwrappers.

20.4 Hook function ordering / call example

For any given hook specification there may be more than one implementation and we thus generally view hook
execution as a 1:N function call where N is the number of registered functions. There are ways to influence if a hook
implementation comes before or after others, i.e. the position in the N-sized list of functions:

# Plugin 1
@pytest.hookimpl(tryfirst=True)
def pytest_collection_modifyitems(items):

# will execute as early as possible
...

# Plugin 2
@pytest.hookimpl(trylast=True)
def pytest_collection_modifyitems(items):

# will execute as late as possible
...

# Plugin 3

(continues on next page)

142 Chapter 20. Writing hook functions

https://pluggy.readthedocs.io/en/latest/index.html#hookwrappers


pytest Documentation, Release 6.2

(continued from previous page)

@pytest.hookimpl(hookwrapper=True)
def pytest_collection_modifyitems(items):

# will execute even before the tryfirst one above!
outcome = yield
# will execute after all non-hookwrappers executed

Here is the order of execution:

1. Plugin3’s pytest_collection_modifyitems called until the yield point because it is a hook wrapper.

2. Plugin1’s pytest_collection_modifyitems is called because it is marked with tryfirst=True.

3. Plugin2’s pytest_collection_modifyitems is called because it is marked with trylast=True (but even without
this mark it would come after Plugin1).

4. Plugin3’s pytest_collection_modifyitems then executing the code after the yield point. The yield receives a
Result instance which encapsulates the result from calling the non-wrappers. Wrappers shall not modify the
result.

It’s possible to use tryfirst and trylast also in conjunction with hookwrapper=True in which case it will
influence the ordering of hookwrappers among each other.

20.5 Declaring new hooks

Note: This is a quick overview on how to add new hooks and how they work in general, but a more complete overview
can be found in the pluggy documentation.

Plugins and conftest.py files may declare new hooks that can then be implemented by other plugins in order to
alter behaviour or interact with the new plugin:

pytest_addhooks(pluginmanager: PytestPluginManager)→ None
Called at plugin registration time to allow adding new hooks via a call to pluginmanager.
add_hookspecs(module_or_class, prefix).

Parameters pluginmanager (_pytest.config.PytestPluginManager) – pytest plu-
gin manager.

Note: This hook is incompatible with hookwrapper=True.

Hooks are usually declared as do-nothing functions that contain only documentation describing when the hook will
be called and what return values are expected. The names of the functions must start with pytest_ otherwise pytest
won’t recognize them.

Here’s an example. Let’s assume this code is in the sample_hook.py module.

def pytest_my_hook(config):
"""
Receives the pytest config and does things with it
"""

To register the hooks with pytest they need to be structured in their own module or class. This class or module can
then be passed to the pluginmanager using the pytest_addhooks function (which itself is a hook exposed by
pytest).

20.5. Declaring new hooks 143

https://pluggy.readthedocs.io/en/latest/
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

def pytest_addhooks(pluginmanager):
""" This example assumes the hooks are grouped in the 'sample_hook' module. """
from my_app.tests import sample_hook

pluginmanager.add_hookspecs(sample_hook)

For a real world example, see newhooks.py from xdist.

Hooks may be called both from fixtures or from other hooks. In both cases, hooks are called through the hook
object, available in the config object. Most hooks receive a config object directly, while fixtures may use the
pytestconfig fixture which provides the same object.

@pytest.fixture()
def my_fixture(pytestconfig):

# call the hook called "pytest_my_hook"
# 'result' will be a list of return values from all registered functions.
result = pytestconfig.hook.pytest_my_hook(config=pytestconfig)

Note: Hooks receive parameters using only keyword arguments.

Now your hook is ready to be used. To register a function at the hook, other plugins or users must now simply define
the function pytest_my_hook with the correct signature in their conftest.py.

Example:

def pytest_my_hook(config):
"""
Print all active hooks to the screen.
"""
print(config.hook)

20.6 Using hooks in pytest_addoption

Occasionally, it is necessary to change the way in which command line options are defined by one plugin based on
hooks in another plugin. For example, a plugin may expose a command line option for which another plugin needs
to define the default value. The pluginmanager can be used to install and use hooks to accomplish this. The plugin
would define and add the hooks and use pytest_addoption as follows:

# contents of hooks.py

# Use firstresult=True because we only want one plugin to define this
# default value
@hookspec(firstresult=True)
def pytest_config_file_default_value():

""" Return the default value for the config file command line option. """

# contents of myplugin.py

def pytest_addhooks(pluginmanager):
""" This example assumes the hooks are grouped in the 'hooks' module. """
from . import hook

(continues on next page)

144 Chapter 20. Writing hook functions

https://github.com/pytest-dev/pytest-xdist/blob/974bd566c599dc6a9ea291838c6f226197208b46/xdist/newhooks.py
https://github.com/pytest-dev/pytest-xdist


pytest Documentation, Release 6.2

(continued from previous page)

pluginmanager.add_hookspecs(hook)

def pytest_addoption(parser, pluginmanager):
default_value = pluginmanager.hook.pytest_config_file_default_value()
parser.addoption(

"--config-file",
help="Config file to use, defaults to %(default)s",
default=default_value,

)

The conftest.py that is using myplugin would simply define the hook as follows:

def pytest_config_file_default_value():
return "config.yaml"

20.7 Optionally using hooks from 3rd party plugins

Using new hooks from plugins as explained above might be a little tricky because of the standard validation mecha-
nism: if you depend on a plugin that is not installed, validation will fail and the error message will not make much
sense to your users.

One approach is to defer the hook implementation to a new plugin instead of declaring the hook functions directly in
your plugin module, for example:

# contents of myplugin.py

class DeferPlugin:
"""Simple plugin to defer pytest-xdist hook functions."""

def pytest_testnodedown(self, node, error):
"""standard xdist hook function.
"""

def pytest_configure(config):
if config.pluginmanager.hasplugin("xdist"):

config.pluginmanager.register(DeferPlugin())

This has the added benefit of allowing you to conditionally install hooks depending on which plugins are installed.

20.7. Optionally using hooks from 3rd party plugins 145



pytest Documentation, Release 6.2

146 Chapter 20. Writing hook functions



CHAPTER

TWENTYONE

LOGGING

pytest captures log messages of level WARNING or above automatically and displays them in their own section for
each failed test in the same manner as captured stdout and stderr.

Running without options:

pytest

Shows failed tests like so:

----------------------- Captured stdlog call ----------------------
test_reporting.py 26 WARNING text going to logger
----------------------- Captured stdout call ----------------------
text going to stdout
----------------------- Captured stderr call ----------------------
text going to stderr
==================== 2 failed in 0.02 seconds =====================

By default each captured log message shows the module, line number, log level and message.

If desired the log and date format can be specified to anything that the logging module supports by passing specific
formatting options:

pytest --log-format="%(asctime)s %(levelname)s %(message)s" \
--log-date-format="%Y-%m-%d %H:%M:%S"

Shows failed tests like so:

----------------------- Captured stdlog call ----------------------
2010-04-10 14:48:44 WARNING text going to logger
----------------------- Captured stdout call ----------------------
text going to stdout
----------------------- Captured stderr call ----------------------
text going to stderr
==================== 2 failed in 0.02 seconds =====================

These options can also be customized through pytest.ini file:

[pytest]
log_format = %(asctime)s %(levelname)s %(message)s
log_date_format = %Y-%m-%d %H:%M:%S

Further it is possible to disable reporting of captured content (stdout, stderr and logs) on failed tests completely with:

pytest --show-capture=no

147



pytest Documentation, Release 6.2

21.1 caplog fixture

Inside tests it is possible to change the log level for the captured log messages. This is supported by the caplog
fixture:

def test_foo(caplog):
caplog.set_level(logging.INFO)
pass

By default the level is set on the root logger, however as a convenience it is also possible to set the log level of any
logger:

def test_foo(caplog):
caplog.set_level(logging.CRITICAL, logger="root.baz")
pass

The log levels set are restored automatically at the end of the test.

It is also possible to use a context manager to temporarily change the log level inside a with block:

def test_bar(caplog):
with caplog.at_level(logging.INFO):

pass

Again, by default the level of the root logger is affected but the level of any logger can be changed instead with:

def test_bar(caplog):
with caplog.at_level(logging.CRITICAL, logger="root.baz"):

pass

Lastly all the logs sent to the logger during the test run are made available on the fixture in the form of both the
logging.LogRecord instances and the final log text. This is useful for when you want to assert on the contents of
a message:

def test_baz(caplog):
func_under_test()
for record in caplog.records:

assert record.levelname != "CRITICAL"
assert "wally" not in caplog.text

For all the available attributes of the log records see the logging.LogRecord class.

You can also resort to record_tuples if all you want to do is to ensure, that certain messages have been logged
under a given logger name with a given severity and message:

def test_foo(caplog):
logging.getLogger().info("boo %s", "arg")

assert caplog.record_tuples == [("root", logging.INFO, "boo arg")]

You can call caplog.clear() to reset the captured log records in a test:

def test_something_with_clearing_records(caplog):
some_method_that_creates_log_records()
caplog.clear()
your_test_method()
assert ["Foo"] == [rec.message for rec in caplog.records]

148 Chapter 21. Logging



pytest Documentation, Release 6.2

The caplog.records attribute contains records from the current stage only, so inside the setup phase it contains
only setup logs, same with the call and teardown phases.

To access logs from other stages, use the caplog.get_records(when) method. As an example, if you want to
make sure that tests which use a certain fixture never log any warnings, you can inspect the records for the setup and
call stages during teardown like so:

@pytest.fixture
def window(caplog):

window = create_window()
yield window
for when in ("setup", "call"):

messages = [
x.message for x in caplog.get_records(when) if x.levelno == logging.

→˓WARNING
]
if messages:

pytest.fail(
"warning messages encountered during testing: {}".format(messages)

)

The full API is available at _pytest.logging.LogCaptureFixture.

21.2 Live Logs

By setting the log_cli configuration option to true, pytest will output logging records as they are emitted directly
into the console.

You can specify the logging level for which log records with equal or higher level are printed to the console by passing
--log-cli-level. This setting accepts the logging level names as seen in python’s documentation or an integer
as the logging level num.

Additionally, you can also specify --log-cli-format and --log-cli-date-format which mirror and de-
fault to --log-format and --log-date-format if not provided, but are applied only to the console logging
handler.

All of the CLI log options can also be set in the configuration INI file. The option names are:

• log_cli_level

• log_cli_format

• log_cli_date_format

If you need to record the whole test suite logging calls to a file, you can pass --log-file=/path/to/log/file.
This log file is opened in write mode which means that it will be overwritten at each run tests session.

You can also specify the logging level for the log file by passing --log-file-level. This setting accepts the
logging level names as seen in python’s documentation(ie, uppercased level names) or an integer as the logging level
num.

Additionally, you can also specify --log-file-format and --log-file-date-format which are equal to
--log-format and --log-date-format but are applied to the log file logging handler.

All of the log file options can also be set in the configuration INI file. The option names are:

• log_file

• log_file_level

• log_file_format

21.2. Live Logs 149



pytest Documentation, Release 6.2

• log_file_date_format

You can call set_log_path() to customize the log_file path dynamically. This functionality is considered exper-
imental.

21.3 Release notes

This feature was introduced as a drop-in replacement for the pytest-catchlog plugin and they conflict with each other.
The backward compatibility API with pytest-capturelog has been dropped when this feature was introduced, so
if for that reason you still need pytest-catchlog you can disable the internal feature by adding to your pytest.
ini:

[pytest]
addopts=-p no:logging

21.4 Incompatible changes in pytest 3.4

This feature was introduced in 3.3 and some incompatible changes have been made in 3.4 after community feed-
back:

• Log levels are no longer changed unless explicitly requested by the log_level configuration or
--log-level command-line options. This allows users to configure logger objects themselves. Setting
log_level will set the level that is captured globally so if a specific test requires a lower level than this, use
the caplog.set_level() functionality otherwise that test will be prone to failure.

• Live Logs is now disabled by default and can be enabled setting the log_cli configuration option to true.
When enabled, the verbosity is increased so logging for each test is visible.

• Live Logs are now sent to sys.stdout and no longer require the -s command-line option to work.

If you want to partially restore the logging behavior of version 3.3, you can add this options to your ini file:

[pytest]
log_cli=true
log_level=NOTSET

More details about the discussion that lead to this changes can be read in issue #3013.

150 Chapter 21. Logging

https://pypi.org/project/pytest-catchlog/
https://github.com/pytest-dev/pytest/issues/3013


CHAPTER

TWENTYTWO

API REFERENCE

This page contains the full reference to pytest’s API.

• Functions

– pytest.approx

– pytest.fail

– pytest.skip

– pytest.importorskip

– pytest.xfail

– pytest.exit

– pytest.main

– pytest.param

– pytest.raises

– pytest.deprecated_call

– pytest.register_assert_rewrite

– pytest.warns

– pytest.freeze_includes

• Marks

– pytest.mark.filterwarnings

– pytest.mark.parametrize

– pytest.mark.skip

– pytest.mark.skipif

– pytest.mark.usefixtures

– pytest.mark.xfail

– Custom marks

• Fixtures

– @pytest.fixture

– config.cache

151



pytest Documentation, Release 6.2

– capsys

– capsysbinary

– capfd

– capfdbinary

– doctest_namespace

– request

– pytestconfig

– record_property

– record_testsuite_property

– caplog

– monkeypatch

– pytester

– testdir

– recwarn

– tmp_path

– tmp_path_factory

– tmpdir

– tmpdir_factory

• Hooks

– Bootstrapping hooks

– Initialization hooks

– Collection hooks

– Test running (runtest) hooks

– Reporting hooks

– Debugging/Interaction hooks

• Objects

– CallInfo

– Class

– Collector

– CollectReport

– Config

– ExceptionInfo

– ExitCode

– File

– FixtureDef

– FSCollector

152 Chapter 22. API Reference



pytest Documentation, Release 6.2

– Function

– FunctionDefinition

– Item

– MarkDecorator

– MarkGenerator

– Mark

– Metafunc

– Module

– Node

– Parser

– PytestPluginManager

– Session

– TestReport

– _Result

• Global Variables

• Environment Variables

• Exceptions

• Warnings

• Configuration Options

• Command-line Flags

22.1 Functions

22.1.1 pytest.approx

approx(expected, rel=None, abs=None, nan_ok: bool = False)→ _pytest.python_api.ApproxBase
Assert that two numbers (or two sets of numbers) are equal to each other within some tolerance.

Due to the intricacies of floating-point arithmetic, numbers that we would intuitively expect to be equal are not
always so:

>>> 0.1 + 0.2 == 0.3
False

This problem is commonly encountered when writing tests, e.g. when making sure that floating-point values are
what you expect them to be. One way to deal with this problem is to assert that two floating-point numbers are
equal to within some appropriate tolerance:

>>> abs((0.1 + 0.2) - 0.3) < 1e-6
True

However, comparisons like this are tedious to write and difficult to understand. Furthermore, absolute compar-
isons like the one above are usually discouraged because there’s no tolerance that works well for all situations.

22.1. Functions 153

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/tutorial/floatingpoint.html


pytest Documentation, Release 6.2

1e-6 is good for numbers around 1, but too small for very big numbers and too big for very small ones. It’s
better to express the tolerance as a fraction of the expected value, but relative comparisons like that are even
more difficult to write correctly and concisely.

The approx class performs floating-point comparisons using a syntax that’s as intuitive as possible:

>>> from pytest import approx
>>> 0.1 + 0.2 == approx(0.3)
True

The same syntax also works for sequences of numbers:

>>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
True

Dictionary values:

>>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
True

numpy arrays:

>>> import numpy as np
>>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6]))
True

And for a numpy array against a scalar:

>>> import numpy as np
>>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3)
True

By default, approx considers numbers within a relative tolerance of 1e-6 (i.e. one part in a million) of its
expected value to be equal. This treatment would lead to surprising results if the expected value was 0.0,
because nothing but 0.0 itself is relatively close to 0.0. To handle this case less surprisingly, approx also
considers numbers within an absolute tolerance of 1e-12 of its expected value to be equal. Infinity and NaN
are special cases. Infinity is only considered equal to itself, regardless of the relative tolerance. NaN is not
considered equal to anything by default, but you can make it be equal to itself by setting the nan_ok argument
to True. (This is meant to facilitate comparing arrays that use NaN to mean “no data”.)

Both the relative and absolute tolerances can be changed by passing arguments to the approx constructor:

>>> 1.0001 == approx(1)
False
>>> 1.0001 == approx(1, rel=1e-3)
True
>>> 1.0001 == approx(1, abs=1e-3)
True

If you specify abs but not rel, the comparison will not consider the relative tolerance at all. In other words,
two numbers that are within the default relative tolerance of 1e-6 will still be considered unequal if they exceed
the specified absolute tolerance. If you specify both abs and rel, the numbers will be considered equal if either
tolerance is met:

>>> 1 + 1e-8 == approx(1)
True
>>> 1 + 1e-8 == approx(1, abs=1e-12)

(continues on next page)

154 Chapter 22. API Reference



pytest Documentation, Release 6.2

(continued from previous page)

False
>>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
True

You can also use approx to compare nonnumeric types, or dicts and sequences containing nonnumeric types,
in which case it falls back to strict equality. This can be useful for comparing dicts and sequences that can
contain optional values:

>>> {"required": 1.0000005, "optional": None} == approx({"required": 1, "optional
→˓": None})
True
>>> [None, 1.0000005] == approx([None,1])
True
>>> ["foo", 1.0000005] == approx([None,1])
False

If you’re thinking about using approx, then you might want to know how it compares to other good ways of
comparing floating-point numbers. All of these algorithms are based on relative and absolute tolerances and
should agree for the most part, but they do have meaningful differences:

• math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0): True if the relative tolerance is met
w.r.t. either a or b or if the absolute tolerance is met. Because the relative tolerance is calculated w.r.t.
both a and b, this test is symmetric (i.e. neither a nor b is a “reference value”). You have to specify
an absolute tolerance if you want to compare to 0.0 because there is no tolerance by default. More
information. . .

• numpy.isclose(a, b, rtol=1e-5, atol=1e-8): True if the difference between a and b is
less that the sum of the relative tolerance w.r.t. b and the absolute tolerance. Because the relative tolerance
is only calculated w.r.t. b, this test is asymmetric and you can think of b as the reference value. Support
for comparing sequences is provided by numpy.allclose. More information. . .

• unittest.TestCase.assertAlmostEqual(a, b): True if a and b are within an absolute tol-
erance of 1e-7. No relative tolerance is considered and the absolute tolerance cannot be changed, so this
function is not appropriate for very large or very small numbers. Also, it’s only available in subclasses of
unittest.TestCase and it’s ugly because it doesn’t follow PEP8. More information. . .

• a == pytest.approx(b, rel=1e-6, abs=1e-12): True if the relative tolerance is met w.r.t.
b or if the absolute tolerance is met. Because the relative tolerance is only calculated w.r.t. b, this test is
asymmetric and you can think of b as the reference value. In the special case that you explicitly specify
an absolute tolerance but not a relative tolerance, only the absolute tolerance is considered.

Warning: Changed in version 3.2.

In order to avoid inconsistent behavior, TypeError is raised for >, >=, < and <= comparisons. The
example below illustrates the problem:

assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10)
assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10)

In the second example one expects approx(0.1).__le__(0.1 + 1e-10) to be called. But instead,
approx(0.1).__lt__(0.1 + 1e-10) is used to comparison. This is because the call hierarchy of
rich comparisons follows a fixed behavior. More information. . .

Changed in version 3.7.1: approx raises TypeError when it encounters a dict value or sequence element of
nonnumeric type.

22.1. Functions 155

https://docs.python.org/3/library/math.html#math.isclose
https://docs.python.org/3/library/math.html#math.isclose
https://numpy.org/doc/stable/reference/generated/numpy.isclose.html
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual
https://docs.python.org/3/reference/datamodel.html#object.__ge__


pytest Documentation, Release 6.2

Changed in version 6.1.0: approx falls back to strict equality for nonnumeric types instead of raising
TypeError.

22.1.2 pytest.fail

Tutorial: Skip and xfail: dealing with tests that cannot succeed

fail(msg: str = '', pytrace: bool = True)→ NoReturn
Explicitly fail an executing test with the given message.

Parameters

• msg (str) – The message to show the user as reason for the failure.

• pytrace (bool) – If False, msg represents the full failure information and no python
traceback will be reported.

22.1.3 pytest.skip

skip(msg[, allow_module_level=False])
Skip an executing test with the given message.

This function should be called only during testing (setup, call or teardown) or during collection by using the
allow_module_level flag. This function can be called in doctests as well.

Parameters allow_module_level (bool) – Allows this function to be called at module level,
skipping the rest of the module. Defaults to False.

Note: It is better to use the pytest.mark.skipif marker when possible to declare a test to be skipped under certain
conditions like mismatching platforms or dependencies. Similarly, use the # doctest: +SKIP directive
(see doctest.SKIP) to skip a doctest statically.

22.1.4 pytest.importorskip

importorskip(modname: str, minversion: Optional[str] = None, reason: Optional[str] = None)→ Any
Import and return the requested module modname, or skip the current test if the module cannot be imported.

Parameters

• modname (str) – The name of the module to import.

• minversion (str) – If given, the imported module’s __version__ attribute must be
at least this minimal version, otherwise the test is still skipped.

• reason (str) – If given, this reason is shown as the message when the module cannot be
imported.

Returns The imported module. This should be assigned to its canonical name.

Example:

docutils = pytest.importorskip("docutils")

156 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/doctest.html#doctest.SKIP
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

22.1.5 pytest.xfail

xfail(reason: str = '')→ NoReturn
Imperatively xfail an executing test or setup function with the given reason.

This function should be called only during testing (setup, call or teardown).

Note: It is better to use the pytest.mark.xfail marker when possible to declare a test to be xfailed under certain
conditions like known bugs or missing features.

22.1.6 pytest.exit

exit(msg: str, returncode: Optional[int] = None)→ NoReturn
Exit testing process.

Parameters

• msg (str) – Message to display upon exit.

• returncode (int) – Return code to be used when exiting pytest.

22.1.7 pytest.main

main(args: Optional[Union[List[str], py._path.local.LocalPath]] = None, plugins: Op-
tional[Sequence[Union[str, object]]] = None)→ Union[int, _pytest.config.ExitCode]

Perform an in-process test run.

Parameters

• args – List of command line arguments.

• plugins – List of plugin objects to be auto-registered during initialization.

Returns An exit code.

22.1.8 pytest.param

param(*values[, id ][, marks])
Specify a parameter in pytest.mark.parametrize calls or parametrized fixtures.

@pytest.mark.parametrize(
"test_input,expected",
[("3+5", 8), pytest.param("6*9", 42, marks=pytest.mark.xfail),],

)
def test_eval(test_input, expected):

assert eval(test_input) == expected

Parameters

• values – Variable args of the values of the parameter set, in order.

• marks – A single mark or a list of marks to be applied to this parameter set.

• id (str) – The id to attribute to this parameter set.

22.1. Functions 157

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

22.1.9 pytest.raises

Tutorial: Assertions about expected exceptions.

with raises(expected_exception: Union[Type[_E], Tuple[Type[_E], . . . ]], *, match: Optional[Union[str,
Pattern[str]]] = '...') → RaisesContext[_E] as excinfo

with raises(expected_exception: Union[Type[_E], Tuple[Type[_E], . . . ]], func: Callable[[. . . ], Any],
*args: Any, **kwargs: Any)→ _pytest._code.code.ExceptionInfo[_E] as excinfo

Assert that a code block/function call raises expected_exception or raise a failure exception otherwise.

Parameters match – If specified, a string containing a regular expression, or a regular expression
object, that is tested against the string representation of the exception using re.search. To
match a literal string that may contain special characters, the pattern can first be escaped with
re.escape.

(This is only used when pytest.raises is used as a context manager, and passed through to
the function otherwise. When using pytest.raises as a function, you can use: pytest.
raises(Exc, func, match="passed on").match("my pattern").)

Use pytest.raises as a context manager, which will capture the exception of the given type:

>>> import pytest
>>> with pytest.raises(ZeroDivisionError):
... 1/0

If the code block does not raise the expected exception (ZeroDivisionError in the example above), or no
exception at all, the check will fail instead.

You can also use the keyword argument match to assert that the exception matches a text or regex:

>>> with pytest.raises(ValueError, match='must be 0 or None'):
... raise ValueError("value must be 0 or None")

>>> with pytest.raises(ValueError, match=r'must be \d+$'):
... raise ValueError("value must be 42")

The context manager produces an ExceptionInfo object which can be used to inspect the details of the
captured exception:

>>> with pytest.raises(ValueError) as exc_info:
... raise ValueError("value must be 42")
>>> assert exc_info.type is ValueError
>>> assert exc_info.value.args[0] == "value must be 42"

Note: When using pytest.raises as a context manager, it’s worthwhile to note that normal context
manager rules apply and that the exception raised must be the final line in the scope of the context manager.
Lines of code after that, within the scope of the context manager will not be executed. For example:

>>> value = 15
>>> with pytest.raises(ValueError) as exc_info:
... if value > 10:
... raise ValueError("value must be <= 10")
... assert exc_info.type is ValueError # this will not execute

Instead, the following approach must be taken (note the difference in scope):

158 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/re.html#regular-expression-syntax


pytest Documentation, Release 6.2

>>> with pytest.raises(ValueError) as exc_info:
... if value > 10:
... raise ValueError("value must be <= 10")
...
>>> assert exc_info.type is ValueError

Using with pytest.mark.parametrize

When using pytest.mark.parametrize it is possible to parametrize tests such that some runs raise an exception
and others do not.

See Parametrizing conditional raising for an example.

Legacy form

It is possible to specify a callable by passing a to-be-called lambda:

>>> raises(ZeroDivisionError, lambda: 1/0)
<ExceptionInfo ...>

or you can specify an arbitrary callable with arguments:

>>> def f(x): return 1/x
...
>>> raises(ZeroDivisionError, f, 0)
<ExceptionInfo ...>
>>> raises(ZeroDivisionError, f, x=0)
<ExceptionInfo ...>

The form above is fully supported but discouraged for new code because the context manager form is regarded
as more readable and less error-prone.

Note: Similar to caught exception objects in Python, explicitly clearing local references to returned
ExceptionInfo objects can help the Python interpreter speed up its garbage collection.

Clearing those references breaks a reference cycle (ExceptionInfo –> caught exception –> frame stack
raising the exception –> current frame stack –> local variables –> ExceptionInfo) which makes Python
keep all objects referenced from that cycle (including all local variables in the current frame) alive until the next
cyclic garbage collection run. More detailed information can be found in the official Python documentation for
the try statement.

22.1.10 pytest.deprecated_call

Tutorial: Ensuring code triggers a deprecation warning.

with deprecated_call(*, match: Optional[Union[str, Pattern[str]]] = '...') → WarningsRecorder
with deprecated_call(func: Callable[[. . . ], T], *args: Any, **kwargs: Any)→ T

Assert that code produces a DeprecationWarning or PendingDeprecationWarning.

This function can be used as a context manager:

>>> import warnings
>>> def api_call_v2():
... warnings.warn('use v3 of this api', DeprecationWarning)
... return 200

(continues on next page)

22.1. Functions 159

https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

(continued from previous page)

>>> import pytest
>>> with pytest.deprecated_call():
... assert api_call_v2() == 200

It can also be used by passing a function and *args and **kwargs, in which case it will ensure calling
func(*args, **kwargs) produces one of the warnings types above. The return value is the return value
of the function.

In the context manager form you may use the keyword argument match to assert that the warning matches a
text or regex.

The context manager produces a list of warnings.WarningMessage objects, one for each warning raised.

22.1.11 pytest.register_assert_rewrite

Tutorial: Assertion Rewriting.

register_assert_rewrite(*names: str)→ None
Register one or more module names to be rewritten on import.

This function will make sure that this module or all modules inside the package will get their assert statements
rewritten. Thus you should make sure to call this before the module is actually imported, usually in your
__init__.py if you are a plugin using a package.

Raises TypeError – If the given module names are not strings.

22.1.12 pytest.warns

Tutorial: Asserting warnings with the warns function

with warns(expected_warning: Optional[Union[Type[Warning], Tuple[Type[Warning], . . . ]]], *, match:
Optional[Union[str, Pattern[str]]] = None)→ WarningsChecker

with warns(expected_warning: Optional[Union[Type[Warning], Tuple[Type[Warning], . . . ]]], func:
Callable[[. . . ], T], *args: Any, **kwargs: Any)→ T

Assert that code raises a particular class of warning.

Specifically, the parameter expected_warning can be a warning class or sequence of warning classes, and
the inside the with block must issue a warning of that class or classes.

This helper produces a list of warnings.WarningMessage objects, one for each warning raised.

This function can be used as a context manager, or any of the other ways pytest.raises() can be used:

>>> import pytest
>>> with pytest.warns(RuntimeWarning):
... warnings.warn("my warning", RuntimeWarning)

In the context manager form you may use the keyword argument match to assert that the warning matches a
text or regex:

>>> with pytest.warns(UserWarning, match='must be 0 or None'):
... warnings.warn("value must be 0 or None", UserWarning)

>>> with pytest.warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("value must be 42", UserWarning)

(continues on next page)

160 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/exceptions.html#Warning


pytest Documentation, Release 6.2

(continued from previous page)

>>> with pytest.warns(UserWarning, match=r'must be \d+$'):
... warnings.warn("this is not here", UserWarning)
Traceback (most recent call last):
...

Failed: DID NOT WARN. No warnings of type ...UserWarning... was emitted...

22.1.13 pytest.freeze_includes

Tutorial: Freezing pytest.

freeze_includes()→ List[str]
Return a list of module names used by pytest that should be included by cx_freeze.

22.2 Marks

Marks can be used apply meta data to test functions (but not fixtures), which can then be accessed by fixtures or
plugins.

22.2.1 pytest.mark.filterwarnings

Tutorial: @pytest.mark.filterwarnings.

Add warning filters to marked test items.

pytest.mark.filterwarnings(filter)

Parameters filter (str) – A warning specification string, which is composed of contents of
the tuple (action, message, category, module, lineno) as specified in The
Warnings filter section of the Python documentation, separated by ":". Optional fields can
be omitted. Module names passed for filtering are not regex-escaped.

For example:

@pytest.mark.filterwarnings("ignore:.*usage will be deprecated.
→˓*:DeprecationWarning")
def test_foo():

...

22.2.2 pytest.mark.parametrize

Tutorial: Parametrizing fixtures and test functions.

This mark has the same signature as _pytest.python.Metafunc.parametrize(); see there.

22.2. Marks 161

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/warnings.html#warning-filter
https://docs.python.org/3/library/warnings.html#warning-filter


pytest Documentation, Release 6.2

22.2.3 pytest.mark.skip

Tutorial: Skipping test functions.

Unconditionally skip a test function.

pytest.mark.skip(*, reason=None)

Parameters reason (str) – Reason why the test function is being skipped.

22.2.4 pytest.mark.skipif

Tutorial: Skipping test functions.

Skip a test function if a condition is True.

pytest.mark.skipif(condition, *, reason=None)

Parameters

• condition (bool or str) – True/False if the condition should be skipped or a
condition string.

• reason (str) – Reason why the test function is being skipped.

22.2.5 pytest.mark.usefixtures

Tutorial: Use fixtures in classes and modules with usefixtures.

Mark a test function as using the given fixture names.

pytest.mark.usefixtures(*names)

Parameters args – The names of the fixture to use, as strings.

Note: When using usefixtures in hooks, it can only load fixtures when applied to a test function before test setup
(for example in the pytest_collection_modifyitems hook).

Also note that this mark has no effect when applied to fixtures.

22.2.6 pytest.mark.xfail

Tutorial: XFail: mark test functions as expected to fail.

Marks a test function as expected to fail.

pytest.mark.xfail(condition=None, *, reason=None, raises=None, run=True, strict=False)

Parameters

• condition (bool or str) – Condition for marking the test function as xfail (True/
False or a condition string). If a bool, you also have to specify reason (see condition
string).

• reason (str) – Reason why the test function is marked as xfail.

• raises (Type[Exception]) – Exception subclass expected to be raised by the test
function; other exceptions will fail the test.

162 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception


pytest Documentation, Release 6.2

• run (bool) – If the test function should actually be executed. If False, the function will
always xfail and will not be executed (useful if a function is segfaulting).

• strict (bool) –

– If False (the default) the function will be shown in the terminal output as xfailed if
it fails and as xpass if it passes. In both cases this will not cause the test suite to fail
as a whole. This is particularly useful to mark flaky tests (tests that fail at random) to be
tackled later.

– If True, the function will be shown in the terminal output as xfailed if it fails, but if it
unexpectedly passes then it will fail the test suite. This is particularly useful to mark func-
tions that are always failing and there should be a clear indication if they unexpectedly
start to pass (for example a new release of a library fixes a known bug).

22.2.7 Custom marks

Marks are created dynamically using the factory object pytest.mark and applied as a decorator.

For example:

@pytest.mark.timeout(10, "slow", method="thread")
def test_function():

...

Will create and attach a Mark object to the collected Item, which can then be accessed by fixtures or hooks with
Node.iter_markers. The mark object will have the following attributes:

mark.args == (10, "slow")
mark.kwargs == {"method": "thread"}

Example for using multiple custom markers:

@pytest.mark.timeout(10, "slow", method="thread")
@pytest.mark.slow
def test_function():

...

When Node.iter_markers or Node.iter_markers is used with multiple markers, the marker closest to the
function will be iterated over first. The above example will result in @pytest.mark.slow followed by @pytest.
mark.timeout(...).

22.3 Fixtures

Tutorial: pytest fixtures: explicit, modular, scalable.

Fixtures are requested by test functions or other fixtures by declaring them as argument names.

Example of a test requiring a fixture:

def test_output(capsys):
print("hello")
out, err = capsys.readouterr()
assert out == "hello\n"

Example of a fixture requiring another fixture:

22.3. Fixtures 163

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


pytest Documentation, Release 6.2

@pytest.fixture
def db_session(tmpdir):

fn = tmpdir / "db.file"
return connect(str(fn))

For more details, consult the full fixtures docs.

22.3.1 @pytest.fixture

@fixture(fixture_function: _FixtureFunction, *, scope: Union[_Scope, Callable[[str, Config], _Scope]]
= 'function', params: Optional[Iterable[object]] = None, autouse: bool = False, ids: Op-
tional[Union[Iterable[Union[None, str, float, int, bool]], Callable[[Any], Optional[object]]]] =
None, name: Optional[str] = None)→ _FixtureFunction

@fixture(fixture_function: None = None, *, scope: Union[_Scope, Callable[[str, Config], _Scope]]
= 'function', params: Optional[Iterable[object]] = None, autouse: bool = False, ids: Op-
tional[Union[Iterable[Union[None, str, float, int, bool]], Callable[[Any], Optional[object]]]] =
None, name: Optional[str] = 'None')→ _pytest.fixtures.FixtureFunctionMarker

Decorator to mark a fixture factory function.

This decorator can be used, with or without parameters, to define a fixture function.

The name of the fixture function can later be referenced to cause its invocation ahead of running tests: test
modules or classes can use the pytest.mark.usefixtures(fixturename) marker.

Test functions can directly use fixture names as input arguments in which case the fixture instance returned from
the fixture function will be injected.

Fixtures can provide their values to test functions using return or yield statements. When using yield
the code block after the yield statement is executed as teardown code regardless of the test outcome, and must
yield exactly once.

Parameters

• scope – The scope for which this fixture is shared; one of "function" (default),
"class", "module", "package" or "session".

This parameter may also be a callable which receives (fixture_name, config) as
parameters, and must return a str with one of the values mentioned above.

See Dynamic scope in the docs for more information.

• params – An optional list of parameters which will cause multiple invocations of the fixture
function and all of the tests using it. The current parameter is available in request.
param.

• autouse – If True, the fixture func is activated for all tests that can see it. If False (the
default), an explicit reference is needed to activate the fixture.

• ids – List of string ids each corresponding to the params so that they are part of the test id.
If no ids are provided they will be generated automatically from the params.

• name – The name of the fixture. This defaults to the name of the decorated function. If a
fixture is used in the same module in which it is defined, the function name of the fixture
will be shadowed by the function arg that requests the fixture; one way to resolve this is
to name the decorated function fixture_<fixturename> and then use @pytest.
fixture(name='<fixturename>').

164 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

22.3.2 config.cache

Tutorial: Cache: working with cross-testrun state.

The config.cache object allows other plugins and fixtures to store and retrieve values across test runs. To access
it from fixtures request pytestconfig into your fixture and get it with pytestconfig.cache.

Under the hood, the cache plugin uses the simple dumps/loads API of the json stdlib module.

config.cache is an instance of pytest.Cache:

final class Cache

makedir(name: str)→ py._path.local.LocalPath
Return a directory path object with the given name.

If the directory does not yet exist, it will be created. You can use it to manage files to e.g. store/retrieve
database dumps across test sessions.

Parameters name – Must be a string not containing a / separator. Make sure the name contains
your plugin or application identifiers to prevent clashes with other cache users.

get(key: str, default)
Return the cached value for the given key.

If no value was yet cached or the value cannot be read, the specified default is returned.

Parameters

• key – Must be a / separated value. Usually the first name is the name of your plugin or
your application.

• default – The value to return in case of a cache-miss or invalid cache value.

set(key: str, value: object)→ None
Save value for the given key.

Parameters

• key – Must be a / separated value. Usually the first name is the name of your plugin or
your application.

• value – Must be of any combination of basic python types, including nested types like
lists of dictionaries.

22.3.3 capsys

Tutorial: Capturing of the stdout/stderr output.

capsys()
Enable text capturing of writes to sys.stdout and sys.stderr.

The captured output is made available via capsys.readouterr() method calls, which return a (out,
err) namedtuple. out and err will be text objects.

Returns an instance of CaptureFixture[str].

Example:

22.3. Fixtures 165

https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

def test_output(capsys):
print("hello")
captured = capsys.readouterr()
assert captured.out == "hello\n"

class CaptureFixture
Object returned by the capsys, capsysbinary , capfd and capfdbinary fixtures.

readouterr()→ _pytest.capture.CaptureResult
Read and return the captured output so far, resetting the internal buffer.

Returns The captured content as a namedtuple with out and err string attributes.

with disabled()→ Generator[None, None, None]
Temporarily disable capturing while inside the with block.

22.3.4 capsysbinary

Tutorial: Capturing of the stdout/stderr output.

capsysbinary()
Enable bytes capturing of writes to sys.stdout and sys.stderr.

The captured output is made available via capsysbinary.readouterr() method calls, which return a
(out, err) namedtuple. out and err will be bytes objects.

Returns an instance of CaptureFixture[bytes].

Example:

def test_output(capsysbinary):
print("hello")
captured = capsysbinary.readouterr()
assert captured.out == b"hello\n"

22.3.5 capfd

Tutorial: Capturing of the stdout/stderr output.

capfd()
Enable text capturing of writes to file descriptors 1 and 2.

The captured output is made available via capfd.readouterr() method calls, which return a (out,
err) namedtuple. out and err will be text objects.

Returns an instance of CaptureFixture[str].

Example:

def test_system_echo(capfd):
os.system('echo "hello"')
captured = capfd.readouterr()
assert captured.out == "hello\n"

166 Chapter 22. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

22.3.6 capfdbinary

Tutorial: Capturing of the stdout/stderr output.

capfdbinary()
Enable bytes capturing of writes to file descriptors 1 and 2.

The captured output is made available via capfd.readouterr() method calls, which return a (out,
err) namedtuple. out and err will be byte objects.

Returns an instance of CaptureFixture[bytes].

Example:

def test_system_echo(capfdbinary):
os.system('echo "hello"')
captured = capfdbinary.readouterr()
assert captured.out == b"hello\n"

22.3.7 doctest_namespace

Tutorial: Doctest integration for modules and test files.

doctest_namespace()
Fixture that returns a dict that will be injected into the namespace of doctests.

Usually this fixture is used in conjunction with another autouse fixture:

@pytest.fixture(autouse=True)
def add_np(doctest_namespace):

doctest_namespace["np"] = numpy

For more details: ‘doctest_namespace’ fixture.

22.3.8 request

Tutorial: Pass different values to a test function, depending on command line options.

The request fixture is a special fixture providing information of the requesting test function.

class FixtureRequest
A request for a fixture from a test or fixture function.

A request object gives access to the requesting test context and has an optional param attribute in case the
fixture is parametrized indirectly.

fixturename: Optional[str]
Fixture for which this request is being performed.

scope: _Scope
Scope string, one of “function”, “class”, “module”, “session”.

fixturenames
Names of all active fixtures in this request.

node
Underlying collection node (depends on current request scope).

config
The pytest config object associated with this request.

22.3. Fixtures 167

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

function
Test function object if the request has a per-function scope.

cls
Class (can be None) where the test function was collected.

instance
Instance (can be None) on which test function was collected.

module
Python module object where the test function was collected.

fspath
The file system path of the test module which collected this test.

keywords
Keywords/markers dictionary for the underlying node.

session
Pytest session object.

addfinalizer(finalizer: Callable[], object])→ None
Add finalizer/teardown function to be called after the last test within the requesting test context finished
execution.

applymarker(marker: Union[str, _pytest.mark.structures.MarkDecorator])→ None
Apply a marker to a single test function invocation.

This method is useful if you don’t want to have a keyword/marker on all function invocations.

Parameters marker – A _pytest.mark.MarkDecorator object created by a call to
pytest.mark.NAME(...).

raiseerror(msg: Optional[str])→ NoReturn
Raise a FixtureLookupError with the given message.

getfixturevalue(argname: str)→ Any
Dynamically run a named fixture function.

Declaring fixtures via function argument is recommended where possible. But if you can only decide
whether to use another fixture at test setup time, you may use this function to retrieve it inside a fixture or
test function body.

Raises pytest.FixtureLookupError – If the given fixture could not be found.

22.3.9 pytestconfig

pytestconfig()
Session-scoped fixture that returns the _pytest.config.Config object.

Example:

def test_foo(pytestconfig):
if pytestconfig.getoption("verbose") > 0:

...

168 Chapter 22. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

22.3.10 record_property

Tutorial: record_property.

record_property()
Add extra properties to the calling test.

User properties become part of the test report and are available to the configured reporters, like JUnit XML.

The fixture is callable with name, value. The value is automatically XML-encoded.

Example:

def test_function(record_property):
record_property("example_key", 1)

22.3.11 record_testsuite_property

Tutorial: record_testsuite_property.

record_testsuite_property()
Record a new <property> tag as child of the root <testsuite>.

This is suitable to writing global information regarding the entire test suite, and is compatible with xunit2
JUnit family.

This is a session-scoped fixture which is called with (name, value). Example:

def test_foo(record_testsuite_property):
record_testsuite_property("ARCH", "PPC")
record_testsuite_property("STORAGE_TYPE", "CEPH")

name must be a string, value will be converted to a string and properly xml-escaped.

Warning: Currently this fixture does not work with the pytest-xdist plugin. See issue #7767 for details.

22.3.12 caplog

Tutorial: Logging.

caplog()
Access and control log capturing.

Captured logs are available through the following properties/methods:

* caplog.messages -> list of format-interpolated log messages

* caplog.text -> string containing formatted log output

* caplog.records -> list of logging.LogRecord instances

* caplog.record_tuples -> list of (logger_name, level, message) tuples

* caplog.clear() -> clear captured records and formatted log output string

Returns a pytest.LogCaptureFixture instance.

final class LogCaptureFixture
Provides access and control of log capturing.

22.3. Fixtures 169

https://github.com/pytest-dev/pytest-xdist
https://github.com/pytest-dev/pytest/issues/7767


pytest Documentation, Release 6.2

handler
Get the logging handler used by the fixture.

Return type LogCaptureHandler

get_records(when: str)→ List[logging.LogRecord]
Get the logging records for one of the possible test phases.

Parameters when (str) – Which test phase to obtain the records from. Valid values are:
“setup”, “call” and “teardown”.

Returns The list of captured records at the given stage.

Return type List[logging.LogRecord]

New in version 3.4.

text
The formatted log text.

records
The list of log records.

record_tuples
A list of a stripped down version of log records intended for use in assertion comparison.

The format of the tuple is:

(logger_name, log_level, message)

messages
A list of format-interpolated log messages.

Unlike ‘records’, which contains the format string and parameters for interpolation, log messages in this
list are all interpolated.

Unlike ‘text’, which contains the output from the handler, log messages in this list are unadorned with
levels, timestamps, etc, making exact comparisons more reliable.

Note that traceback or stack info (from logging.exception() or the exc_info or stack_info
arguments to the logging functions) is not included, as this is added by the formatter in the handler.

New in version 3.7.

clear()→ None
Reset the list of log records and the captured log text.

set_level(level: Union[int, str], logger: Optional[str] = None)→ None
Set the level of a logger for the duration of a test.

Changed in version 3.4: The levels of the loggers changed by this function will be restored to their initial
values at the end of the test.

Parameters

• level (int) – The level.

• logger (str) – The logger to update. If not given, the root logger.

with at_level(level: int, logger: Optional[str] = None)→ Generator[None, None, None]
Context manager that sets the level for capturing of logs. After the end of the ‘with’ statement the level is
restored to its original value.

Parameters

• level (int) – The level.

170 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#logging.exception
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int


pytest Documentation, Release 6.2

• logger (str) – The logger to update. If not given, the root logger.

22.3.13 monkeypatch

Tutorial: Monkeypatching/mocking modules and environments.

monkeypatch()
A convenient fixture for monkey-patching.

The fixture provides these methods to modify objects, dictionaries or os.environ:

monkeypatch.setattr(obj, name, value, raising=True)
monkeypatch.delattr(obj, name, raising=True)
monkeypatch.setitem(mapping, name, value)
monkeypatch.delitem(obj, name, raising=True)
monkeypatch.setenv(name, value, prepend=False)
monkeypatch.delenv(name, raising=True)
monkeypatch.syspath_prepend(path)
monkeypatch.chdir(path)

All modifications will be undone after the requesting test function or fixture has finished. The raising pa-
rameter determines if a KeyError or AttributeError will be raised if the set/deletion operation has no target.

Returns a MonkeyPatch instance.

final class MonkeyPatch
Helper to conveniently monkeypatch attributes/items/environment variables/syspath.

Returned by the monkeypatch fixture.

Versionchanged: 6.2 Can now also be used directly as pytest.MonkeyPatch(), for when the
fixture is not available. In this case, use with MonkeyPatch.context() as mp: or
remember to call undo() explicitly.

classmethod with context()→ Generator[_pytest.monkeypatch.MonkeyPatch, None, None]
Context manager that returns a new MonkeyPatch object which undoes any patching done inside the
with block upon exit.

Example:

import functools

def test_partial(monkeypatch):
with monkeypatch.context() as m:

m.setattr(functools, "partial", 3)

Useful in situations where it is desired to undo some patches before the test ends, such as mocking stdlib
functions that might break pytest itself if mocked (for examples of this see #3290.

setattr(target: str, name: object, value: _pytest.monkeypatch.Notset = <notset>, raising: bool =
True)→ None

setattr(target: object, name: str, value: object, raising: bool = True)→ None
Set attribute value on target, memorizing the old value.

For convenience you can specify a string as target which will be interpreted as a dotted import path,
with the last part being the attribute name. For example, monkeypatch.setattr("os.getcwd",
lambda: "/") would set the getcwd function of the os module.

Raises AttributeError if the attribute does not exist, unless raising is set to False.

22.3. Fixtures 171

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://github.com/pytest-dev/pytest/issues/3290
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

delattr(target: Union[object, str], name: Union[str, _pytest.monkeypatch.Notset] = <notset>, rais-
ing: bool = True)→ None

Delete attribute name from target.

If no name is specified and target is a string it will be interpreted as a dotted import path with the last
part being the attribute name.

Raises AttributeError it the attribute does not exist, unless raising is set to False.

setitem(dic: MutableMapping[K, V], name: K, value: V)→ None
Set dictionary entry name to value.

delitem(dic: MutableMapping[K, V], name: K, raising: bool = True)→ None
Delete name from dict.

Raises KeyError if it doesn’t exist, unless raising is set to False.

setenv(name: str, value: str, prepend: Optional[str] = None)→ None
Set environment variable name to value.

If prepend is a character, read the current environment variable value and prepend the value adjoined
with the prepend character.

delenv(name: str, raising: bool = True)→ None
Delete name from the environment.

Raises KeyError if it does not exist, unless raising is set to False.

syspath_prepend(path)→ None
Prepend path to sys.path list of import locations.

chdir(path)→ None
Change the current working directory to the specified path.

Path can be a string or a py.path.local object.

undo()→ None
Undo previous changes.

This call consumes the undo stack. Calling it a second time has no effect unless you do more monkey-
patching after the undo call.

There is generally no need to call undo(), since it is called automatically during tear-down.

Note that the same monkeypatch fixture is used across a single test function invocation. If
monkeypatch is used both by the test function itself and one of the test fixtures, calling undo() will
undo all of the changes made in both functions.

22.3.14 pytester

New in version 6.2.

Provides a Pytester instance that can be used to run and test pytest itself.

It provides an empty directory where pytest can be executed in isolation, and contains facilities to write tests, configu-
ration files, and match against expected output.

To use it, include in your topmost conftest.py file:

pytest_plugins = "pytester"

172 Chapter 22. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

final class Pytester
Facilities to write tests/configuration files, execute pytest in isolation, and match against expected output, perfect
for black-box testing of pytest plugins.

It attempts to isolate the test run from external factors as much as possible, modifying the current working
directory to path and environment variables during initialization.

Attributes:

Variables

• path (Path) – temporary directory path used to create files/run tests from, etc.

• plugins – A list of plugins to use with parseconfig() and runpytest(). Initially
this is an empty list but plugins can be added to the list. The type of items to add to the list
depends on the method using them so refer to them for details.

CLOSE_STDIN
alias of object

exception TimeoutExpired

path
Temporary directory where files are created and pytest is executed.

make_hook_recorder(pluginmanager: _pytest.config.PytestPluginManager) →
_pytest.pytester.HookRecorder

Create a new HookRecorder for a PluginManager.

chdir()→ None
Cd into the temporary directory.

This is done automatically upon instantiation.

makefile(ext: str, *args: str, **kwargs: str)→ pathlib.Path
Create new file(s) in the test directory.

Parameters

• ext (str) – The extension the file(s) should use, including the dot, e.g. .py.

• args – All args are treated as strings and joined using newlines. The result is written
as contents to the file. The name of the file is based on the test function requesting this
fixture.

• kwargs – Each keyword is the name of a file, while the value of it will be written as
contents of the file.

Examples:

pytester.makefile(".txt", "line1", "line2")

pytester.makefile(".ini", pytest="[pytest]\naddopts=-rs\n")

makeconftest(source: str)→ pathlib.Path
Write a contest.py file with ‘source’ as contents.

makeini(source: str)→ pathlib.Path
Write a tox.ini file with ‘source’ as contents.

getinicfg(source: str)→ iniconfig.SectionWrapper
Return the pytest section from the tox.ini config file.

22.3. Fixtures 173

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

makepyprojecttoml(source: str)→ pathlib.Path
Write a pyproject.toml file with ‘source’ as contents.

New in version 6.0.

makepyfile(*args, **kwargs)→ pathlib.Path
Shortcut for .makefile() with a .py extension.

Defaults to the test name with a ‘.py’ extension, e.g test_foobar.py, overwriting existing files.

Examples:

def test_something(pytester):
# Initial file is created test_something.py.
pytester.makepyfile("foobar")
# To create multiple files, pass kwargs accordingly.
pytester.makepyfile(custom="foobar")
# At this point, both 'test_something.py' & 'custom.py' exist in the test

→˓directory.

maketxtfile(*args, **kwargs)→ pathlib.Path
Shortcut for .makefile() with a .txt extension.

Defaults to the test name with a ‘.txt’ extension, e.g test_foobar.txt, overwriting existing files.

Examples:

def test_something(pytester):
# Initial file is created test_something.txt.
pytester.maketxtfile("foobar")
# To create multiple files, pass kwargs accordingly.
pytester.maketxtfile(custom="foobar")
# At this point, both 'test_something.txt' & 'custom.txt' exist in the

→˓test directory.

syspathinsert(path: Optional[Union[str, os.PathLike[str]]] = None)→ None
Prepend a directory to sys.path, defaults to tmpdir.

This is undone automatically when this object dies at the end of each test.

mkdir(name: str)→ pathlib.Path
Create a new (sub)directory.

mkpydir(name: str)→ pathlib.Path
Create a new python package.

This creates a (sub)directory with an empty __init__.py file so it gets recognised as a Python package.

copy_example(name: Optional[str] = None)→ pathlib.Path
Copy file from project’s directory into the testdir.

Parameters name (str) – The name of the file to copy.

Returns path to the copied directory (inside self.path).

class Session(*k, **kw)

exception Failed
Signals a stop as failed test run.

exception Interrupted
Signals that the test run was interrupted.

174 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

for ... in collect()→ Iterator[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]
Return a list of children (items and collectors) for this collection node.

classmethod from_config(config: _pytest.config.Config)→ _pytest.main.Session

for ... in genitems(node: Union[_pytest.nodes.Item, _pytest.nodes.Collector]) → Itera-
tor[_pytest.nodes.Item]

gethookproxy(fspath: py._path.local.LocalPath)

isinitpath(path: py._path.local.LocalPath)→ bool

perform_collect(args: Optional[Sequence[str]] = None, genitems: bool = True) → Se-
quence[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]

Perform the collection phase for this session.

This is called by the default pytest_collection hook implementation; see the documentation
of this hook for more details. For testing purposes, it may also be called directly on a fresh Session.

This function normally recursively expands any collectors collected from the session to their
items, and only items are returned. For testing purposes, this may be suppressed by passing
genitems=False, in which case the return value contains these collectors unexpanded, and
session.items is empty.

pytest_collectreport(report: Union[_pytest.reports.TestReport,
_pytest.reports.CollectReport])→ None

pytest_collectstart()→ None

pytest_runtest_logreport(report: Union[_pytest.reports.TestReport,
_pytest.reports.CollectReport])→ None

getnode(config: _pytest.config.Config, arg: Union[str, os.PathLike[str]]) → Op-
tional[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]

Return the collection node of a file.

Parameters

• config (_pytest.config.Config) – A pytest config. See parseconfig() and
parseconfigure() for creating it.

• arg (py.path.local) – Path to the file.

getpathnode(path: Union[str, os.PathLike[str]])
Return the collection node of a file.

This is like getnode() but uses parseconfigure() to create the (configured) pytest Config in-
stance.

Parameters path (py.path.local) – Path to the file.

genitems(colitems: Sequence[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]) →
List[_pytest.nodes.Item]

Generate all test items from a collection node.

This recurses into the collection node and returns a list of all the test items contained within.

runitem(source: str)→ Any
Run the “test_func” Item.

The calling test instance (class containing the test method) must provide a .getrunner() method
which should return a runner which can run the test protocol for a single item, e.g. _pytest.runner.
runtestprotocol().

22.3. Fixtures 175

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

inline_runsource(source: str, *cmdlineargs)→ _pytest.pytester.HookRecorder
Run a test module in process using pytest.main().

This run writes “source” into a temporary file and runs pytest.main() on it, returning a
HookRecorder instance for the result.

Parameters

• source – The source code of the test module.

• cmdlineargs – Any extra command line arguments to use.

Returns HookRecorder instance of the result.

inline_genitems(*args)→ Tuple[List[_pytest.nodes.Item], _pytest.pytester.HookRecorder]
Run pytest.main(['--collectonly']) in-process.

Runs the pytest.main() function to run all of pytest inside the test process itself like
inline_run(), but returns a tuple of the collected items and a HookRecorder instance.

inline_run(*args: Union[str, os.PathLike[str]], plugins=(), no_reraise_ctrlc: bool = False) →
_pytest.pytester.HookRecorder

Run pytest.main() in-process, returning a HookRecorder.

Runs the pytest.main() function to run all of pytest inside the test process itself. This means it can
return a HookRecorder instance which gives more detailed results from that run than can be done by
matching stdout/stderr from runpytest().

Parameters

• args – Command line arguments to pass to pytest.main().

• plugins – Extra plugin instances the pytest.main() instance should use.

• no_reraise_ctrlc – Typically we reraise keyboard interrupts from the child run. If
True, the KeyboardInterrupt exception is captured.

Returns A HookRecorder instance.

runpytest_inprocess(*args: Union[str, os.PathLike[str]], **kwargs: Any) →
_pytest.pytester.RunResult

Return result of running pytest in-process, providing a similar interface to what self.runpytest() provides.

runpytest(*args: Union[str, os.PathLike[str]], **kwargs: Any)→ _pytest.pytester.RunResult
Run pytest inline or in a subprocess, depending on the command line option “–runpytest” and return a
RunResult.

parseconfig(*args: Union[str, os.PathLike[str]])→ _pytest.config.Config
Return a new pytest Config instance from given commandline args.

This invokes the pytest bootstrapping code in _pytest.config to create a new _pytest.core.
PluginManager and call the pytest_cmdline_parse hook to create a new _pytest.config.
Config instance.

If plugins has been populated they should be plugin modules to be registered with the PluginManager.

parseconfigure(*args: Union[str, os.PathLike[str]])→ _pytest.config.Config
Return a new pytest configured Config instance.

Returns a new _pytest.config.Config instance like parseconfig(), but also calls the
pytest_configure hook.

getitem(source: str, funcname: str = 'test_func')→ _pytest.nodes.Item
Return the test item for a test function.

176 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

Writes the source to a python file and runs pytest’s collection on the resulting module, returning the test
item for the requested function name.

Parameters

• source – The module source.

• funcname – The name of the test function for which to return a test item.

getitems(source: str)→ List[_pytest.nodes.Item]
Return all test items collected from the module.

Writes the source to a Python file and runs pytest’s collection on the resulting module, returning all test
items contained within.

getmodulecol(source: Union[str, pathlib.Path], configargs=(), *, withinit: bool = False)
Return the module collection node for source.

Writes source to a file using makepyfile() and then runs the pytest collection on it, returning the
collection node for the test module.

Parameters

• source – The source code of the module to collect.

• configargs – Any extra arguments to pass to parseconfigure().

• withinit – Whether to also write an __init__.py file to the same directory to ensure
it is a package.

collect_by_name(modcol: _pytest.nodes.Collector, name: str) → Op-
tional[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]

Return the collection node for name from the module collection.

Searchs a module collection node for a collection node matching the given name.

Parameters

• modcol – A module collection node; see getmodulecol().

• name – The name of the node to return.

popen(cmdargs, stdout: Union[int, TextIO] = -1, stderr: Union[int, TextIO] = -1, stdin=<class 'ob-
ject'>, **kw)

Invoke subprocess.Popen.

Calls subprocess.Popen making sure the current working directory is in the PYTHONPATH.

You probably want to use run() instead.

run(*cmdargs: Union[str, os.PathLike[str]], timeout: Optional[float] = None, stdin=<class 'object'>)
→ _pytest.pytester.RunResult
Run a command with arguments.

Run a process using subprocess.Popen saving the stdout and stderr.

Parameters

• cmdargs – The sequence of arguments to pass to subprocess.Popen(), with path-
like objects being converted to str automatically.

• timeout – The period in seconds after which to timeout and raise Pytester.
TimeoutExpired.

• stdin – Optional standard input. Bytes are being send, closing the pipe, otherwise it is
passed through to popen. Defaults to CLOSE_STDIN, which translates to using a pipe
(subprocess.PIPE) that gets closed.

22.3. Fixtures 177

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

Return type RunResult

runpython(script)→ _pytest.pytester.RunResult
Run a python script using sys.executable as interpreter.

Return type RunResult

runpython_c(command)
Run python -c “command”.

Return type RunResult

runpytest_subprocess(*args, timeout: Optional[float] = None)→ _pytest.pytester.RunResult
Run pytest as a subprocess with given arguments.

Any plugins added to the plugins list will be added using the -p command line option. Additionally
--basetemp is used to put any temporary files and directories in a numbered directory prefixed with
“runpytest-” to not conflict with the normal numbered pytest location for temporary files and directories.

Parameters

• args – The sequence of arguments to pass to the pytest subprocess.

• timeout – The period in seconds after which to timeout and raise Pytester.
TimeoutExpired.

Return type RunResult

spawn_pytest(string: str, expect_timeout: float = 10.0)→ pexpect.spawn
Run pytest using pexpect.

This makes sure to use the right pytest and sets up the temporary directory locations.

The pexpect child is returned.

spawn(cmd: str, expect_timeout: float = 10.0)→ pexpect.spawn
Run a command using pexpect.

The pexpect child is returned.

class RunResult
The result of running a command.

ret: Union[int, _pytest.config.ExitCode]
The return value.

outlines
List of lines captured from stdout.

errlines
List of lines captured from stderr.

stdout
LineMatcher of stdout.

Use e.g. str(stdout) to reconstruct stdout, or the commonly used stdout.fnmatch_lines()
method.

stderr
LineMatcher of stderr.

duration
Duration in seconds.

178 Chapter 22. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


pytest Documentation, Release 6.2

parseoutcomes()→ Dict[str, int]
Return a dictionary of outcome noun -> count from parsing the terminal output that the test process pro-
duced.

The returned nouns will always be in plural form:

======= 1 failed, 1 passed, 1 warning, 1 error in 0.13s ====

Will return {"failed": 1, "passed": 1, "warnings": 1, "errors": 1}.

classmethod parse_summary_nouns(lines)→ Dict[str, int]
Extract the nouns from a pytest terminal summary line.

It always returns the plural noun for consistency:

======= 1 failed, 1 passed, 1 warning, 1 error in 0.13s ====

Will return {"failed": 1, "passed": 1, "warnings": 1, "errors": 1}.

assert_outcomes(passed: int = 0, skipped: int = 0, failed: int = 0, errors: int = 0, xpassed: int = 0,
xfailed: int = 0)→ None

Assert that the specified outcomes appear with the respective numbers (0 means it didn’t occur) in the text
output from a test run.

class LineMatcher
Flexible matching of text.

This is a convenience class to test large texts like the output of commands.

The constructor takes a list of lines without their trailing newlines, i.e. text.splitlines().

__str__()→ str
Return the entire original text.

New in version 6.2: You can use str() in older versions.

fnmatch_lines_random(lines2: Sequence[str])→ None
Check lines exist in the output in any order (using fnmatch.fnmatch()).

re_match_lines_random(lines2: Sequence[str])→ None
Check lines exist in the output in any order (using re.match()).

get_lines_after(fnline: str)→ Sequence[str]
Return all lines following the given line in the text.

The given line can contain glob wildcards.

fnmatch_lines(lines2: Sequence[str], *, consecutive: bool = False)→ None
Check lines exist in the output (using fnmatch.fnmatch()).

The argument is a list of lines which have to match and can use glob wildcards. If they do not match a
pytest.fail() is called. The matches and non-matches are also shown as part of the error message.

Parameters

• lines2 – String patterns to match.

• consecutive – Match lines consecutively?

re_match_lines(lines2: Sequence[str], *, consecutive: bool = False)→ None
Check lines exist in the output (using re.match()).

The argument is a list of lines which have to match using re.match. If they do not match a pytest.fail()
is called.

22.3. Fixtures 179

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/re.html#re.match
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/re.html#re.match


pytest Documentation, Release 6.2

The matches and non-matches are also shown as part of the error message.

Parameters

• lines2 – string patterns to match.

• consecutive – match lines consecutively?

no_fnmatch_line(pat: str)→ None
Ensure captured lines do not match the given pattern, using fnmatch.fnmatch.

Parameters pat (str) – The pattern to match lines.

no_re_match_line(pat: str)→ None
Ensure captured lines do not match the given pattern, using re.match.

Parameters pat (str) – The regular expression to match lines.

str()→ str
Return the entire original text.

class HookRecorder
Record all hooks called in a plugin manager.

This wraps all the hook calls in the plugin manager, recording each call before propagating the normal calls.

matchreport(inamepart: str = '', names: Union[str, Iterable[str]] =
('pytest_runtest_logreport', 'pytest_collectreport'), when: Optional[str] = None)
→ Union[_pytest.reports.CollectReport, _pytest.reports.TestReport]

Return a testreport whose dotted import path matches.

22.3.15 testdir

Identical to pytester, but provides an instance whose methods return legacy py.path.local objects instead
when applicable.

New code should avoid using testdir in favor of pytester.

final class Testdir
Similar to Pytester, but this class works with legacy py.path.local objects instead.

All methods just forward to an internal Pytester instance, converting results to py.path.local objects
as necessary.

CLOSE_STDIN
alias of object

exception TimeoutExpired

class Session(*k, **kw)

exception Failed
Signals a stop as failed test run.

exception Interrupted
Signals that the test run was interrupted.

for ... in collect()→ Iterator[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]
Return a list of children (items and collectors) for this collection node.

classmethod from_config(config: _pytest.config.Config)→ _pytest.main.Session

180 Chapter 22. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object


pytest Documentation, Release 6.2

for ... in genitems(node: Union[_pytest.nodes.Item, _pytest.nodes.Collector]) → Itera-
tor[_pytest.nodes.Item]

gethookproxy(fspath: py._path.local.LocalPath)

isinitpath(path: py._path.local.LocalPath)→ bool

perform_collect(args: Optional[Sequence[str]] = None, genitems: bool = True) → Se-
quence[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]

Perform the collection phase for this session.

This is called by the default pytest_collection hook implementation; see the documentation
of this hook for more details. For testing purposes, it may also be called directly on a fresh Session.

This function normally recursively expands any collectors collected from the session to their
items, and only items are returned. For testing purposes, this may be suppressed by passing
genitems=False, in which case the return value contains these collectors unexpanded, and
session.items is empty.

pytest_collectreport(report: Union[_pytest.reports.TestReport,
_pytest.reports.CollectReport])→ None

pytest_collectstart()→ None

pytest_runtest_logreport(report: Union[_pytest.reports.TestReport,
_pytest.reports.CollectReport])→ None

tmpdir
Temporary directory where tests are executed.

make_hook_recorder(pluginmanager)→ _pytest.pytester.HookRecorder
See Pytester.make_hook_recorder().

chdir()→ None
See Pytester.chdir().

finalize()→ None
See Pytester._finalize().

makefile(ext, *args, **kwargs)→ py._path.local.LocalPath
See Pytester.makefile().

makeconftest(source)→ py._path.local.LocalPath
See Pytester.makeconftest().

makeini(source)→ py._path.local.LocalPath
See Pytester.makeini().

getinicfg(source: str)→ iniconfig.SectionWrapper
See Pytester.getinicfg().

makepyprojecttoml(source)→ py._path.local.LocalPath
See Pytester.makepyprojecttoml().

makepyfile(*args, **kwargs)→ py._path.local.LocalPath
See Pytester.makepyfile().

maketxtfile(*args, **kwargs)→ py._path.local.LocalPath
See Pytester.maketxtfile().

syspathinsert(path=None)→ None
See Pytester.syspathinsert().

mkdir(name)→ py._path.local.LocalPath
See Pytester.mkdir().

22.3. Fixtures 181

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

mkpydir(name)→ py._path.local.LocalPath
See Pytester.mkpydir().

copy_example(name=None)→ py._path.local.LocalPath
See Pytester.copy_example().

getnode(config: _pytest.config.Config, arg) → Optional[Union[_pytest.nodes.Item,
_pytest.nodes.Collector]]

See Pytester.getnode().

getpathnode(path)
See Pytester.getpathnode().

genitems(colitems: List[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]) →
List[_pytest.nodes.Item]

See Pytester.genitems().

runitem(source)
See Pytester.runitem().

inline_runsource(source, *cmdlineargs)
See Pytester.inline_runsource().

inline_genitems(*args)
See Pytester.inline_genitems().

inline_run(*args, plugins=(), no_reraise_ctrlc: bool = False)
See Pytester.inline_run().

runpytest_inprocess(*args, **kwargs)→ _pytest.pytester.RunResult
See Pytester.runpytest_inprocess().

runpytest(*args, **kwargs)→ _pytest.pytester.RunResult
See Pytester.runpytest().

parseconfig(*args)→ _pytest.config.Config
See Pytester.parseconfig().

parseconfigure(*args)→ _pytest.config.Config
See Pytester.parseconfigure().

getitem(source, funcname='test_func')
See Pytester.getitem().

getitems(source)
See Pytester.getitems().

getmodulecol(source, configargs=(), withinit=False)
See Pytester.getmodulecol().

collect_by_name(modcol: _pytest.nodes.Collector, name: str) → Op-
tional[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]

See Pytester.collect_by_name().

popen(cmdargs, stdout: Union[int, TextIO] = -1, stderr: Union[int, TextIO] = -1, stdin=<class 'ob-
ject'>, **kw)

See Pytester.popen().

run(*cmdargs, timeout=None, stdin=<class 'object'>)→ _pytest.pytester.RunResult
See Pytester.run().

runpython(script)→ _pytest.pytester.RunResult
See Pytester.runpython().

182 Chapter 22. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

runpython_c(command)
See Pytester.runpython_c().

runpytest_subprocess(*args, timeout=None)→ _pytest.pytester.RunResult
See Pytester.runpytest_subprocess().

spawn_pytest(string: str, expect_timeout: float = 10.0)→ pexpect.spawn
See Pytester.spawn_pytest().

spawn(cmd: str, expect_timeout: float = 10.0)→ pexpect.spawn
See Pytester.spawn().

22.3.16 recwarn

Tutorial: Asserting warnings with the warns function

recwarn()
Return a WarningsRecorder instance that records all warnings emitted by test functions.

See http://docs.python.org/library/warnings.html for information on warning categories.

class WarningsRecorder
A context manager to record raised warnings.

Adapted from warnings.catch_warnings.

list
The list of recorded warnings.

pop(cls: Type[Warning] = <class 'Warning'>)→ warnings.WarningMessage
Pop the first recorded warning, raise exception if not exists.

clear()→ None
Clear the list of recorded warnings.

Each recorded warning is an instance of warnings.WarningMessage.

Note: DeprecationWarning and PendingDeprecationWarning are treated differently; see Ensuring code
triggers a deprecation warning.

22.3.17 tmp_path

Tutorial: Temporary directories and files

tmp_path()
Return a temporary directory path object which is unique to each test function invocation, created as a sub
directory of the base temporary directory.

By default, a new base temporary directory is created each test session, and old bases are removed after 3
sessions, to aid in debugging. If --basetemp is used then it is cleared each session. See The default base
temporary directory.

The returned object is a pathlib.Path object.

22.3. Fixtures 183

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://docs.python.org/library/warnings.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path


pytest Documentation, Release 6.2

22.3.18 tmp_path_factory

Tutorial: The tmp_path_factory fixture

tmp_path_factory is an instance of TempPathFactory:

final class TempPathFactory
Factory for temporary directories under the common base temp directory.

The base directory can be configured using the --basetemp option.

22.3.19 tmpdir

Tutorial: Temporary directories and files

tmpdir()
Return a temporary directory path object which is unique to each test function invocation, created as a sub
directory of the base temporary directory.

By default, a new base temporary directory is created each test session, and old bases are removed after 3
sessions, to aid in debugging. If --basetemp is used then it is cleared each session. See The default base
temporary directory.

The returned object is a py.path.local path object.

22.3.20 tmpdir_factory

Tutorial: The ‘tmpdir_factory’ fixture

tmp_path_factory is an instance of TempdirFactory:

final class TempdirFactory
Backward comptibility wrapper that implements :class:py.path.local for :class:TempPathFactory.

22.4 Hooks

Tutorial: Writing plugins.

Reference to all hooks which can be implemented by conftest.py files and plugins.

22.4.1 Bootstrapping hooks

Bootstrapping hooks called for plugins registered early enough (internal and setuptools plugins).

pytest_load_initial_conftests(early_config: Config, parser: Parser, args: List[str])→ None
Called to implement the loading of initial conftest files ahead of command line option parsing.

Note: This hook will not be called for conftest.py files, only for setuptools plugins.

Parameters

• early_config (_pytest.config.Config) – The pytest config object.

• args (List[str]) – Arguments passed on the command line.

184 Chapter 22. API Reference

https://py.readthedocs.io/en/latest/path.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

• parser (_pytest.config.argparsing.Parser) – To add command line options.

pytest_cmdline_preparse(config: Config, args: List[str])→ None
(Deprecated) modify command line arguments before option parsing.

This hook is considered deprecated and will be removed in a future pytest version. Consider using
pytest_load_initial_conftests() instead.

Note: This hook will not be called for conftest.py files, only for setuptools plugins.

Parameters

• config (_pytest.config.Config) – The pytest config object.

• args (List[str]) – Arguments passed on the command line.

pytest_cmdline_parse(pluginmanager: PytestPluginManager, args: List[str])→ Optional[Config]
Return an initialized config object, parsing the specified args.

Stops at first non-None result, see firstresult: stop at first non-None result.

Note: This hook will only be called for plugin classes passed to the plugins arg when using pytest.main to
perform an in-process test run.

Parameters

• pluginmanager (_pytest.config.PytestPluginManager) – Pytest plugin
manager.

• args (List[str]) – List of arguments passed on the command line.

pytest_cmdline_main(config: Config)→ Optional[Union[ExitCode, int]]
Called for performing the main command line action. The default implementation will invoke the configure
hooks and runtest_mainloop.

Note: This hook will not be called for conftest.py files, only for setuptools plugins.

Stops at first non-None result, see firstresult: stop at first non-None result.

Parameters config (_pytest.config.Config) – The pytest config object.

22.4.2 Initialization hooks

Initialization hooks called for plugins and conftest.py files.

pytest_addoption(parser: Parser, pluginmanager: PytestPluginManager)→ None
Register argparse-style options and ini-style config values, called once at the beginning of a test run.

Note: This function should be implemented only in plugins or conftest.py files situated at the tests root
directory due to how pytest discovers plugins during startup.

Parameters

22.4. Hooks 185

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

• parser (_pytest.config.argparsing.Parser) – To add command line options,
call parser.addoption(...). To add ini-file values call parser.addini(...).

• pluginmanager (_pytest.config.PytestPluginManager) – pytest plugin
manager, which can be used to install hookspec()’s or hookimpl()’s and allow one
plugin to call another plugin’s hooks to change how command line options are added.

Options can later be accessed through the config object, respectively:

• config.getoption(name) to retrieve the value of a command line option.

• config.getini(name) to retrieve a value read from an ini-style file.

The config object is passed around on many internal objects via the .config attribute or can be retrieved as
the pytestconfig fixture.

Note: This hook is incompatible with hookwrapper=True.

pytest_addhooks(pluginmanager: PytestPluginManager)→ None
Called at plugin registration time to allow adding new hooks via a call to pluginmanager.
add_hookspecs(module_or_class, prefix).

Parameters pluginmanager (_pytest.config.PytestPluginManager) – pytest plu-
gin manager.

Note: This hook is incompatible with hookwrapper=True.

pytest_configure(config: Config)→ None
Allow plugins and conftest files to perform initial configuration.

This hook is called for every plugin and initial conftest file after command line options have been parsed.

After that, the hook is called for other conftest files as they are imported.

Note: This hook is incompatible with hookwrapper=True.

Parameters config (_pytest.config.Config) – The pytest config object.

pytest_unconfigure(config: Config)→ None
Called before test process is exited.

Parameters config (_pytest.config.Config) – The pytest config object.

pytest_sessionstart(session: Session)→ None
Called after the Session object has been created and before performing collection and entering the run test
loop.

Parameters session (pytest.Session) – The pytest session object.

pytest_sessionfinish(session: Session, exitstatus: Union[int, ExitCode])→ None
Called after whole test run finished, right before returning the exit status to the system.

Parameters

• session (pytest.Session) – The pytest session object.

• exitstatus (int) – The status which pytest will return to the system.

186 Chapter 22. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int


pytest Documentation, Release 6.2

pytest_plugin_registered(plugin: _PluggyPlugin, manager: PytestPluginManager)→ None
A new pytest plugin got registered.

Parameters

• plugin – The plugin module or instance.

• manager (_pytest.config.PytestPluginManager) – pytest plugin manager.

Note: This hook is incompatible with hookwrapper=True.

22.4.3 Collection hooks

pytest calls the following hooks for collecting files and directories:

pytest_collection(session: Session)→ Optional[object]
Perform the collection phase for the given session.

Stops at first non-None result, see firstresult: stop at first non-None result. The return value is not used, but only
stops further processing.

The default collection phase is this (see individual hooks for full details):

1. Starting from session as the initial collector:

1. pytest_collectstart(collector)

2. report = pytest_make_collect_report(collector)

3. pytest_exception_interact(collector, call, report) if an interactive ex-
ception occurred

4. For each collected node:

1. If an item, pytest_itemcollected(item)

2. If a collector, recurse into it.

5. pytest_collectreport(report)

2. pytest_collection_modifyitems(session, config, items)

1. pytest_deselected(items) for any deselected items (may be called multiple times)

3. pytest_collection_finish(session)

4. Set session.items to the list of collected items

5. Set session.testscollected to the number of collected items

You can implement this hook to only perform some action before collection, for example the terminal plugin
uses it to start displaying the collection counter (and returns None).

Parameters session (pytest.Session) – The pytest session object.

pytest_ignore_collect(path: py._path.local.LocalPath, config: Config)→ Optional[bool]
Return True to prevent considering this path for collection.

This hook is consulted for all files and directories prior to calling more specific hooks.

22.4. Hooks 187

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool


pytest Documentation, Release 6.2

Stops at first non-None result, see firstresult: stop at first non-None result.

Parameters

• path (py.path.local) – The path to analyze.

• config (_pytest.config.Config) – The pytest config object.

pytest_collect_file(path: py._path.local.LocalPath, parent: Collector)→ Optional[Collector]
Create a Collector for the given path, or None if not relevant.

The new node needs to have the specified parent as a parent.

Parameters path (py.path.local) – The path to collect.

pytest_pycollect_makemodule(path: py._path.local.LocalPath, parent)→ Optional[Module]
Return a Module collector or None for the given path.

This hook will be called for each matching test module path. The pytest_collect_file hook needs to be used if
you want to create test modules for files that do not match as a test module.

Stops at first non-None result, see firstresult: stop at first non-None result.

Parameters path (py.path.local) – The path of module to collect.

For influencing the collection of objects in Python modules you can use the following hook:

pytest_pycollect_makeitem(collector: PyCollector, name: str, obj: object) → Union[None, Item,
Collector, List[Union[Item, Collector]]]

Return a custom item/collector for a Python object in a module, or None.

Stops at first non-None result, see firstresult: stop at first non-None result.

pytest_generate_tests(metafunc: Metafunc)→ None
Generate (multiple) parametrized calls to a test function.

pytest_make_parametrize_id(config: Config, val: object, argname: str)→ Optional[str]
Return a user-friendly string representation of the given val that will be used by @pytest.mark.parametrize
calls, or None if the hook doesn’t know about val.

The parameter name is available as argname, if required.

Stops at first non-None result, see firstresult: stop at first non-None result.

Parameters

• config (_pytest.config.Config) – The pytest config object.

• val – The parametrized value.

• argname (str) – The automatic parameter name produced by pytest.

After collection is complete, you can modify the order of items, delete or otherwise amend the test items:

pytest_collection_modifyitems(session: Session, config: Config, items: List[Item])→ None
Called after collection has been performed. May filter or re-order the items in-place.

Parameters

• session (pytest.Session) – The pytest session object.

• config (_pytest.config.Config) – The pytest config object.

• items (List[pytest.Item]) – List of item objects.

188 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

Note: If this hook is implemented in conftest.py files, it always receives all collected items, not only those under
the conftest.py where it is implemented.

pytest_collection_finish(session: Session)→ None
Called after collection has been performed and modified.

Parameters session (pytest.Session) – The pytest session object.

22.4.4 Test running (runtest) hooks

All runtest related hooks receive a pytest.Item object.

pytest_runtestloop(session: Session)→ Optional[object]
Perform the main runtest loop (after collection finished).

The default hook implementation performs the runtest protocol for all items collected in the session (session.
items), unless the collection failed or the collectonly pytest option is set.

If at any point pytest.exit() is called, the loop is terminated immediately.

If at any point session.shouldfail or session.shouldstop are set, the loop is terminated after the
runtest protocol for the current item is finished.

Parameters session (pytest.Session) – The pytest session object.

Stops at first non-None result, see firstresult: stop at first non-None result. The return value is not used, but only
stops further processing.

pytest_runtest_protocol(item: Item, nextitem: Optional[Item])→ Optional[object]
Perform the runtest protocol for a single test item.

The default runtest protocol is this (see individual hooks for full details):

• pytest_runtest_logstart(nodeid, location)

• Setup phase:

– call = pytest_runtest_setup(item) (wrapped in CallInfo(when="setup"))

– report = pytest_runtest_makereport(item, call)

– pytest_runtest_logreport(report)

– pytest_exception_interact(call, report) if an interactive exception occurred

• Call phase, if the the setup passed and the setuponly pytest option is not set:

– call = pytest_runtest_call(item) (wrapped in CallInfo(when="call"))

– report = pytest_runtest_makereport(item, call)

– pytest_runtest_logreport(report)

– pytest_exception_interact(call, report) if an interactive exception occurred

• Teardown phase:

– call = pytest_runtest_teardown(item, nextitem) (wrapped in
CallInfo(when="teardown"))

– report = pytest_runtest_makereport(item, call)

– pytest_runtest_logreport(report)

22.4. Hooks 189

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object


pytest Documentation, Release 6.2

– pytest_exception_interact(call, report) if an interactive exception occurred

• pytest_runtest_logfinish(nodeid, location)

Parameters

• item – Test item for which the runtest protocol is performed.

• nextitem – The scheduled-to-be-next test item (or None if this is the end my friend).

Stops at first non-None result, see firstresult: stop at first non-None result. The return value is not used, but only
stops further processing.

pytest_runtest_logstart(nodeid: str, location: Tuple[str, Optional[int], str])→ None
Called at the start of running the runtest protocol for a single item.

See pytest_runtest_protocol() for a description of the runtest protocol.

Parameters

• nodeid (str) – Full node ID of the item.

• location – A tuple of (filename, lineno, testname).

pytest_runtest_logfinish(nodeid: str, location: Tuple[str, Optional[int], str])→ None
Called at the end of running the runtest protocol for a single item.

See pytest_runtest_protocol() for a description of the runtest protocol.

Parameters

• nodeid (str) – Full node ID of the item.

• location – A tuple of (filename, lineno, testname).

pytest_runtest_setup(item: Item)→ None
Called to perform the setup phase for a test item.

The default implementation runs setup() on item and all of its parents (which haven’t been setup yet). This
includes obtaining the values of fixtures required by the item (which haven’t been obtained yet).

pytest_runtest_call(item: Item)→ None
Called to run the test for test item (the call phase).

The default implementation calls item.runtest().

pytest_runtest_teardown(item: Item, nextitem: Optional[Item])→ None
Called to perform the teardown phase for a test item.

The default implementation runs the finalizers and calls teardown() on item and all of its parents (which
need to be torn down). This includes running the teardown phase of fixtures required by the item (if they go out
of scope).

Parameters nextitem – The scheduled-to-be-next test item (None if no further test item is sched-
uled). This argument can be used to perform exact teardowns, i.e. calling just enough finalizers
so that nextitem only needs to call setup-functions.

pytest_runtest_makereport(item: Item, call: CallInfo[None])→ Optional[TestReport]
Called to create a _pytest.reports.TestReport for each of the setup, call and teardown runtest phases
of a test item.

See pytest_runtest_protocol() for a description of the runtest protocol.

Parameters call (CallInfo[None]) – The CallInfo for the phase.

Stops at first non-None result, see firstresult: stop at first non-None result.

190 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

For deeper understanding you may look at the default implementation of these hooks in _pytest.runner and
maybe also in _pytest.pdb which interacts with _pytest.capture and its input/output capturing in order to
immediately drop into interactive debugging when a test failure occurs.

pytest_pyfunc_call(pyfuncitem: Function)→ Optional[object]
Call underlying test function.

Stops at first non-None result, see firstresult: stop at first non-None result.

22.4.5 Reporting hooks

Session related reporting hooks:

pytest_collectstart(collector: Collector)→ None
Collector starts collecting.

pytest_make_collect_report(collector: Collector)→ Optional[CollectReport]
Perform collector.collect() and return a CollectReport.

Stops at first non-None result, see firstresult: stop at first non-None result.

pytest_itemcollected(item: Item)→ None
We just collected a test item.

pytest_collectreport(report: CollectReport)→ None
Collector finished collecting.

pytest_deselected(items: Sequence[Item])→ None
Called for deselected test items, e.g. by keyword.

May be called multiple times.

pytest_report_header(config: Config, startdir: py._path.local.LocalPath)→ Union[str, List[str]]
Return a string or list of strings to be displayed as header info for terminal reporting.

Parameters

• config (_pytest.config.Config) – The pytest config object.

• startdir (py.path.local) – The starting dir.

Note: Lines returned by a plugin are displayed before those of plugins which ran before it. If you want to have
your line(s) displayed first, use trylast=True.

Note: This function should be implemented only in plugins or conftest.py files situated at the tests root
directory due to how pytest discovers plugins during startup.

pytest_report_collectionfinish(config: Config, startdir: py._path.local.LocalPath, items: Se-
quence[Item])→ Union[str, List[str]]

Return a string or list of strings to be displayed after collection has finished successfully.

These strings will be displayed after the standard “collected X items” message.

New in version 3.2.

Parameters

• config (_pytest.config.Config) – The pytest config object.

• startdir (py.path.local) – The starting dir.

22.4. Hooks 191

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

• items – List of pytest items that are going to be executed; this list should not be modified.

Note: Lines returned by a plugin are displayed before those of plugins which ran before it. If you want to have
your line(s) displayed first, use trylast=True.

pytest_report_teststatus(report: Union[CollectReport, TestReport], config: Config) → Tuple[str,
str, Union[str, Mapping[str, bool]]]

Return result-category, shortletter and verbose word for status reporting.

The result-category is a category in which to count the result, for example “passed”, “skipped”, “error” or the
empty string.

The shortletter is shown as testing progresses, for example “.”, “s”, “E” or the empty string.

The verbose word is shown as testing progresses in verbose mode, for example “PASSED”, “SKIPPED”, “ER-
ROR” or the empty string.

pytest may style these implicitly according to the report outcome. To provide explicit styling, return a tuple for
the verbose word, for example "rerun", "R", ("RERUN", {"yellow": True}).

Parameters

• report – The report object whose status is to be returned.

• config (_pytest.config.Config) – The pytest config object.

Stops at first non-None result, see firstresult: stop at first non-None result.

pytest_terminal_summary(terminalreporter: TerminalReporter, exitstatus: ExitCode, config: Config)
→ None

Add a section to terminal summary reporting.

Parameters

• terminalreporter (_pytest.terminal.TerminalReporter) – The internal
terminal reporter object.

• exitstatus (int) – The exit status that will be reported back to the OS.

• config (_pytest.config.Config) – The pytest config object.

New in version 4.2: The config parameter.

pytest_fixture_setup(fixturedef: FixtureDef[Any], request: SubRequest)→ Optional[object]
Perform fixture setup execution.

Returns The return value of the call to the fixture function.

Stops at first non-None result, see firstresult: stop at first non-None result.

Note: If the fixture function returns None, other implementations of this hook function will continue to be
called, according to the behavior of the firstresult: stop at first non-None result option.

pytest_fixture_post_finalizer(fixturedef: FixtureDef[Any], request: SubRequest)→ None
Called after fixture teardown, but before the cache is cleared, so the fixture result fixturedef.
cached_result is still available (not None).

pytest_warning_captured(warning_message: warnings.WarningMessage, when: Literal[‘config’,
‘collect’, ‘runtest’], item: Optional[Item], location: Optional[Tuple[str,
int, str]])→ None

(Deprecated) Process a warning captured by the internal pytest warnings plugin.

192 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

Deprecated since version 6.0.

This hook is considered deprecated and will be removed in a future pytest version. Use
pytest_warning_recorded() instead.

Parameters

• warning_message (warnings.WarningMessage) – The captured warning. This is
the same object produced by warnings.catch_warnings(), and contains the same
attributes as the parameters of warnings.showwarning().

• when (str) – Indicates when the warning was captured. Possible values:

– "config": during pytest configuration/initialization stage.

– "collect": during test collection.

– "runtest": during test execution.

• item (pytest.Item|None) – The item being executed if when is "runtest", other-
wise None.

• location (tuple) – When available, holds information about the execution context of
the captured warning (filename, linenumber, function). function evaluates to <module>
when the execution context is at the module level.

pytest_warning_recorded(warning_message: warnings.WarningMessage, when: Literal[‘config’,
‘collect’, ‘runtest’], nodeid: str, location: Optional[Tuple[str, int, str]])
→ None

Process a warning captured by the internal pytest warnings plugin.

Parameters

• warning_message (warnings.WarningMessage) – The captured warning. This is
the same object produced by warnings.catch_warnings(), and contains the same
attributes as the parameters of warnings.showwarning().

• when (str) – Indicates when the warning was captured. Possible values:

– "config": during pytest configuration/initialization stage.

– "collect": during test collection.

– "runtest": during test execution.

• nodeid (str) – Full id of the item.

• location (tuple|None) – When available, holds information about the execution con-
text of the captured warning (filename, linenumber, function). function evaluates to
<module> when the execution context is at the module level.

New in version 6.0.

Central hook for reporting about test execution:

pytest_runtest_logreport(report: TestReport)→ None
Process the _pytest.reports.TestReport produced for each of the setup, call and teardown runtest
phases of an item.

See pytest_runtest_protocol() for a description of the runtest protocol.

Assertion related hooks:

pytest_assertrepr_compare(config: Config, op: str, left: object, right: object)→ Optional[List[str]]
Return explanation for comparisons in failing assert expressions.

22.4. Hooks 193

https://docs.python.org/3/library/warnings.html#warnings.showwarning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/warnings.html#warnings.showwarning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

Return None for no custom explanation, otherwise return a list of strings. The strings will be joined by newlines
but any newlines in a string will be escaped. Note that all but the first line will be indented slightly, the intention
is for the first line to be a summary.

Parameters config (_pytest.config.Config) – The pytest config object.

pytest_assertion_pass(item: Item, lineno: int, orig: str, expl: str)→ None
(Experimental) Called whenever an assertion passes.

New in version 5.0.

Use this hook to do some processing after a passing assertion. The original assertion information is available in
the orig string and the pytest introspected assertion information is available in the expl string.

This hook must be explicitly enabled by the enable_assertion_pass_hook ini-file option:

[pytest]
enable_assertion_pass_hook=true

You need to clean the .pyc files in your project directory and interpreter libraries when enabling this option, as
assertions will require to be re-written.

Parameters

• item (pytest.Item) – pytest item object of current test.

• lineno (int) – Line number of the assert statement.

• orig (str) – String with the original assertion.

• expl (str) – String with the assert explanation.

Note: This hook is experimental, so its parameters or even the hook itself might be changed/removed without
warning in any future pytest release.

If you find this hook useful, please share your feedback in an issue.

22.4.6 Debugging/Interaction hooks

There are few hooks which can be used for special reporting or interaction with exceptions:

pytest_internalerror(excrepr: ExceptionRepr, excinfo: ExceptionInfo[BaseException]) → Op-
tional[bool]

Called for internal errors.

Return True to suppress the fallback handling of printing an INTERNALERROR message directly to sys.stderr.

pytest_keyboard_interrupt(excinfo: ExceptionInfo[Union[KeyboardInterrupt, Exit]])→ None
Called for keyboard interrupt.

pytest_exception_interact(node: Union[Item, Collector], call: CallInfo[Any], report:
Union[CollectReport, TestReport])→ None

Called when an exception was raised which can potentially be interactively handled.

May be called during collection (see pytest_make_collect_report()), in which case report is a
_pytest.reports.CollectReport.

May be called during runtest of an item (see pytest_runtest_protocol()), in which case report is a
_pytest.reports.TestReport.

This hook is not called if the exception that was raised is an internal exception like skip.Exception.

194 Chapter 22. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

pytest_enter_pdb(config: Config, pdb: pdb.Pdb)→ None
Called upon pdb.set_trace().

Can be used by plugins to take special action just before the python debugger enters interactive mode.

Parameters

• config (_pytest.config.Config) – The pytest config object.

• pdb (pdb.Pdb) – The Pdb instance.

22.5 Objects

Full reference to objects accessible from fixtures or hooks.

22.5.1 CallInfo

final class CallInfo
Result/Exception info a function invocation.

Parameters

• result (T) – The return value of the call, if it didn’t raise. Can only be accessed if excinfo
is None.

• excinfo (Optional[ExceptionInfo]) – The captured exception of the call, if it
raised.

• start (float) – The system time when the call started, in seconds since the epoch.

• stop (float) – The system time when the call ended, in seconds since the epoch.

• duration (float) – The call duration, in seconds.

• when (str) – The context of invocation: “setup”, “call”, “teardown”, . . .

22.5.2 Class

class Class
Bases: _pytest.python.PyCollector

Collector for test methods.

classmethod from_parent(parent, *, name, obj=None)
The public constructor.

collect()→ Iterable[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]
Return a list of children (items and collectors) for this collection node.

22.5. Objects 195

https://docs.python.org/3/library/pdb.html#pdb.Pdb
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pdb.html#pdb.Pdb
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

22.5.3 Collector

class Collector
Bases: _pytest.nodes.Node

Collector instances create children through collect() and thus iteratively build a tree.

exception CollectError
Bases: Exception

An error during collection, contains a custom message.

collect()→ Iterable[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]
Return a list of children (items and collectors) for this collection node.

repr_failure(excinfo: _pytest._code.code.ExceptionInfo[BaseException]) → Union[str,
_pytest._code.code.TerminalRepr]

Return a representation of a collection failure.

Parameters excinfo – Exception information for the failure.

22.5.4 CollectReport

final class CollectReport
Bases: _pytest.reports.BaseReport

Collection report object.

nodeid: str
Normalized collection nodeid.

outcome
Test outcome, always one of “passed”, “failed”, “skipped”.

longrepr: Union[None, _pytest._code.code.ExceptionInfo[BaseException], Tuple[str, int, str], str, _pytest._code.code.TerminalRepr]
None or a failure representation.

result
The collected items and collection nodes.

caplog
Return captured log lines, if log capturing is enabled.

New in version 3.5.

capstderr
Return captured text from stderr, if capturing is enabled.

New in version 3.0.

capstdout
Return captured text from stdout, if capturing is enabled.

New in version 3.0.

count_towards_summary
Experimental Whether this report should be counted towards the totals shown at the end of the test session:
“1 passed, 1 failure, etc”.

Note: This function is considered experimental, so beware that it is subject to changes even in patch
releases.

196 Chapter 22. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

head_line
Experimental The head line shown with longrepr output for this report, more commonly during traceback
representation during failures:

________ Test.foo ________

In the example above, the head_line is “Test.foo”.

Note: This function is considered experimental, so beware that it is subject to changes even in patch
releases.

longreprtext
Read-only property that returns the full string representation of longrepr.

New in version 3.0.

22.5.5 Config

final class Config
Access to configuration values, pluginmanager and plugin hooks.

Parameters

• pluginmanager (PytestPluginManager) –

• invocation_params (InvocationParams) – Object containing parameters regard-
ing the pytest.main() invocation.

final class InvocationParams(args: Iterable[str], plugins: Optional[Sequence[Union[str,
object]]], dir: pathlib.Path)

Holds parameters passed during pytest.main().

The object attributes are read-only.

New in version 5.1.

Note: Note that the environment variable PYTEST_ADDOPTS and the addopts ini option are handled
by pytest, not being included in the args attribute.

Plugins accessing InvocationParams must be aware of that.

args
The command-line arguments as passed to pytest.main().

Type Tuple[str, ..]

plugins
Extra plugins, might be None.

Type Optional[Sequence[Union[str, plugin]]]

dir
The directory from which pytest.main() was invoked.

Type pathlib.Path

option
Access to command line option as attributes.

Type argparse.Namespace

22.5. Objects 197

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/argparse.html#argparse.Namespace


pytest Documentation, Release 6.2

invocation_params
The parameters with which pytest was invoked.

Type InvocationParams

pluginmanager
The plugin manager handles plugin registration and hook invocation.

Type PytestPluginManager

invocation_dir
The directory from which pytest was invoked.

Prefer to use invocation_params.dir, which is a pathlib.Path.

Type py.path.local

rootpath
The path to the rootdir.

Type pathlib.Path

New in version 6.1.

rootdir
The path to the rootdir.

Prefer to use rootpath, which is a pathlib.Path.

Type py.path.local

inipath
The path to the configfile.

Type Optional[pathlib.Path]

New in version 6.1.

inifile
The path to the configfile.

Prefer to use inipath, which is a pathlib.Path.

Type Optional[py.path.local]

add_cleanup(func: Callable[], None])→ None
Add a function to be called when the config object gets out of use (usually coninciding with
pytest_unconfigure).

classmethod fromdictargs(option_dict, args)→ _pytest.config.Config
Constructor usable for subprocesses.

for ... in pytest_collection()→ Generator[None, None, None]
Validate invalid ini keys after collection is done so we take in account options added by late-loading
conftest files.

issue_config_time_warning(warning: Warning, stacklevel: int)→ None
Issue and handle a warning during the “configure” stage.

During pytest_configure we can’t capture warnings using the catch_warnings_for_item
function because it is not possible to have hookwrappers around pytest_configure.

This function is mainly intended for plugins that need to issue warnings during pytest_configure
(or similar stages).

Parameters

198 Chapter 22. API Reference

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

• warning – The warning instance.

• stacklevel – stacklevel forwarded to warnings.warn.

addinivalue_line(name: str, line: str)→ None
Add a line to an ini-file option. The option must have been declared but might not yet be set in which case
the line becomes the first line in its value.

getini(name: str)
Return configuration value from an ini file.

If the specified name hasn’t been registered through a prior parser.addini call (usually from a plugin),
a ValueError is raised.

getoption(name: str, default=<NOTSET>, skip: bool = False)
Return command line option value.

Parameters

• name – Name of the option. You may also specify the literal --OPT option instead of the
“dest” option name.

• default – Default value if no option of that name exists.

• skip – If True, raise pytest.skip if option does not exists or has a None value.

getvalue(name: str, path=None)
Deprecated, use getoption() instead.

getvalueorskip(name: str, path=None)
Deprecated, use getoption(skip=True) instead.

22.5.6 ExceptionInfo

final class ExceptionInfo(excinfo: Optional[Tuple[Type[_E], _E, traceback]], striptext: str = '',
traceback: Optional[_pytest._code.code.Traceback] = None)

Wraps sys.exc_info() objects and offers help for navigating the traceback.

classmethod from_exc_info(exc_info: Tuple[Type[_E], _E, traceback], exprinfo: Optional[str]
= None)→ _pytest._code.code.ExceptionInfo[_E]

Return an ExceptionInfo for an existing exc_info tuple.

Warning: Experimental API

Parameters exprinfo – A text string helping to determine if we should strip
AssertionError from the output. Defaults to the exception message/__str__().

classmethod from_current(exprinfo: Optional[str] = None) →
_pytest._code.code.ExceptionInfo[BaseException]

Return an ExceptionInfo matching the current traceback.

Warning: Experimental API

Parameters exprinfo – A text string helping to determine if we should strip
AssertionError from the output. Defaults to the exception message/__str__().

22.5. Objects 199

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#BaseException


pytest Documentation, Release 6.2

classmethod for_later()→ _pytest._code.code.ExceptionInfo[_E]
Return an unfilled ExceptionInfo.

fill_unfilled(exc_info: Tuple[Type[_E], _E, traceback])→ None
Fill an unfilled ExceptionInfo created with for_later().

type
The exception class.

value
The exception value.

tb
The exception raw traceback.

typename
The type name of the exception.

traceback
The traceback.

exconly(tryshort: bool = False)→ str
Return the exception as a string.

When ‘tryshort’ resolves to True, and the exception is a _pytest._code._AssertionError, only the actual
exception part of the exception representation is returned (so ‘AssertionError: ‘ is removed from the be-
ginning).

errisinstance(exc: Union[Type[BaseException], Tuple[Type[BaseException], . . . ]]) → bool
Return True if the exception is an instance of exc.

Consider using isinstance(excinfo.value, exc) instead.

getrepr(showlocals: bool = False, style: _TracebackStyle = 'long', abspath: bool = False, tbfilter:
bool = True, funcargs: bool = False, truncate_locals: bool = True, chain: bool = True) →
Union[ReprExceptionInfo, ExceptionChainRepr]

Return str()able representation of this exception info.

Parameters

• showlocals (bool) – Show locals per traceback entry. Ignored if
style=="native".

• style (str) – long|short|no|native|value traceback style.

• abspath (bool) – If paths should be changed to absolute or left unchanged.

• tbfilter (bool) – Hide entries that contain a local variable
__tracebackhide__==True. Ignored if style=="native".

• funcargs (bool) – Show fixtures (“funcargs” for legacy purposes) per traceback entry.

• truncate_locals (bool) – With showlocals==True, make sure locals can be
safely represented as strings.

• chain (bool) – If chained exceptions in Python 3 should be shown.

Changed in version 3.9: Added the chain parameter.

match(regexp: Union[str, Pattern[str]])→ Literal[True]
Check whether the regular expression regexp matches the string representation of the exception using
re.search().

If it matches True is returned, otherwise an AssertionError is raised.

200 Chapter 22. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/re.html#re.search


pytest Documentation, Release 6.2

22.5.7 ExitCode

final class ExitCode(value)
Encodes the valid exit codes by pytest.

Currently users and plugins may supply other exit codes as well.

New in version 5.0.

OK = 0
Tests passed.

TESTS_FAILED = 1
Tests failed.

INTERRUPTED = 2
pytest was interrupted.

INTERNAL_ERROR = 3
An internal error got in the way.

USAGE_ERROR = 4
pytest was misused.

NO_TESTS_COLLECTED = 5
pytest couldn’t find tests.

22.5.8 File

class File
Bases: _pytest.nodes.FSCollector

Base class for collecting tests from a file.

Working with non-python tests.

22.5.9 FixtureDef

final class FixtureDef
Bases: Generic[_pytest.fixtures._FixtureValue]

A container for a factory definition.

22.5.10 FSCollector

class FSCollector
Bases: _pytest.nodes.Collector

classmethod from_parent(parent, *, fspath, **kw)
The public constructor.

22.5. Objects 201



pytest Documentation, Release 6.2

22.5.11 Function

class Function
Bases: _pytest.python.PyobjMixin, _pytest.nodes.Item

An Item responsible for setting up and executing a Python test function.

param name: The full function name, including any decorations like those added by parametrization
(my_func[my_param]).

param parent: The parent Node.

param config: The pytest Config object.

param callspec: If given, this is function has been parametrized and the callspec contains meta information
about the parametrization.

param callobj: If given, the object which will be called when the Function is invoked, otherwise the callobj
will be obtained from parent using originalname.

param keywords: Keywords bound to the function object for “-k” matching.

param session: The pytest Session object.

param fixtureinfo: Fixture information already resolved at this fixture node..

param originalname: The attribute name to use for accessing the underlying function object. Defaults to
name. Set this if name is different from the original name, for example when it contains decorations like
those added by parametrization (my_func[my_param]).

originalname
Original function name, without any decorations (for example parametrization adds a "[...]" suffix to
function names), used to access the underlying function object from parent (in case callobj is not
given explicitly).

New in version 3.0.

classmethod from_parent(parent, **kw)
The public constructor.

function
Underlying python ‘function’ object.

runtest()→ None
Execute the underlying test function.

repr_failure(excinfo: _pytest._code.code.ExceptionInfo[BaseException]) → Union[str,
_pytest._code.code.TerminalRepr]

Return a representation of a collection or test failure.

Parameters excinfo – Exception information for the failure.

202 Chapter 22. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

22.5.12 FunctionDefinition

class FunctionDefinition
Bases: _pytest.python.Function

This class is a step gap solution until we evolve to have actual function definition nodes and manage to get rid
of metafunc.

runtest()→ None
Execute the underlying test function.

setup()→ None
Execute the underlying test function.

22.5.13 Item

class Item
Bases: _pytest.nodes.Node

A basic test invocation item.

Note that for a single function there might be multiple test invocation items.

user_properties: List[Tuple[str, object]]
A list of tuples (name, value) that holds user defined properties for this test.

add_report_section(when: str, key: str, content: str)→ None
Add a new report section, similar to what’s done internally to add stdout and stderr captured output:

item.add_report_section("call", "stdout", "report section contents")

Parameters

• when (str) – One of the possible capture states, "setup", "call", "teardown".

• key (str) – Name of the section, can be customized at will. Pytest uses "stdout" and
"stderr" internally.

• content (str) – The full contents as a string.

22.5.14 MarkDecorator

class MarkDecorator(mark: _pytest.mark.structures.Mark)
A decorator for applying a mark on test functions and classes.

MarkDecorators are created with pytest.mark:

mark1 = pytest.mark.NAME # Simple MarkDecorator
mark2 = pytest.mark.NAME(name1=value) # Parametrized MarkDecorator

and can then be applied as decorators to test functions:

@mark2
def test_function():

pass

When a MarkDecorator is called it does the following:

22.5. Objects 203

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

1. If called with a single class as its only positional argument and no additional keyword arguments, it attaches
the mark to the class so it gets applied automatically to all test cases found in that class.

2. If called with a single function as its only positional argument and no additional keyword arguments, it
attaches the mark to the function, containing all the arguments already stored internally in the MarkDeco-
rator.

3. When called in any other case, it returns a new MarkDecorator instance with the original MarkDecorator’s
content updated with the arguments passed to this call.

Note: The rules above prevent MarkDecorators from storing only a single function or class reference as their
positional argument with no additional keyword or positional arguments. You can work around this by using
with_args().

name
Alias for mark.name.

args
Alias for mark.args.

kwargs
Alias for mark.kwargs.

with_args(*args: object, **kwargs: object)→ _pytest.mark.structures.MarkDecorator
Return a MarkDecorator with extra arguments added.

Unlike calling the MarkDecorator, with_args() can be used even if the sole argument is a callable/class.

Return type MarkDecorator

22.5.15 MarkGenerator

final class MarkGenerator
Factory for MarkDecorator objects - exposed as a pytest.mark singleton instance.

Example:

import pytest

@pytest.mark.slowtest
def test_function():

pass

applies a ‘slowtest’ Mark on test_function.

22.5.16 Mark

final class Mark(name: str, args: Tuple[Any, . . . ], kwargs: Mapping[str, Any], param_ids_from: Op-
tional[Mark] = None, param_ids_generated: Optional[Sequence[str]] = None)

name
Name of the mark.

args
Positional arguments of the mark decorator.

kwargs
Keyword arguments of the mark decorator.

204 Chapter 22. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

combined_with(other: _pytest.mark.structures.Mark)→ _pytest.mark.structures.Mark
Return a new Mark which is a combination of this Mark and another Mark.

Combines by appending args and merging kwargs.

Parameters other (Mark) – The mark to combine with.

Return type Mark

22.5.17 Metafunc

final class Metafunc(definition: _pytest.python.FunctionDefinition, fixtureinfo:
_pytest.fixtures.FuncFixtureInfo, config: _pytest.config.Config, cls=None,
module=None)

Objects passed to the pytest_generate_tests hook.

They help to inspect a test function and to generate tests according to test configuration or values specified in
the class or module where a test function is defined.

definition
Access to the underlying _pytest.python.FunctionDefinition.

config
Access to the _pytest.config.Config object for the test session.

module
The module object where the test function is defined in.

function
Underlying Python test function.

fixturenames
Set of fixture names required by the test function.

cls
Class object where the test function is defined in or None.

parametrize(argnames: Union[str, List[str], Tuple[str, . . . ]], argvalues: Iter-
able[Union[_pytest.mark.structures.ParameterSet, Sequence[object], object]], indirect:
Union[bool, Sequence[str]] = False, ids: Optional[Union[Iterable[Union[None, str,
float, int, bool]], Callable[[Any], Optional[object]]]] = None, scope: Optional[_Scope]
= None, *, _param_mark: Optional[_pytest.mark.structures.Mark] = None)→ None

Add new invocations to the underlying test function using the list of argvalues for the given argnames.
Parametrization is performed during the collection phase. If you need to setup expensive resources see
about setting indirect to do it rather at test setup time.

Parameters

• argnames – A comma-separated string denoting one or more argument names, or a
list/tuple of argument strings.

• argvalues – The list of argvalues determines how often a test is invoked with different
argument values.

If only one argname was specified argvalues is a list of values. If N argnames were spec-
ified, argvalues must be a list of N-tuples, where each tuple-element specifies a value for
its respective argname.

• indirect – A list of arguments’ names (subset of argnames) or a boolean. If True the
list contains all names from the argnames. Each argvalue corresponding to an argname
in this list will be passed as request.param to its respective argname fixture function so

22.5. Objects 205

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

that it can perform more expensive setups during the setup phase of a test rather than at
collection time.

• ids – Sequence of (or generator for) ids for argvalues, or a callable to return part of
the id for each argvalue.

With sequences (and generators like itertools.count()) the returned ids should be
of type string, int, float, bool, or None. They are mapped to the corresponding
index in argvalues. None means to use the auto-generated id.

If it is a callable it will be called for each entry in argvalues, and the return value is
used as part of the auto-generated id for the whole set (where parts are joined with dashes
(“-“)). This is useful to provide more specific ids for certain items, e.g. dates. Returning
None will use an auto-generated id.

If no ids are provided they will be generated automatically from the argvalues.

• scope – If specified it denotes the scope of the parameters. The scope is used for group-
ing tests by parameter instances. It will also override any fixture-function defined scope,
allowing to set a dynamic scope using test context or configuration.

22.5.18 Module

class Module
Bases: _pytest.nodes.File, _pytest.python.PyCollector

Collector for test classes and functions.

collect()→ Iterable[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]
Return a list of children (items and collectors) for this collection node.

22.5.19 Node

class Node
Base class for Collector and Item, the components of the test collection tree.

Collector subclasses have children; Items are leaf nodes.

name
A unique name within the scope of the parent node.

parent
The parent collector node.

fspath
Filesystem path where this node was collected from (can be None).

keywords
Keywords/markers collected from all scopes.

own_markers: List[_pytest.mark.structures.Mark]
The marker objects belonging to this node.

extra_keyword_matches: Set[str]
Allow adding of extra keywords to use for matching.

classmethod from_parent(parent: _pytest.nodes.Node, **kw)
Public constructor for Nodes.

This indirection got introduced in order to enable removing the fragile logic from the node constructors.

206 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

Subclasses can use super().from_parent(...) when overriding the construction.

Parameters parent – The parent node of this Node.

ihook
fspath-sensitive hook proxy used to call pytest hooks.

warn(warning: Warning)→ None
Issue a warning for this Node.

Warnings will be displayed after the test session, unless explicitly suppressed.

Parameters warning (Warning) – The warning instance to issue.

Raises ValueError – If warning instance is not a subclass of Warning.

Example usage:

node.warn(PytestWarning("some message"))
node.warn(UserWarning("some message"))

Changed in version 6.2: Any subclass of Warning is now accepted, rather than only PytestWarning
subclasses.

nodeid
A ::-separated string denoting its collection tree address.

listchain()→ List[_pytest.nodes.Node]
Return list of all parent collectors up to self, starting from the root of collection tree.

add_marker(marker: Union[str, _pytest.mark.structures.MarkDecorator], append: bool = True) →
None

Dynamically add a marker object to the node.

Parameters append – Whether to append the marker, or prepend it.

iter_markers(name: Optional[str] = None)→ Iterator[_pytest.mark.structures.Mark]
Iterate over all markers of the node.

Parameters name – If given, filter the results by the name attribute.

for ... in iter_markers_with_node(name: Optional[str] = None) →
Iterator[Tuple[_pytest.nodes.Node,
_pytest.mark.structures.Mark]]

Iterate over all markers of the node.

Parameters name – If given, filter the results by the name attribute.

Returns An iterator of (node, mark) tuples.

get_closest_marker(name: str)→ Optional[_pytest.mark.structures.Mark]
get_closest_marker(name: str, default: _pytest.mark.structures.Mark) →

_pytest.mark.structures.Mark
Return the first marker matching the name, from closest (for example function) to farther level (for example
module level).

Parameters

• default – Fallback return value if no marker was found.

• name – Name to filter by.

listextrakeywords()→ Set[str]
Return a set of all extra keywords in self and any parents.

22.5. Objects 207

https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

addfinalizer(fin: Callable[], object])→ None
Register a function to be called when this node is finalized.

This method can only be called when this node is active in a setup chain, for example during self.setup().

getparent(cls: Type[_NodeType])→ Optional[_NodeType]
Get the next parent node (including self) which is an instance of the given class.

repr_failure(excinfo: _pytest._code.code.ExceptionInfo[BaseException], style: Op-
tional[_TracebackStyle] = None)→ Union[str, _pytest._code.code.TerminalRepr]

Return a representation of a collection or test failure.

Parameters excinfo – Exception information for the failure.

22.5.20 Parser

final class Parser
Parser for command line arguments and ini-file values.

Variables extra_info – Dict of generic param -> value to display in case there’s an error pro-
cessing the command line arguments.

getgroup(name: str, description: str = '', after: Optional[str] = None) →
_pytest.config.argparsing.OptionGroup

Get (or create) a named option Group.

Name Name of the option group.

Description Long description for –help output.

After Name of another group, used for ordering –help output.

The returned group object has an addoption method with the same signature as parser.addoption
but will be shown in the respective group in the output of pytest. --help.

addoption(*opts: str, **attrs: Any)→ None
Register a command line option.

Opts Option names, can be short or long options.

Attrs Same attributes which the add_argument() function of the argparse library accepts.

After command line parsing, options are available on the pytest config object via config.option.
NAME where NAME is usually set by passing a dest attribute, for example addoption("--long",
dest="NAME", ...).

parse_known_args(args: Sequence[Union[str, py._path.local.LocalPath]], namespace: Op-
tional[argparse.Namespace] = None)→ argparse.Namespace

Parse and return a namespace object with known arguments at this point.

parse_known_and_unknown_args(args: Sequence[Union[str, py._path.local.LocalPath]],
namespace: Optional[argparse.Namespace] = None) →
Tuple[argparse.Namespace, List[str]]

Parse and return a namespace object with known arguments, and the remaining arguments unknown at this
point.

addini(name: str, help: str, type: Optional[Literal[‘string’, ‘pathlist’, ‘args’, ‘linelist’, ‘bool’]] =
None, default=None)→ None

Register an ini-file option.

Name Name of the ini-variable.

208 Chapter 22. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/library/argparse.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

Type Type of the variable, can be string, pathlist, args, linelist or bool. Defaults
to string if None or not passed.

Default Default value if no ini-file option exists but is queried.

The value of ini-variables can be retrieved via a call to config.getini(name).

22.5.21 PytestPluginManager

final class PytestPluginManager
Bases: pluggy._manager.PluginManager

A pluggy.PluginManager with additional pytest-specific functionality:

• Loading plugins from the command line, PYTEST_PLUGINS env variable and pytest_plugins
global variables found in plugins being loaded.

• conftest.py loading during start-up.

parse_hookimpl_opts(plugin: object, name: str)

parse_hookspec_opts(module_or_class, name: str)

register(plugin: object, name: Optional[str] = None)→ Optional[str]
Register a plugin and return its canonical name or None if the name is blocked from registering. Raise a
ValueError if the plugin is already registered.

getplugin(name: str)

hasplugin(name: str)→ bool
Return whether a plugin with the given name is registered.

consider_preparse(args: Sequence[str], *, exclude_only: bool = False)→ None

consider_pluginarg(arg: str)→ None

consider_conftest(conftestmodule: module)→ None

consider_env()→ None

consider_module(mod: module)→ None

import_plugin(modname: str, consider_entry_points: bool = False)→ None
Import a plugin with modname.

If consider_entry_points is True, entry point names are also considered to find a plugin.

add_hookcall_monitoring(before, after)
add before/after tracing functions for all hooks and return an undo function which, when called, will
remove the added tracers.

before(hook_name, hook_impls, kwargs) will be called ahead of all hook calls and receive
a hookcaller instance, a list of HookImpl instances and the keyword arguments for the hook call.

after(outcome, hook_name, hook_impls, kwargs) receives the same arguments as
before but also a pluggy._callers._Result object which represents the result of the overall
hook call.

add_hookspecs(module_or_class)
add new hook specifications defined in the given module_or_class. Functions are recognized if they
have been decorated accordingly.

22.5. Objects 209

https://pluggy.readthedocs.io/en/latest/api_reference.html#pluggy.PluginManager
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://pluggy.readthedocs.io/en/latest/api_reference.html#pluggy._callers._Result


pytest Documentation, Release 6.2

check_pending()
Verify that all hooks which have not been verified against a hook specification are optional, otherwise raise
PluginValidationError.

enable_tracing()
enable tracing of hook calls and return an undo function.

get_canonical_name(plugin)
Return canonical name for a plugin object. Note that a plugin may be registered under a different name
which was specified by the caller of register(plugin, name). To obtain the name of an registered
plugin use get_name(plugin) instead.

get_hookcallers(plugin)
get all hook callers for the specified plugin.

get_name(plugin)
Return name for registered plugin or None if not registered.

get_plugin(name)
Return a plugin or None for the given name.

get_plugins()
return the set of registered plugins.

has_plugin(name)
Return True if a plugin with the given name is registered.

is_blocked(name)
return True if the given plugin name is blocked.

is_registered(plugin)
Return True if the plugin is already registered.

list_name_plugin()
return list of name/plugin pairs.

list_plugin_distinfo()
return list of distinfo/plugin tuples for all setuptools registered plugins.

load_setuptools_entrypoints(group, name=None)
Load modules from querying the specified setuptools group.

Parameters

• group (str) – entry point group to load plugins

• name (str) – if given, loads only plugins with the given name.

Return type int

Returns return the number of loaded plugins by this call.

set_blocked(name)
block registrations of the given name, unregister if already registered.

subset_hook_caller(name, remove_plugins)
Return a new _hooks._HookCaller instance for the named method which manages calls to all regis-
tered plugins except the ones from remove_plugins.

unregister(plugin=None, name=None)
unregister a plugin object and all its contained hook implementations from internal data structures.

210 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


pytest Documentation, Release 6.2

22.5.22 Session

final class Session
Bases: _pytest.nodes.FSCollector

exception Interrupted
Bases: KeyboardInterrupt

Signals that the test run was interrupted.

exception Failed
Bases: Exception

Signals a stop as failed test run.

perform_collect(args: Optional[Sequence[str]] = None, genitems: Literal[True] = True) → Se-
quence[_pytest.nodes.Item]

perform_collect(args: Optional[Sequence[str]] = None, genitems: bool = True) → Se-
quence[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]

Perform the collection phase for this session.

This is called by the default pytest_collection hook implementation; see the documentation of this
hook for more details. For testing purposes, it may also be called directly on a fresh Session.

This function normally recursively expands any collectors collected from the session to their items, and
only items are returned. For testing purposes, this may be suppressed by passing genitems=False, in
which case the return value contains these collectors unexpanded, and session.items is empty.

for ... in collect()→ Iterator[Union[_pytest.nodes.Item, _pytest.nodes.Collector]]
Return a list of children (items and collectors) for this collection node.

22.5.23 TestReport

final class TestReport
Bases: _pytest.reports.BaseReport

Basic test report object (also used for setup and teardown calls if they fail).

nodeid: str
Normalized collection nodeid.

location: Optional[Tuple[str, Optional[int], str]]
A (filesystempath, lineno, domaininfo) tuple indicating the actual location of a test item - it might be
different from the collected one e.g. if a method is inherited from a different module.

keywords
A name -> value dictionary containing all keywords and markers associated with a test invocation.

outcome
Test outcome, always one of “passed”, “failed”, “skipped”.

longrepr: Union[None, _pytest._code.code.ExceptionInfo[BaseException], Tuple[str, int, str], str, _pytest._code.code.TerminalRepr]
None or a failure representation.

when: Optional[str]
One of ‘setup’, ‘call’, ‘teardown’ to indicate runtest phase.

user_properties
User properties is a list of tuples (name, value) that holds user defined properties of the test.

22.5. Objects 211

https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


pytest Documentation, Release 6.2

sections: List[Tuple[str, str]]
List of pairs (str, str) of extra information which needs to marshallable. Used by pytest to add
captured text from stdout and stderr, but may be used by other plugins to add arbitrary information
to reports.

duration
Time it took to run just the test.

classmethod from_item_and_call(item: _pytest.nodes.Item, call: CallInfo[None])→ TestRe-
port

Create and fill a TestReport with standard item and call info.

caplog
Return captured log lines, if log capturing is enabled.

New in version 3.5.

capstderr
Return captured text from stderr, if capturing is enabled.

New in version 3.0.

capstdout
Return captured text from stdout, if capturing is enabled.

New in version 3.0.

count_towards_summary
Experimental Whether this report should be counted towards the totals shown at the end of the test session:
“1 passed, 1 failure, etc”.

Note: This function is considered experimental, so beware that it is subject to changes even in patch
releases.

head_line
Experimental The head line shown with longrepr output for this report, more commonly during traceback
representation during failures:

________ Test.foo ________

In the example above, the head_line is “Test.foo”.

Note: This function is considered experimental, so beware that it is subject to changes even in patch
releases.

longreprtext
Read-only property that returns the full string representation of longrepr.

New in version 3.0.

212 Chapter 22. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None


pytest Documentation, Release 6.2

22.5.24 _Result

Result object used within hook wrappers, see _Result in the pluggy documentation for more informa-
tion.

22.6 Global Variables

pytest treats some global variables in a special manner when defined in a test module or conftest.py files.

collect_ignore

Tutorial: Customizing test collection

Can be declared in conftest.py files to exclude test directories or modules. Needs to be list[str].

collect_ignore = ["setup.py"]

collect_ignore_glob

Tutorial: Customizing test collection

Can be declared in conftest.py files to exclude test directories or modules with Unix shell-style wildcards. Needs to be
list[str] where str can contain glob patterns.

collect_ignore_glob = ["*_ignore.py"]

pytest_plugins

Tutorial: Requiring/Loading plugins in a test module or conftest file

Can be declared at the global level in test modules and conftest.py files to register additional plugins. Can be either a
str or Sequence[str].

pytest_plugins = "myapp.testsupport.myplugin"

pytest_plugins = ("myapp.testsupport.tools", "myapp.testsupport.regression")

pytestmark

Tutorial: Marking whole classes or modules

Can be declared at the global level in test modules to apply one or more marks to all test functions and methods. Can
be either a single mark or a list of marks (applied in left-to-right order).

import pytest

pytestmark = pytest.mark.webtest

import pytest

pytestmark = [pytest.mark.integration, pytest.mark.slow]

22.6. Global Variables 213

https://pluggy.readthedocs.io/en/latest/api_reference.html#pluggy._callers._Result


pytest Documentation, Release 6.2

22.7 Environment Variables

Environment variables that can be used to change pytest’s behavior.

PYTEST_ADDOPTS

This contains a command-line (parsed by the py:mod:shlex module) that will be prepended to the command line
given by the user, see Builtin configuration file options for more information.

PYTEST_CURRENT_TEST

This is not meant to be set by users, but is set by pytest internally with the name of the current test so other processes
can inspect it, see PYTEST_CURRENT_TEST environment variable for more information.

PYTEST_DEBUG

When set, pytest will print tracing and debug information.

PYTEST_DISABLE_PLUGIN_AUTOLOAD

When set, disables plugin auto-loading through setuptools entrypoints. Only explicitly specified plugins will be loaded.

PYTEST_PLUGINS

Contains comma-separated list of modules that should be loaded as plugins:

export PYTEST_PLUGINS=mymodule.plugin,xdist

PY_COLORS

When set to 1, pytest will use color in terminal output. When set to 0, pytest will not use color. PY_COLORS takes
precedence over NO_COLOR and FORCE_COLOR.

NO_COLOR

When set (regardless of value), pytest will not use color in terminal output. PY_COLORS takes precedence over
NO_COLOR, which takes precedence over FORCE_COLOR. See no-color.org for other libraries supporting this com-
munity standard.

FORCE_COLOR

When set (regardless of value), pytest will use color in terminal output. PY_COLORS and NO_COLOR take precedence
over FORCE_COLOR.

22.8 Exceptions

final class UsageError
Bases: Exception

Error in pytest usage or invocation.

214 Chapter 22. API Reference

https://no-color.org/
https://docs.python.org/3/library/exceptions.html#Exception


pytest Documentation, Release 6.2

22.9 Warnings

Custom warnings generated in some situations such as improper usage or deprecated features.

class PytestWarning
Bases: UserWarning

Base class for all warnings emitted by pytest.

class PytestAssertRewriteWarning
Bases: pytest.PytestWarning

Warning emitted by the pytest assert rewrite module.

class PytestCacheWarning
Bases: pytest.PytestWarning

Warning emitted by the cache plugin in various situations.

class PytestCollectionWarning
Bases: pytest.PytestWarning

Warning emitted when pytest is not able to collect a file or symbol in a module.

class PytestConfigWarning
Bases: pytest.PytestWarning

Warning emitted for configuration issues.

class PytestDeprecationWarning
Bases: pytest.PytestWarning, DeprecationWarning

Warning class for features that will be removed in a future version.

class PytestExperimentalApiWarning
Bases: pytest.PytestWarning, FutureWarning

Warning category used to denote experiments in pytest.

Use sparingly as the API might change or even be removed completely in a future version.

class PytestUnhandledCoroutineWarning
Bases: pytest.PytestWarning

Warning emitted for an unhandled coroutine.

A coroutine was encountered when collecting test functions, but was not handled by any async-aware plugin.
Coroutine test functions are not natively supported.

class PytestUnknownMarkWarning
Bases: pytest.PytestWarning

Warning emitted on use of unknown markers.

See Marking test functions with attributes for details.

class PytestUnraisableExceptionWarning
Bases: pytest.PytestWarning

An unraisable exception was reported.

Unraisable exceptions are exceptions raised in __del__ implementations and similar situations when the ex-
ception cannot be raised as normal.

22.9. Warnings 215

https://docs.python.org/3/library/exceptions.html#UserWarning
https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/exceptions.html#FutureWarning
https://docs.python.org/3/reference/datamodel.html#object.__del__


pytest Documentation, Release 6.2

class PytestUnhandledThreadExceptionWarning
Bases: pytest.PytestWarning

An unhandled exception occurred in a Thread.

Such exceptions don’t propagate normally.

Consult the Internal pytest warnings section in the documentation for more information.

22.10 Configuration Options

Here is a list of builtin configuration options that may be written in a pytest.ini, pyproject.toml, tox.ini
or setup.cfg file, usually located at the root of your repository. To see each file format in details, see Configuration
file formats.

Warning: Usage of setup.cfg is not recommended except for very simple use cases. .cfg files use a different
parser than pytest.ini and tox.ini which might cause hard to track down problems. When possible, it is
recommended to use the latter files, or pyproject.toml, to hold your pytest configuration.

Configuration options may be overwritten in the command-line by using -o/--override-ini, which can also be
passed multiple times. The expected format is name=value. For example:

pytest -o console_output_style=classic -o cache_dir=/tmp/mycache

addopts
Add the specified OPTS to the set of command line arguments as if they had been specified by the user. Example:
if you have this ini file content:

# content of pytest.ini
[pytest]
addopts = --maxfail=2 -rf # exit after 2 failures, report fail info

issuing pytest test_hello.py actually means:

pytest --maxfail=2 -rf test_hello.py

Default is to add no options.

cache_dir
Sets a directory where stores content of cache plugin. Default directory is .pytest_cache which is created
in rootdir. Directory may be relative or absolute path. If setting relative path, then directory is created relative
to rootdir. Additionally path may contain environment variables, that will be expanded. For more information
about cache plugin please refer to Cache: working with cross-testrun state.

confcutdir
Sets a directory where search upwards for conftest.py files stops. By default, pytest will stop searching for
conftest.py files upwards from pytest.ini/tox.ini/setup.cfg of the project if any, or up to the
file-system root.

console_output_style
Sets the console output style while running tests:

• classic: classic pytest output.

• progress: like classic pytest output, but with a progress indicator.

216 Chapter 22. API Reference

https://docs.python.org/3/library/threading.html#threading.Thread


pytest Documentation, Release 6.2

• count: like progress, but shows progress as the number of tests completed instead of a percent.

The default is progress, but you can fallback to classic if you prefer or the new mode is causing unex-
pected problems:

# content of pytest.ini
[pytest]
console_output_style = classic

doctest_encoding
Default encoding to use to decode text files with docstrings. See how pytest handles doctests.

doctest_optionflags
One or more doctest flag names from the standard doctest module. See how pytest handles doctests.

empty_parameter_set_mark
Allows to pick the action for empty parametersets in parameterization

• skip skips tests with an empty parameterset (default)

• xfail marks tests with an empty parameterset as xfail(run=False)

• fail_at_collect raises an exception if parametrize collects an empty parameter set

# content of pytest.ini
[pytest]
empty_parameter_set_mark = xfail

Note: The default value of this option is planned to change to xfail in future releases as this is considered
less error prone, see #3155 for more details.

faulthandler_timeout
Dumps the tracebacks of all threads if a test takes longer than X seconds to run (including fixture setup and
teardown). Implemented using the faulthandler.dump_traceback_later function, so all caveats there apply.

# content of pytest.ini
[pytest]
faulthandler_timeout=5

For more information please refer to Fault Handler.

filterwarnings
Sets a list of filters and actions that should be taken for matched warnings. By default all warnings emitted
during the test session will be displayed in a summary at the end of the test session.

# content of pytest.ini
[pytest]
filterwarnings =

error
ignore::DeprecationWarning

This tells pytest to ignore deprecation warnings and turn all other warnings into errors. For more information
please refer to Warnings Capture.

junit_duration_report
New in version 4.1.

Configures how durations are recorded into the JUnit XML report:

22.10. Configuration Options 217

https://github.com/pytest-dev/pytest/issues/3155
https://docs.python.org/3/library/faulthandler.html#faulthandler.dump_traceback_later


pytest Documentation, Release 6.2

• total (the default): duration times reported include setup, call, and teardown times.

• call: duration times reported include only call times, excluding setup and teardown.

[pytest]
junit_duration_report = call

junit_family
New in version 4.2.

Changed in version 6.1: Default changed to xunit2.

Configures the format of the generated JUnit XML file. The possible options are:

• xunit1 (or legacy): produces old style output, compatible with the xunit 1.0 format.

• xunit2: produces xunit 2.0 style output, which should be more compatible with latest Jenkins versions.
This is the default.

[pytest]
junit_family = xunit2

junit_logging
New in version 3.5.

Changed in version 5.4: log, all, out-err options added.

Configures if captured output should be written to the JUnit XML file. Valid values are:

• log: write only logging captured output.

• system-out: write captured stdout contents.

• system-err: write captured stderr contents.

• out-err: write both captured stdout and stderr contents.

• all: write captured logging, stdout and stderr contents.

• no (the default): no captured output is written.

[pytest]
junit_logging = system-out

junit_log_passing_tests
New in version 4.6.

If junit_logging != "no", configures if the captured output should be written to the JUnit XML file for
passing tests. Default is True.

[pytest]
junit_log_passing_tests = False

junit_suite_name
To set the name of the root test suite xml item, you can configure the junit_suite_name option in your
config file:

[pytest]
junit_suite_name = my_suite

log_auto_indent
Allow selective auto-indentation of multiline log messages.

218 Chapter 22. API Reference

https://github.com/jenkinsci/xunit-plugin/blob/xunit-2.3.2/src/main/resources/org/jenkinsci/plugins/xunit/types/model/xsd/junit-10.xsd


pytest Documentation, Release 6.2

Supports command line option --log-auto-indent [value] and config option log_auto_indent
= [value] to set the auto-indentation behavior for all logging.

[value] can be:

• True or “On” - Dynamically auto-indent multiline log messages

• False or “Off” or 0 - Do not auto-indent multiline log messages (the default behavior)

• [positive integer] - auto-indent multiline log messages by [value] spaces

[pytest]
log_auto_indent = False

Supports passing kwarg extra={"auto_indent": [value]} to calls to logging.log() to specify
auto-indentation behavior for a specific entry in the log. extra kwarg overrides the value specified on the
command line or in the config.

log_cli
Enable log display during test run (also known as “live logging”). The default is False.

[pytest]
log_cli = True

log_cli_date_format
Sets a time.strftime()-compatible string that will be used when formatting dates for live logging.

[pytest]
log_cli_date_format = %Y-%m-%d %H:%M:%S

For more information, see Live Logs.

log_cli_format
Sets a logging-compatible string used to format live logging messages.

[pytest]
log_cli_format = %(asctime)s %(levelname)s %(message)s

For more information, see Live Logs.

log_cli_level
Sets the minimum log message level that should be captured for live logging. The integer value or the names of
the levels can be used.

[pytest]
log_cli_level = INFO

For more information, see Live Logs.

log_date_format
Sets a time.strftime()-compatible string that will be used when formatting dates for logging capture.

[pytest]
log_date_format = %Y-%m-%d %H:%M:%S

For more information, see Logging.

log_file
Sets a file name relative to the pytest.ini file where log messages should be written to, in addition to the
other logging facilities that are active.

22.10. Configuration Options 219

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/time.html#time.strftime


pytest Documentation, Release 6.2

[pytest]
log_file = logs/pytest-logs.txt

For more information, see Logging.

log_file_date_format
Sets a time.strftime()-compatible string that will be used when formatting dates for the logging file.

[pytest]
log_file_date_format = %Y-%m-%d %H:%M:%S

For more information, see Logging.

log_file_format
Sets a logging-compatible string used to format logging messages redirected to the logging file.

[pytest]
log_file_format = %(asctime)s %(levelname)s %(message)s

For more information, see Logging.

log_file_level
Sets the minimum log message level that should be captured for the logging file. The integer value or the names
of the levels can be used.

[pytest]
log_file_level = INFO

For more information, see Logging.

log_format
Sets a logging-compatible string used to format captured logging messages.

[pytest]
log_format = %(asctime)s %(levelname)s %(message)s

For more information, see Logging.

log_level
Sets the minimum log message level that should be captured for logging capture. The integer value or the names
of the levels can be used.

[pytest]
log_level = INFO

For more information, see Logging.

markers
When the --strict-markers or --strict command-line arguments are used, only known markers -
defined in code by core pytest or some plugin - are allowed.

You can list additional markers in this setting to add them to the whitelist, in which case you probably want to
add --strict-markers to addopts to avoid future regressions:

[pytest]
addopts = --strict-markers
markers =

slow
serial

220 Chapter 22. API Reference

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#module-logging


pytest Documentation, Release 6.2

Note: The use of --strict-markers is highly preferred. --strict was kept for backward compatibility
only and may be confusing for others as it only applies to markers and not to other options.

minversion
Specifies a minimal pytest version required for running tests.

# content of pytest.ini
[pytest]
minversion = 3.0 # will fail if we run with pytest-2.8

norecursedirs
Set the directory basename patterns to avoid when recursing for test discovery. The individual (fnmatch-style)
patterns are applied to the basename of a directory to decide if to recurse into it. Pattern matching characters:

* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any char not in seq

Default patterns are '*.egg', '.*', '_darcs', 'build', 'CVS', 'dist', 'node_modules',
'venv', '{arch}'. Setting a norecursedirs replaces the default. Here is an example of how to avoid
certain directories:

[pytest]
norecursedirs = .svn _build tmp*

This would tell pytest to not look into typical subversion or sphinx-build directories or into any tmp prefixed
directory.

Additionally, pytest will attempt to intelligently identify and ignore a virtualenv by the presence of an activa-
tion script. Any directory deemed to be the root of a virtual environment will not be considered during test col-
lection unless --collect-in-virtualenv is given. Note also that norecursedirs takes precedence
over --collect-in-virtualenv; e.g. if you intend to run tests in a virtualenv with a base directory that
matches '.*' you must override norecursedirs in addition to using the --collect-in-virtualenv
flag.

python_classes
One or more name prefixes or glob-style patterns determining which classes are considered for test collection.
Search for multiple glob patterns by adding a space between patterns. By default, pytest will consider any class
prefixed with Test as a test collection. Here is an example of how to collect tests from classes that end in
Suite:

[pytest]
python_classes = *Suite

Note that unittest.TestCase derived classes are always collected regardless of this option, as
unittest’s own collection framework is used to collect those tests.

python_files
One or more Glob-style file patterns determining which python files are considered as test modules. Search for
multiple glob patterns by adding a space between patterns:

[pytest]
python_files = test_*.py check_*.py example_*.py

Or one per line:

22.10. Configuration Options 221



pytest Documentation, Release 6.2

[pytest]
python_files =

test_*.py
check_*.py
example_*.py

By default, files matching test_*.py and *_test.py will be considered test modules.

python_functions
One or more name prefixes or glob-patterns determining which test functions and methods are considered tests.
Search for multiple glob patterns by adding a space between patterns. By default, pytest will consider any
function prefixed with test as a test. Here is an example of how to collect test functions and methods that end
in _test:

[pytest]
python_functions = *_test

Note that this has no effect on methods that live on a unittest .TestCase derived class, as unittest’s
own collection framework is used to collect those tests.

See Changing naming conventions for more detailed examples.

required_plugins
A space separated list of plugins that must be present for pytest to run. Plugins can be listed with or without
version specifiers directly following their name. Whitespace between different version specifiers is not allowed.
If any one of the plugins is not found, emit an error.

[pytest]
required_plugins = pytest-django>=3.0.0,<4.0.0 pytest-html pytest-xdist>=1.0.0

testpaths
Sets list of directories that should be searched for tests when no specific directories, files or test ids are given in
the command line when executing pytest from the rootdir directory. Useful when all project tests are in a known
location to speed up test collection and to avoid picking up undesired tests by accident.

[pytest]
testpaths = testing doc

This tells pytest to only look for tests in testing and doc directories when executing from the root directory.

usefixtures
List of fixtures that will be applied to all test functions; this is semantically the same to apply the @pytest.
mark.usefixtures marker to all test functions.

[pytest]
usefixtures =

clean_db

xfail_strict
If set to True, tests marked with @pytest.mark.xfail that actually succeed will by default fail the test
suite. For more information, see strict parameter.

[pytest]
xfail_strict = True

222 Chapter 22. API Reference



pytest Documentation, Release 6.2

22.11 Command-line Flags

All the command-line flags can be obtained by running pytest --help:

$ pytest --help
usage: pytest [options] [file_or_dir] [file_or_dir] [...]

positional arguments:
file_or_dir

general:
-k EXPRESSION only run tests which match the given substring

expression. An expression is a python evaluatable
expression where all names are substring-matched
against test names and their parent classes.
Example: -k 'test_method or test_other' matches all
test functions and classes whose name contains
'test_method' or 'test_other', while -k 'not
test_method' matches those that don't contain
'test_method' in their names. -k 'not test_method
and not test_other' will eliminate the matches.
Additionally keywords are matched to classes and
functions containing extra names in their
'extra_keyword_matches' set, as well as functions
which have names assigned directly to them. The
matching is case-insensitive.

-m MARKEXPR only run tests matching given mark expression.
For example: -m 'mark1 and not mark2'.

--markers show markers (builtin, plugin and per-project ones).
-x, --exitfirst exit instantly on first error or failed test.
--fixtures, --funcargs

show available fixtures, sorted by plugin appearance
(fixtures with leading '_' are only shown with '-v')

--fixtures-per-test show fixtures per test
--pdb start the interactive Python debugger on errors or

KeyboardInterrupt.
--pdbcls=modulename:classname

start a custom interactive Python debugger on
errors. For example:
--pdbcls=IPython.terminal.debugger:TerminalPdb

--trace Immediately break when running each test.
--capture=method per-test capturing method: one of fd|sys|no|tee-sys.
-s shortcut for --capture=no.
--runxfail report the results of xfail tests as if they were

not marked
--lf, --last-failed rerun only the tests that failed at the last run (or

all if none failed)
--ff, --failed-first run all tests, but run the last failures first.

This may re-order tests and thus lead to repeated
fixture setup/teardown.

--nf, --new-first run tests from new files first, then the rest of the
tests sorted by file mtime

--cache-show=[CACHESHOW]
show cache contents, don't perform collection or
tests. Optional argument: glob (default: '*').

--cache-clear remove all cache contents at start of test run.
--lfnf={all,none}, --last-failed-no-failures={all,none}

(continues on next page)

22.11. Command-line Flags 223



pytest Documentation, Release 6.2

(continued from previous page)

which tests to run with no previously (known)
failures.

--sw, --stepwise exit on test failure and continue from last failing
test next time

--sw-skip, --stepwise-skip
ignore the first failing test but stop on the next
failing test

reporting:
--durations=N show N slowest setup/test durations (N=0 for all).
--durations-min=N Minimal duration in seconds for inclusion in slowest

list. Default 0.005
-v, --verbose increase verbosity.
--no-header disable header
--no-summary disable summary
-q, --quiet decrease verbosity.
--verbosity=VERBOSE set verbosity. Default is 0.
-r chars show extra test summary info as specified by chars:

(f)ailed, (E)rror, (s)kipped, (x)failed, (X)passed,
(p)assed, (P)assed with output, (a)ll except passed
(p/P), or (A)ll. (w)arnings are enabled by default
(see --disable-warnings), 'N' can be used to reset
the list. (default: 'fE').

--disable-warnings, --disable-pytest-warnings
disable warnings summary

-l, --showlocals show locals in tracebacks (disabled by default).
--tb=style traceback print mode

(auto/long/short/line/native/no).
--show-capture={no,stdout,stderr,log,all}

Controls how captured stdout/stderr/log is shown on
failed tests. Default is 'all'.

--full-trace don't cut any tracebacks (default is to cut).
--color=color color terminal output (yes/no/auto).
--code-highlight={yes,no}

Whether code should be highlighted (only if --color
is also enabled)

--pastebin=mode send failed|all info to bpaste.net pastebin service.
--junit-xml=path create junit-xml style report file at given path.
--junit-prefix=str prepend prefix to classnames in junit-xml output

pytest-warnings:
-W PYTHONWARNINGS, --pythonwarnings=PYTHONWARNINGS

set which warnings to report, see -W option of
python itself.

--maxfail=num exit after first num failures or errors.
--strict-config any warnings encountered while parsing the `pytest`

section of the configuration file raise errors.
--strict-markers markers not registered in the `markers` section of

the configuration file raise errors.
--strict (deprecated) alias to --strict-markers.
-c file load configuration from `file` instead of trying to

locate one of the implicit configuration files.
--continue-on-collection-errors

Force test execution even if collection errors
occur.

--rootdir=ROOTDIR Define root directory for tests. Can be relative
path: 'root_dir', './root_dir',

(continues on next page)

224 Chapter 22. API Reference



pytest Documentation, Release 6.2

(continued from previous page)

'root_dir/another_dir/'; absolute path:
'/home/user/root_dir'; path with variables:
'$HOME/root_dir'.

collection:
--collect-only, --co only collect tests, don't execute them.
--pyargs try to interpret all arguments as python packages.
--ignore=path ignore path during collection (multi-allowed).
--ignore-glob=path ignore path pattern during collection (multi-

allowed).
--deselect=nodeid_prefix

deselect item (via node id prefix) during collection
(multi-allowed).

--confcutdir=dir only load conftest.py's relative to specified dir.
--noconftest Don't load any conftest.py files.
--keep-duplicates Keep duplicate tests.
--collect-in-virtualenv

Don't ignore tests in a local virtualenv directory
--import-mode={prepend,append,importlib}

prepend/append to sys.path when importing test
modules and conftest files, default is to prepend.

--doctest-modules run doctests in all .py modules
--doctest-report={none,cdiff,ndiff,udiff,only_first_failure}

choose another output format for diffs on doctest
failure

--doctest-glob=pat doctests file matching pattern, default: test*.txt
--doctest-ignore-import-errors

ignore doctest ImportErrors
--doctest-continue-on-failure

for a given doctest, continue to run after the first
failure

test session debugging and configuration:
--basetemp=dir base temporary directory for this test run.(warning:

this directory is removed if it exists)
-V, --version display pytest version and information about

plugins.When given twice, also display information
about plugins.

-h, --help show help message and configuration info
-p name early-load given plugin module name or entry point

(multi-allowed).
To avoid loading of plugins, use the `no:` prefix,
e.g. `no:doctest`.

--trace-config trace considerations of conftest.py files.
--debug store internal tracing debug information in

'pytestdebug.log'.
-o OVERRIDE_INI, --override-ini=OVERRIDE_INI

override ini option with "option=value" style, e.g.
`-o xfail_strict=True -o cache_dir=cache`.

--assert=MODE Control assertion debugging tools.
'plain' performs no assertion debugging.
'rewrite' (the default) rewrites assert statements
in test modules on import to provide assert
expression information.

--setup-only only setup fixtures, do not execute tests.
--setup-show show setup of fixtures while executing tests.
--setup-plan show what fixtures and tests would be executed but

(continues on next page)

22.11. Command-line Flags 225



pytest Documentation, Release 6.2

(continued from previous page)

don't execute anything.

logging:
--log-level=LEVEL level of messages to catch/display.

Not set by default, so it depends on the root/parent
log handler's effective level, where it is "WARNING"
by default.

--log-format=LOG_FORMAT
log format as used by the logging module.

--log-date-format=LOG_DATE_FORMAT
log date format as used by the logging module.

--log-cli-level=LOG_CLI_LEVEL
cli logging level.

--log-cli-format=LOG_CLI_FORMAT
log format as used by the logging module.

--log-cli-date-format=LOG_CLI_DATE_FORMAT
log date format as used by the logging module.

--log-file=LOG_FILE path to a file when logging will be written to.
--log-file-level=LOG_FILE_LEVEL

log file logging level.
--log-file-format=LOG_FILE_FORMAT

log format as used by the logging module.
--log-file-date-format=LOG_FILE_DATE_FORMAT

log date format as used by the logging module.
--log-auto-indent=LOG_AUTO_INDENT

Auto-indent multiline messages passed to the logging
module. Accepts true|on, false|off or an integer.

[pytest] ini-options in the first pytest.ini|tox.ini|setup.cfg file found:

markers (linelist): markers for test functions
empty_parameter_set_mark (string):

default marker for empty parametersets
norecursedirs (args): directory patterns to avoid for recursion
testpaths (args): directories to search for tests when no files or

directories are given in the command line.
filterwarnings (linelist):

Each line specifies a pattern for
warnings.filterwarnings. Processed after
-W/--pythonwarnings.

usefixtures (args): list of default fixtures to be used with this
project

python_files (args): glob-style file patterns for Python test module
discovery

python_classes (args):
prefixes or glob names for Python test class
discovery

python_functions (args):
prefixes or glob names for Python test function and
method discovery

disable_test_id_escaping_and_forfeit_all_rights_to_community_support (bool):
disable string escape non-ascii characters, might
cause unwanted side effects(use at your own risk)

console_output_style (string):
console output: "classic", or with additional
progress information ("progress" (percentage) |
"count").

(continues on next page)

226 Chapter 22. API Reference



pytest Documentation, Release 6.2

(continued from previous page)

xfail_strict (bool): default for the strict parameter of xfail markers
when not given explicitly (default: False)

enable_assertion_pass_hook (bool):
Enables the pytest_assertion_pass hook.Make sure to
delete any previously generated pyc cache files.

junit_suite_name (string):
Test suite name for JUnit report

junit_logging (string):
Write captured log messages to JUnit report: one of
no|log|system-out|system-err|out-err|all

junit_log_passing_tests (bool):
Capture log information for passing tests to JUnit
report:

junit_duration_report (string):
Duration time to report: one of total|call

junit_family (string):
Emit XML for schema: one of legacy|xunit1|xunit2

doctest_optionflags (args):
option flags for doctests

doctest_encoding (string):
encoding used for doctest files

cache_dir (string): cache directory path.
log_level (string): default value for --log-level
log_format (string): default value for --log-format
log_date_format (string):

default value for --log-date-format
log_cli (bool): enable log display during test run (also known as

"live logging").
log_cli_level (string):

default value for --log-cli-level
log_cli_format (string):

default value for --log-cli-format
log_cli_date_format (string):

default value for --log-cli-date-format
log_file (string): default value for --log-file
log_file_level (string):

default value for --log-file-level
log_file_format (string):

default value for --log-file-format
log_file_date_format (string):

default value for --log-file-date-format
log_auto_indent (string):

default value for --log-auto-indent
faulthandler_timeout (string):

Dump the traceback of all threads if a test takes
more than TIMEOUT seconds to finish.

addopts (args): extra command line options
minversion (string): minimally required pytest version
required_plugins (args):

plugins that must be present for pytest to run

environment variables:
PYTEST_ADDOPTS extra command line options
PYTEST_PLUGINS comma-separated plugins to load during startup
PYTEST_DISABLE_PLUGIN_AUTOLOAD set to disable plugin auto-loading
PYTEST_DEBUG set to enable debug tracing of pytest's internals

(continues on next page)

22.11. Command-line Flags 227



pytest Documentation, Release 6.2

(continued from previous page)

to see available markers type: pytest --markers
to see available fixtures type: pytest --fixtures
(shown according to specified file_or_dir or current dir if not specified; fixtures
→˓with leading '_' are only shown with the '-v' option

228 Chapter 22. API Reference



CHAPTER

TWENTYTHREE

GOOD INTEGRATION PRACTICES

23.1 Install package with pip

For development, we recommend you use venv for virtual environments and pip for installing your application and
any dependencies, as well as the pytest package itself. This ensures your code and dependencies are isolated from
your system Python installation.

Next, place a setup.py file in the root of your package with the following minimum content:

from setuptools import setup, find_packages

setup(name="PACKAGENAME", packages=find_packages())

Where PACKAGENAME is the name of your package. You can then install your package in “editable” mode by running
from the same directory:

pip install -e .

which lets you change your source code (both tests and application) and rerun tests at will. This is similar to run-
ning python setup.py develop or conda develop in that it installs your package using a symlink to your
development code.

23.2 Conventions for Python test discovery

pytest implements the following standard test discovery:

• If no arguments are specified then collection starts from testpaths (if configured) or the current directory.
Alternatively, command line arguments can be used in any combination of directories, file names or node ids.

• Recurse into directories, unless they match norecursedirs.

• In those directories, search for test_*.py or *_test.py files, imported by their test package name.

• From those files, collect test items:

– test prefixed test functions or methods outside of class

– test prefixed test functions or methods inside Test prefixed test classes (without an __init__
method)

For examples of how to customize your test discovery Changing standard (Python) test discovery.

Within Python modules, pytest also discovers tests using the standard unittest.TestCase subclassing technique.

229

https://docs.python.org/3/library/venv.html
https://pypi.org/project/pip/


pytest Documentation, Release 6.2

23.3 Choosing a test layout / import rules

pytest supports two common test layouts:

23.3.1 Tests outside application code

Putting tests into an extra directory outside your actual application code might be useful if you have many functional
tests or for other reasons want to keep tests separate from actual application code (often a good idea):

setup.py
mypkg/

__init__.py
app.py
view.py

tests/
test_app.py
test_view.py
...

This has the following benefits:

• Your tests can run against an installed version after executing pip install ..

• Your tests can run against the local copy with an editable install after executing pip install --editable
..

• If you don’t have a setup.py file and are relying on the fact that Python by default puts the current directory
in sys.path to import your package, you can execute python -m pytest to execute the tests against the
local copy directly, without using pip.

Note: See Invoking pytest versus python -m pytest for more information about the difference between calling pytest
and python -m pytest.

Note that this scheme has a drawback if you are using prepend import mode (which is the default): your test files
must have unique names, because pytest will import them as top-level modules since there are no packages to
derive a full package name from. In other words, the test files in the example above will be imported as test_app
and test_view top-level modules by adding tests/ to sys.path.

If you need to have test modules with the same name, you might add __init__.py files to your tests folder and
subfolders, changing them to packages:

setup.py
mypkg/

...
tests/

__init__.py
foo/

__init__.py
test_view.py

bar/
__init__.py
test_view.py

Now pytest will load the modules as tests.foo.test_view and tests.bar.test_view, allowing you to
have modules with the same name. But now this introduces a subtle problem: in order to load the test modules from

230 Chapter 23. Good Integration Practices



pytest Documentation, Release 6.2

the tests directory, pytest prepends the root of the repository to sys.path, which adds the side-effect that now
mypkg is also importable.

This is problematic if you are using a tool like tox to test your package in a virtual environment, because you want to
test the installed version of your package, not the local code from the repository.

In this situation, it is strongly suggested to use a src layout where application root package resides in a sub-directory
of your root:

setup.py
src/

mypkg/
__init__.py
app.py
view.py

tests/
__init__.py
foo/

__init__.py
test_view.py

bar/
__init__.py
test_view.py

This layout prevents a lot of common pitfalls and has many benefits, which are better explained in this excellent blog
post by Ionel Cristian Măries, .

Note: The new --import-mode=importlib (see Import modes) doesn’t have any of the drawbacks above
because sys.path and sys.modules are not changed when importing test modules, so users that run into this
issue are strongly encouraged to try it and report if the new option works well for them.

The src directory layout is still strongly recommended however.

23.3.2 Tests as part of application code

Inlining test directories into your application package is useful if you have direct relation between tests and application
modules and want to distribute them along with your application:

setup.py
mypkg/

__init__.py
app.py
view.py
test/

__init__.py
test_app.py
test_view.py
...

In this scheme, it is easy to run your tests using the --pyargs option:

pytest --pyargs mypkg

pytest will discover where mypkg is installed and collect tests from there.

Note that this layout also works in conjunction with the src layout mentioned in the previous section.

23.3. Choosing a test layout / import rules 231

https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure
https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure


pytest Documentation, Release 6.2

Note: You can use Python3 namespace packages (PEP420) for your application but pytest will still perform test
package name discovery based on the presence of __init__.py files. If you use one of the two recommended file
system layouts above but leave away the __init__.py files from your directories it should just work on Python3.3
and above. From “inlined tests”, however, you will need to use absolute imports for getting at your application code.

Note: In prepend and append import-modes, if pytest finds a "a/b/test_module.py" test file while recurs-
ing into the filesystem it determines the import name as follows:

• determine basedir: this is the first “upward” (towards the root) directory not containing an __init__.py.
If e.g. both a and b contain an __init__.py file then the parent directory of a will become the basedir.

• perform sys.path.insert(0, basedir) to make the test module importable under the fully qualified
import name.

• import a.b.test_module where the path is determined by converting path separators / into “.” charac-
ters. This means you must follow the convention of having directory and file names map directly to the import
names.

The reason for this somewhat evolved importing technique is that in larger projects multiple test modules might import
from each other and thus deriving a canonical import name helps to avoid surprises such as a test module getting
imported twice.

With --import-mode=importlib things are less convoluted because pytest doesn’t need to change sys.path
or sys.modules, making things much less surprising.

23.4 tox

Once you are done with your work and want to make sure that your actual package passes all tests you may want to
look into tox, the virtualenv test automation tool and its pytest support. tox helps you to setup virtualenv environments
with pre-defined dependencies and then executing a pre-configured test command with options. It will run tests against
the installed package and not against your source code checkout, helping to detect packaging glitches.

232 Chapter 23. Good Integration Practices

https://tox.readthedocs.io/en/latest/example/pytest.html


CHAPTER

TWENTYFOUR

FLAKY TESTS

A “flaky” test is one that exhibits intermittent or sporadic failure, that seems to have non-deterministic behaviour.
Sometimes it passes, sometimes it fails, and it’s not clear why. This page discusses pytest features that can help and
other general strategies for identifying, fixing or mitigating them.

24.1 Why flaky tests are a problem

Flaky tests are particularly troublesome when a continuous integration (CI) server is being used, so that all tests must
pass before a new code change can be merged. If the test result is not a reliable signal – that a test failure means
the code change broke the test – developers can become mistrustful of the test results, which can lead to overlooking
genuine failures. It is also a source of wasted time as developers must re-run test suites and investigate spurious
failures.

24.2 Potential root causes

24.2.1 System state

Broadly speaking, a flaky test indicates that the test relies on some system state that is not being appropriately con-
trolled - the test environment is not sufficiently isolated. Higher level tests are more likely to be flaky as they rely on
more state.

Flaky tests sometimes appear when a test suite is run in parallel (such as use of pytest-xdist). This can indicate a test
is reliant on test ordering.

• Perhaps a different test is failing to clean up after itself and leaving behind data which causes the flaky test to
fail.

• The flaky test is reliant on data from a previous test that doesn’t clean up after itself, and in parallel runs that
previous test is not always present

• Tests that modify global state typically cannot be run in parallel.

233



pytest Documentation, Release 6.2

24.2.2 Overly strict assertion

Overly strict assertions can cause problems with floating point comparison as well as timing issues. pytest.approx is
useful here.

24.3 Pytest features

24.3.1 Xfail strict

pytest.mark.xfail with strict=False can be used to mark a test so that its failure does not cause the whole build to
break. This could be considered like a manual quarantine, and is rather dangerous to use permanently.

24.3.2 PYTEST_CURRENT_TEST

PYTEST_CURRENT_TEST may be useful for figuring out “which test got stuck”. See PYTEST_CURRENT_TEST
environment variable for more details.

24.3.3 Plugins

Rerunning any failed tests can mitigate the negative effects of flaky tests by giving them additional chances to pass, so
that the overall build does not fail. Several pytest plugins support this:

• flaky

• pytest-flakefinder - blog post

• pytest-rerunfailures

• pytest-replay: This plugin helps to reproduce locally crashes or flaky tests observed during CI runs.

Plugins to deliberately randomize tests can help expose tests with state problems:

• pytest-random-order

• pytest-randomly

24.4 Other general strategies

24.4.1 Split up test suites

It can be common to split a single test suite into two, such as unit vs integration, and only use the unit test suite as a
CI gate. This also helps keep build times manageable as high level tests tend to be slower. However, it means it does
become possible for code that breaks the build to be merged, so extra vigilance is needed for monitoring the integration
test results.

234 Chapter 24. Flaky tests

https://docs.pytest.org/en/stable/reference.html#pytest-approx
https://github.com/box/flaky
https://github.com/dropbox/pytest-flakefinder
https://blogs.dropbox.com/tech/2016/03/open-sourcing-pytest-tools/
https://github.com/pytest-dev/pytest-rerunfailures
https://github.com/ESSS/pytest-replay
https://github.com/jbasko/pytest-random-order
https://github.com/pytest-dev/pytest-randomly


pytest Documentation, Release 6.2

24.4.2 Video/screenshot on failure

For UI tests these are important for understanding what the state of the UI was when the test failed. pytest-splinter can
be used with plugins like pytest-bdd and can save a screenshot on test failure, which can help to isolate the cause.

24.4.3 Delete or rewrite the test

If the functionality is covered by other tests, perhaps the test can be removed. If not, perhaps it can be rewritten at a
lower level which will remove the flakiness or make its source more apparent.

24.4.4 Quarantine

Mark Lapierre discusses the Pros and Cons of Quarantined Tests in a post from 2018.

24.4.5 CI tools that rerun on failure

Azure Pipelines (the Azure cloud CI/CD tool, formerly Visual Studio Team Services or VSTS) has a feature to identify
flaky tests and rerun failed tests.

24.5 Research

This is a limited list, please submit an issue or pull request to expand it!

• Gao, Zebao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. “Making system user interactive
tests repeatable: When and what should we control?.” In Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, vol. 1, pp. 55-65. IEEE, 2015. PDF

• Palomba, Fabio, and Andy Zaidman. “Does refactoring of test smells induce fixing flaky tests?.” In Software
Maintenance and Evolution (ICSME), 2017 IEEE International Conference on, pp. 1-12. IEEE, 2017. PDF in
Google Drive

• Bell, Jonathan, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and Darko Marinov. “De-
Flaker: Automatically detecting flaky tests.” In Proceedings of the 2018 International Conference on Software
Engineering. 2018. PDF

24.6 Resources

• Eradicating Non-Determinism in Tests by Martin Fowler, 2011

• No more flaky tests on the Go team by Pavan Sudarshan, 2012

• The Build That Cried Broken: Building Trust in your Continuous Integration Tests talk (video) by Angie Jones
at SeleniumConf Austin 2017

• Test and Code Podcast: Flaky Tests and How to Deal with Them by Brian Okken and Anthony Shaw, 2018

• Microsoft:

– How we approach testing VSTS to enable continuous delivery by Brian Harry MS, 2017

– Eliminating Flaky Tests blog and talk (video) by Munil Shah, 2017

• Google:

24.5. Research 235

https://pytest-splinter.readthedocs.io/en/latest/#automatic-screenshots-on-test-failure
https://dev.to/mlapierre/pros-and-cons-of-quarantined-tests-2emj
https://docs.microsoft.com/en-us/azure/devops/release-notes/2017/dec-11-vsts#identify-flaky-tests
https://docs.microsoft.com/en-us/azure/devops/release-notes/2017/dec-11-vsts#identify-flaky-tests
http://www.cs.umd.edu/~atif/pubs/gao-icse15.pdf
https://drive.google.com/file/d/10HdcCQiuQVgW3yYUJD-TSTq1NbYEprl0/view
https://drive.google.com/file/d/10HdcCQiuQVgW3yYUJD-TSTq1NbYEprl0/view
https://www.jonbell.net/icse18-deflaker.pdf
https://martinfowler.com/articles/nonDeterminism.html
https://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team
https://www.youtube.com/embed/VotJqV4n8ig
http://angiejones.tech/
https://testandcode.com/50
https://blogs.msdn.microsoft.com/bharry/2017/06/28/testing-in-a-cloud-delivery-cadence/
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/eliminating-flaky-tests


pytest Documentation, Release 6.2

– Flaky Tests at Google and How We Mitigate Them by John Micco, 2016

– Where do Google’s flaky tests come from? by Jeff Listfield, 2017

236 Chapter 24. Flaky tests

https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html


CHAPTER

TWENTYFIVE

PYTEST IMPORT MECHANISMS AND SYS.PATH/PYTHONPATH

25.1 Import modes

pytest as a testing framework needs to import test modules and conftest.py files for execution.

Importing files in Python (at least until recently) is a non-trivial processes, often requiring changing sys.path. Some
aspects of the import process can be controlled through the --import-mode command-line flag, which can assume
these values:

• prepend (default): the directory path containing each module will be inserted into the beginning of sys.
path if not already there, and then imported with the __import__ builtin.

This requires test module names to be unique when the test directory tree is not arranged in packages, because
the modules will put in sys.modules after importing.

This is the classic mechanism, dating back from the time Python 2 was still supported.

• append: the directory containing each module is appended to the end of sys.path if not already there, and
imported with __import__.

This better allows to run test modules against installed versions of a package even if the package under test has
the same import root. For example:

testing/__init__.py
testing/test_pkg_under_test.py
pkg_under_test/

the tests will run against the installed version of pkg_under_test when --import-mode=append is
used whereas with prepend they would pick up the local version. This kind of confusion is why we advocate
for using src layouts.

Same as prepend, requires test module names to be unique when the test directory tree is not arranged in
packages, because the modules will put in sys.modules after importing.

• importlib: new in pytest-6.0, this mode uses importlib to import test modules. This gives full control over
the import process, and doesn’t require changing sys.path or sys.modules at all.

For this reason this doesn’t require test module names to be unique at all, but also makes test modules non-
importable by each other. This was made possible in previous modes, for tests not residing in Python packages,
because of the side-effects of changing sys.path and sys.modules mentioned above. Users which require
this should turn their tests into proper packages instead.

We intend to make importlib the default in future releases.

237

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/functions.html#__import__
https://docs.python.org/3/library/importlib.html


pytest Documentation, Release 6.2

25.2 prepend and append import modes scenarios

Here’s a list of scenarios when using prepend or append import modes where pytest needs to change sys.path
in order to import test modules or conftest.py files, and the issues users might encounter because of that.

25.2.1 Test modules / conftest.py files inside packages

Consider this file and directory layout:

root/
|- foo/

|- __init__.py
|- conftest.py
|- bar/

|- __init__.py
|- tests/

|- __init__.py
|- test_foo.py

When executing:

pytest root/

pytest will find foo/bar/tests/test_foo.py and realize it is part of a package given that there’s an
__init__.py file in the same folder. It will then search upwards until it can find the last folder which still contains
an __init__.py file in order to find the package root (in this case foo/). To load the module, it will insert root/
to the front of sys.path (if not there already) in order to load test_foo.py as the module foo.bar.tests.
test_foo.

The same logic applies to the conftest.py file: it will be imported as foo.conftest module.

Preserving the full package name is important when tests live in a package to avoid problems and allow test modules
to have duplicated names. This is also discussed in details in Conventions for Python test discovery.

25.2.2 Standalone test modules / conftest.py files

Consider this file and directory layout:

root/
|- foo/

|- conftest.py
|- bar/

|- tests/
|- test_foo.py

When executing:

pytest root/

pytest will find foo/bar/tests/test_foo.py and realize it is NOT part of a package given that there’s no
__init__.py file in the same folder. It will then add root/foo/bar/tests to sys.path in order to import
test_foo.py as the module test_foo. The same is done with the conftest.py file by adding root/foo to
sys.path to import it as conftest.

238 Chapter 25. pytest import mechanisms and sys.path/PYTHONPATH



pytest Documentation, Release 6.2

For this reason this layout cannot have test modules with the same name, as they all will be imported in the global
import namespace.

This is also discussed in details in Conventions for Python test discovery.

25.3 Invoking pytest versus python -m pytest

Running pytest with pytest [...] instead of python -m pytest [...] yields nearly equivalent behaviour,
except that the latter will add the current directory to sys.path, which is standard python behavior.

See also Calling pytest through python -m pytest.

25.3. Invoking pytest versus python -m pytest 239



pytest Documentation, Release 6.2

240 Chapter 25. pytest import mechanisms and sys.path/PYTHONPATH



CHAPTER

TWENTYSIX

CONFIGURATION

26.1 Command line options and configuration file settings

You can get help on command line options and values in INI-style configurations files by using the general help option:

pytest -h # prints options _and_ config file settings

This will display command line and configuration file settings which were registered by installed plugins.

26.2 Configuration file formats

Many pytest settings can be set in a configuration file, which by convention resides on the root of your repository or in
your tests folder.

A quick example of the configuration files supported by pytest:

26.2.1 pytest.ini

pytest.ini files take precedence over other files, even when empty.

# pytest.ini
[pytest]
minversion = 6.0
addopts = -ra -q
testpaths =

tests
integration

26.2.2 pyproject.toml

New in version 6.0.

pyproject.toml are considered for configuration when they contain a tool.pytest.ini_options table.

# pyproject.toml
[tool.pytest.ini_options]
minversion = "6.0"
addopts = "-ra -q"
testpaths = [

(continues on next page)

241



pytest Documentation, Release 6.2

(continued from previous page)

"tests",
"integration",

]

Note: One might wonder why [tool.pytest.ini_options] instead of [tool.pytest] as is the case with
other tools.

The reason is that the pytest team intends to fully utilize the rich TOML data format for configuration in the future,
reserving the [tool.pytest] table for that. The ini_options table is being used, for now, as a bridge between
the existing .ini configuration system and the future configuration format.

26.2.3 tox.ini

tox.ini files are the configuration files of the tox project, and can also be used to hold pytest configuration if they
have a [pytest] section.

# tox.ini
[pytest]
minversion = 6.0
addopts = -ra -q
testpaths =

tests
integration

26.2.4 setup.cfg

setup.cfg files are general purpose configuration files, used originally by distutils, and can also be used to hold
pytest configuration if they have a [tool:pytest] section.

# setup.cfg
[tool:pytest]
minversion = 6.0
addopts = -ra -q
testpaths =

tests
integration

Warning: Usage of setup.cfg is not recommended unless for very simple use cases. .cfg files use a different
parser than pytest.ini and tox.ini which might cause hard to track down problems. When possible, it is
recommended to use the latter files, or pyproject.toml, to hold your pytest configuration.

242 Chapter 26. Configuration

https://tox.readthedocs.io
https://docs.python.org/3/distutils/configfile.html


pytest Documentation, Release 6.2

26.3 Initialization: determining rootdir and configfile

pytest determines a rootdir for each test run which depends on the command line arguments (specified test files,
paths) and on the existence of configuration files. The determined rootdir and configfile are printed as part of
the pytest header during startup.

Here’s a summary what pytest uses rootdir for:

• Construct nodeids during collection; each test is assigned a unique nodeid which is rooted at the rootdir and
takes into account the full path, class name, function name and parametrization (if any).

• Is used by plugins as a stable location to store project/test run specific information; for example, the internal
cache plugin creates a .pytest_cache subdirectory in rootdir to store its cross-test run state.

rootdir is NOT used to modify sys.path/PYTHONPATH or influence how modules are imported. See pytest
import mechanisms and sys.path/PYTHONPATH for more details.

The --rootdir=path command-line option can be used to force a specific directory. Note that contrary to other
command-line options, --rootdir cannot be used with addopts inside pytest.ini because the rootdir is
used to find pytest.ini already.

26.3.1 Finding the rootdir

Here is the algorithm which finds the rootdir from args:

• Determine the common ancestor directory for the specified args that are recognised as paths that exist in the
file system. If no such paths are found, the common ancestor directory is set to the current working directory.

• Look for pytest.ini, pyproject.toml, tox.ini, and setup.cfg files in the ancestor directory and
upwards. If one is matched, it becomes the configfile and its directory becomes the rootdir.

• If no configuration file was found, look for setup.py upwards from the common ancestor directory to deter-
mine the rootdir.

• If no setup.py was found, look for pytest.ini, pyproject.toml, tox.ini, and setup.cfg in
each of the specified args and upwards. If one is matched, it becomes the configfile and its directory
becomes the rootdir.

• If no configfile was found, use the already determined common ancestor as root directory. This allows the
use of pytest in structures that are not part of a package and don’t have any particular configuration file.

If no args are given, pytest collects test below the current working directory and also starts determining the rootdir
from there.

Files will only be matched for configuration if:

• pytest.ini: will always match and take precedence, even if empty.

• pyproject.toml: contains a [tool.pytest.ini_options] table.

• tox.ini: contains a [pytest] section.

• setup.cfg: contains a [tool:pytest] section.

The files are considered in the order above. Options from multiple configfiles candidates are never merged - the
first match wins.

The internal Config object (accessible via hooks or through the pytestconfig fixture) will subsequently carry
these attributes:

• config.rootpath: the determined root directory, guaranteed to exist.

26.3. Initialization: determining rootdir and configfile 243



pytest Documentation, Release 6.2

• config.inipath: the determined configfile, may be None (it is named inipath for historical rea-
sons).

New in version 6.1: The config.rootpath and config.inipath properties. They are pathlib.Path
versions of the older config.rootdir and config.inifile, which have type py.path.local, and still
exist for backward compatibility.

The rootdir is used as a reference directory for constructing test addresses (“nodeids”) and can be used also by
plugins for storing per-testrun information.

Example:

pytest path/to/testdir path/other/

will determine the common ancestor as path and then check for configuration files as follows:

# first look for pytest.ini files
path/pytest.ini
path/pyproject.toml # must contain a [tool.pytest.ini_options] table to match
path/tox.ini # must contain [pytest] section to match
path/setup.cfg # must contain [tool:pytest] section to match
pytest.ini
... # all the way up to the root

# now look for setup.py
path/setup.py
setup.py
... # all the way up to the root

Warning: Custom pytest plugin commandline arguments may include a path, as in pytest --log-output
../../test.log args. Then args is mandatory, otherwise pytest uses the folder of test.log for rootdir
determination (see also issue 1435). A dot . for referencing to the current working directory is also possible.

26.4 Builtin configuration file options

For the full list of options consult the reference documentation.

244 Chapter 26. Configuration

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://github.com/pytest-dev/pytest/issues/1435


CHAPTER

TWENTYSEVEN

EXAMPLES AND CUSTOMIZATION TRICKS

Here is a (growing) list of examples. Contact us if you need more examples or have questions. Also take a look at
the comprehensive documentation which contains many example snippets as well. Also, pytest on stackoverflow.com
often comes with example answers.

For basic examples, see

• Installation and Getting Started for basic introductory examples

• Asserting with the assert statement for basic assertion examples

• Fixtures for basic fixture/setup examples

• Parametrizing fixtures and test functions for basic test function parametrization

• unittest.TestCase Support for basic unittest integration

• Running tests written for nose for basic nosetests integration

The following examples aim at various use cases you might encounter.

27.1 Demo of Python failure reports with pytest

Here is a nice run of several failures and how pytest presents things:

assertion $ pytest failure_demo.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/assertion
collected 44 items

failure_demo.py FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF [100%]

================================= FAILURES =================================
___________________________ test_generative[3-6] ___________________________

param1 = 3, param2 = 6

@pytest.mark.parametrize("param1, param2", [(3, 6)])
def test_generative(param1, param2):

> assert param1 * 2 < param2
E assert (3 * 2) < 6

failure_demo.py:19: AssertionError

(continues on next page)

245

http://stackoverflow.com/search?q=pytest


pytest Documentation, Release 6.2

(continued from previous page)

_________________________ TestFailing.test_simple __________________________

self = <failure_demo.TestFailing object at 0xdeadbeef>

def test_simple(self):
def f():

return 42

def g():
return 43

> assert f() == g()
E assert 42 == 43
E + where 42 = <function TestFailing.test_simple.<locals>.f at 0xdeadbeef>()
E + and 43 = <function TestFailing.test_simple.<locals>.g at 0xdeadbeef>()

failure_demo.py:30: AssertionError
____________________ TestFailing.test_simple_multiline _____________________

self = <failure_demo.TestFailing object at 0xdeadbeef>

def test_simple_multiline(self):
> otherfunc_multi(42, 6 * 9)

failure_demo.py:33:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a = 42, b = 54

def otherfunc_multi(a, b):
> assert a == b
E assert 42 == 54

failure_demo.py:14: AssertionError
___________________________ TestFailing.test_not ___________________________

self = <failure_demo.TestFailing object at 0xdeadbeef>

def test_not(self):
def f():

return 42

> assert not f()
E assert not 42
E + where 42 = <function TestFailing.test_not.<locals>.f at 0xdeadbeef>()

failure_demo.py:39: AssertionError
_________________ TestSpecialisedExplanations.test_eq_text _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_text(self):
> assert "spam" == "eggs"
E AssertionError: assert 'spam' == 'eggs'
E - eggs
E + spam

(continues on next page)

246 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

failure_demo.py:44: AssertionError
_____________ TestSpecialisedExplanations.test_eq_similar_text _____________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_similar_text(self):
> assert "foo 1 bar" == "foo 2 bar"
E AssertionError: assert 'foo 1 bar' == 'foo 2 bar'
E - foo 2 bar
E ? ^
E + foo 1 bar
E ? ^

failure_demo.py:47: AssertionError
____________ TestSpecialisedExplanations.test_eq_multiline_text ____________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_multiline_text(self):
> assert "foo\nspam\nbar" == "foo\neggs\nbar"
E AssertionError: assert 'foo\nspam\nbar' == 'foo\neggs\nbar'
E foo
E - eggs
E + spam
E bar

failure_demo.py:50: AssertionError
______________ TestSpecialisedExplanations.test_eq_long_text _______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_long_text(self):
a = "1" * 100 + "a" + "2" * 100
b = "1" * 100 + "b" + "2" * 100

> assert a == b
E AssertionError: assert '111111111111...2222222222222' == '111111111111...
→˓2222222222222'
E Skipping 90 identical leading characters in diff, use -v to show
E Skipping 91 identical trailing characters in diff, use -v to show
E - 1111111111b222222222
E ? ^
E + 1111111111a222222222
E ? ^

failure_demo.py:55: AssertionError
_________ TestSpecialisedExplanations.test_eq_long_text_multiline __________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_long_text_multiline(self):
a = "1\n" * 100 + "a" + "2\n" * 100
b = "1\n" * 100 + "b" + "2\n" * 100

> assert a == b
E AssertionError: assert '1\n1\n1\n1\n...n2\n2\n2\n2\n' == '1\n1\n1\n1\n...n2\
→˓n2\n2\n2\n'
E Skipping 190 identical leading characters in diff, use -v to show
E Skipping 191 identical trailing characters in diff, use -v to show

(continues on next page)

27.1. Demo of Python failure reports with pytest 247



pytest Documentation, Release 6.2

(continued from previous page)

E 1
E 1
E 1
E 1
E 1...
E
E ...Full output truncated (7 lines hidden), use '-vv' to show

failure_demo.py:60: AssertionError
_________________ TestSpecialisedExplanations.test_eq_list _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_list(self):
> assert [0, 1, 2] == [0, 1, 3]
E assert [0, 1, 2] == [0, 1, 3]
E At index 2 diff: 2 != 3
E Use -v to get the full diff

failure_demo.py:63: AssertionError
______________ TestSpecialisedExplanations.test_eq_list_long _______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_list_long(self):
a = [0] * 100 + [1] + [3] * 100
b = [0] * 100 + [2] + [3] * 100

> assert a == b
E assert [0, 0, 0, 0, 0, 0, ...] == [0, 0, 0, 0, 0, 0, ...]
E At index 100 diff: 1 != 2
E Use -v to get the full diff

failure_demo.py:68: AssertionError
_________________ TestSpecialisedExplanations.test_eq_dict _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_dict(self):
> assert {"a": 0, "b": 1, "c": 0} == {"a": 0, "b": 2, "d": 0}
E AssertionError: assert {'a': 0, 'b': 1, 'c': 0} == {'a': 0, 'b': 2, 'd': 0}
E Omitting 1 identical items, use -vv to show
E Differing items:
E {'b': 1} != {'b': 2}
E Left contains 1 more item:
E {'c': 0}
E Right contains 1 more item:
E {'d': 0}...
E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:71: AssertionError
_________________ TestSpecialisedExplanations.test_eq_set __________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_set(self):
> assert {0, 10, 11, 12} == {0, 20, 21}

(continues on next page)

248 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

E AssertionError: assert {0, 10, 11, 12} == {0, 20, 21}
E Extra items in the left set:
E 10
E 11
E 12
E Extra items in the right set:
E 20
E 21...
E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:74: AssertionError
_____________ TestSpecialisedExplanations.test_eq_longer_list ______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_longer_list(self):
> assert [1, 2] == [1, 2, 3]
E assert [1, 2] == [1, 2, 3]
E Right contains one more item: 3
E Use -v to get the full diff

failure_demo.py:77: AssertionError
_________________ TestSpecialisedExplanations.test_in_list _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_in_list(self):
> assert 1 in [0, 2, 3, 4, 5]
E assert 1 in [0, 2, 3, 4, 5]

failure_demo.py:80: AssertionError
__________ TestSpecialisedExplanations.test_not_in_text_multiline __________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_multiline(self):
text = "some multiline\ntext\nwhich\nincludes foo\nand a\ntail"

> assert "foo" not in text
E AssertionError: assert 'foo' not in 'some multil...nand a\ntail'
E 'foo' is contained here:
E some multiline
E text
E which
E includes foo
E ? +++
E and a...
E
E ...Full output truncated (2 lines hidden), use '-vv' to show

failure_demo.py:84: AssertionError
___________ TestSpecialisedExplanations.test_not_in_text_single ____________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_single(self):
text = "single foo line"

(continues on next page)

27.1. Demo of Python failure reports with pytest 249



pytest Documentation, Release 6.2

(continued from previous page)

> assert "foo" not in text
E AssertionError: assert 'foo' not in 'single foo line'
E 'foo' is contained here:
E single foo line
E ? +++

failure_demo.py:88: AssertionError
_________ TestSpecialisedExplanations.test_not_in_text_single_long _________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_single_long(self):
text = "head " * 50 + "foo " + "tail " * 20

> assert "foo" not in text
E AssertionError: assert 'foo' not in 'head head h...l tail tail '
E 'foo' is contained here:
E head head foo tail tail tail tail tail tail tail tail tail tail tail tail
→˓tail tail tail tail tail tail tail tail
E ? +++

failure_demo.py:92: AssertionError
______ TestSpecialisedExplanations.test_not_in_text_single_long_term _______

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_not_in_text_single_long_term(self):
text = "head " * 50 + "f" * 70 + "tail " * 20

> assert "f" * 70 not in text
E AssertionError: assert 'fffffffffff...ffffffffffff' not in 'head head h...l
→˓tail tail '
E 'ffffffffffffffffff...fffffffffffffffffff' is contained here:
E head head
→˓fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffftail tail
→˓tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail tail
→˓tail tail
E ?
→˓++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

failure_demo.py:96: AssertionError
______________ TestSpecialisedExplanations.test_eq_dataclass _______________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_dataclass(self):
from dataclasses import dataclass

@dataclass
class Foo:

a: int
b: str

left = Foo(1, "b")
right = Foo(1, "c")

> assert left == right
E AssertionError: assert TestSpecialis...oo(a=1, b='b') == TestSpecialis...
→˓oo(a=1, b='c')
E

(continues on next page)

250 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

E Omitting 1 identical items, use -vv to show
E Differing attributes:
E ['b']
E
E Drill down into differing attribute b:
E b: 'b' != 'c'...
E
E ...Full output truncated (3 lines hidden), use '-vv' to show

failure_demo.py:108: AssertionError
________________ TestSpecialisedExplanations.test_eq_attrs _________________

self = <failure_demo.TestSpecialisedExplanations object at 0xdeadbeef>

def test_eq_attrs(self):
import attr

@attr.s
class Foo:

a = attr.ib()
b = attr.ib()

left = Foo(1, "b")
right = Foo(1, "c")

> assert left == right
E AssertionError: assert Foo(a=1, b='b') == Foo(a=1, b='c')
E
E Omitting 1 identical items, use -vv to show
E Differing attributes:
E ['b']
E
E Drill down into differing attribute b:
E b: 'b' != 'c'...
E
E ...Full output truncated (3 lines hidden), use '-vv' to show

failure_demo.py:120: AssertionError
______________________________ test_attribute ______________________________

def test_attribute():
class Foo:

b = 1

i = Foo()
> assert i.b == 2
E assert 1 == 2
E + where 1 = <failure_demo.test_attribute.<locals>.Foo object at 0xdeadbeef>.
→˓b

failure_demo.py:128: AssertionError
_________________________ test_attribute_instance __________________________

def test_attribute_instance():
class Foo:

b = 1

> assert Foo().b == 2
(continues on next page)

27.1. Demo of Python failure reports with pytest 251



pytest Documentation, Release 6.2

(continued from previous page)

E AssertionError: assert 1 == 2
E + where 1 = <failure_demo.test_attribute_instance.<locals>.Foo object at
→˓0xdeadbeef>.b
E + where <failure_demo.test_attribute_instance.<locals>.Foo object at
→˓0xdeadbeef> = <class 'failure_demo.test_attribute_instance.<locals>.Foo'>()

failure_demo.py:135: AssertionError
__________________________ test_attribute_failure __________________________

def test_attribute_failure():
class Foo:

def _get_b(self):
raise Exception("Failed to get attrib")

b = property(_get_b)

i = Foo()
> assert i.b == 2

failure_demo.py:146:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <failure_demo.test_attribute_failure.<locals>.Foo object at 0xdeadbeef>

def _get_b(self):
> raise Exception("Failed to get attrib")
E Exception: Failed to get attrib

failure_demo.py:141: Exception
_________________________ test_attribute_multiple __________________________

def test_attribute_multiple():
class Foo:

b = 1

class Bar:
b = 2

> assert Foo().b == Bar().b
E AssertionError: assert 1 == 2
E + where 1 = <failure_demo.test_attribute_multiple.<locals>.Foo object at
→˓0xdeadbeef>.b
E + where <failure_demo.test_attribute_multiple.<locals>.Foo object at
→˓0xdeadbeef> = <class 'failure_demo.test_attribute_multiple.<locals>.Foo'>()
E + and 2 = <failure_demo.test_attribute_multiple.<locals>.Bar object at
→˓0xdeadbeef>.b
E + where <failure_demo.test_attribute_multiple.<locals>.Bar object at
→˓0xdeadbeef> = <class 'failure_demo.test_attribute_multiple.<locals>.Bar'>()

failure_demo.py:156: AssertionError
__________________________ TestRaises.test_raises __________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_raises(self):
s = "qwe"

> raises(TypeError, int, s)
(continues on next page)

252 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

E ValueError: invalid literal for int() with base 10: 'qwe'

failure_demo.py:166: ValueError
______________________ TestRaises.test_raises_doesnt _______________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_raises_doesnt(self):
> raises(OSError, int, "3")
E Failed: DID NOT RAISE <class 'OSError'>

failure_demo.py:169: Failed
__________________________ TestRaises.test_raise ___________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_raise(self):
> raise ValueError("demo error")
E ValueError: demo error

failure_demo.py:172: ValueError
________________________ TestRaises.test_tupleerror ________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_tupleerror(self):
> a, b = [1] # NOQA
E ValueError: not enough values to unpack (expected 2, got 1)

failure_demo.py:175: ValueError
______ TestRaises.test_reinterpret_fails_with_print_for_the_fun_of_it ______

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_reinterpret_fails_with_print_for_the_fun_of_it(self):
items = [1, 2, 3]
print(f"items is {items!r}")

> a, b = items.pop()
E TypeError: cannot unpack non-iterable int object

failure_demo.py:180: TypeError
--------------------------- Captured stdout call ---------------------------
items is [1, 2, 3]
________________________ TestRaises.test_some_error ________________________

self = <failure_demo.TestRaises object at 0xdeadbeef>

def test_some_error(self):
> if namenotexi: # NOQA
E NameError: name 'namenotexi' is not defined

failure_demo.py:183: NameError
____________________ test_dynamic_compile_shows_nicely _____________________

def test_dynamic_compile_shows_nicely():
import importlib.util
import sys

(continues on next page)

27.1. Demo of Python failure reports with pytest 253



pytest Documentation, Release 6.2

(continued from previous page)

src = "def foo():\n assert 1 == 0\n"
name = "abc-123"
spec = importlib.util.spec_from_loader(name, loader=None)
module = importlib.util.module_from_spec(spec)
code = compile(src, name, "exec")
exec(code, module.__dict__)
sys.modules[name] = module

> module.foo()

failure_demo.py:202:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

> ???
E AssertionError

abc-123:2: AssertionError
____________________ TestMoreErrors.test_complex_error _____________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_complex_error(self):
def f():

return 44

def g():
return 43

> somefunc(f(), g())

failure_demo.py:213:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
failure_demo.py:10: in somefunc

otherfunc(x, y)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a = 44, b = 43

def otherfunc(a, b):
> assert a == b
E assert 44 == 43

failure_demo.py:6: AssertionError
___________________ TestMoreErrors.test_z1_unpack_error ____________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_z1_unpack_error(self):
items = []

> a, b = items
E ValueError: not enough values to unpack (expected 2, got 0)

failure_demo.py:217: ValueError
____________________ TestMoreErrors.test_z2_type_error _____________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

(continues on next page)

254 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

def test_z2_type_error(self):
items = 3

> a, b = items
E TypeError: cannot unpack non-iterable int object

failure_demo.py:221: TypeError
______________________ TestMoreErrors.test_startswith ______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_startswith(self):
s = "123"
g = "456"

> assert s.startswith(g)
E AssertionError: assert False
E + where False = <built-in method startswith of str object at 0xdeadbeef>(
→˓'456')
E + where <built-in method startswith of str object at 0xdeadbeef> = '123'.
→˓startswith

failure_demo.py:226: AssertionError
__________________ TestMoreErrors.test_startswith_nested ___________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_startswith_nested(self):
def f():

return "123"

def g():
return "456"

> assert f().startswith(g())
E AssertionError: assert False
E + where False = <built-in method startswith of str object at 0xdeadbeef>(
→˓'456')
E + where <built-in method startswith of str object at 0xdeadbeef> = '123'.
→˓startswith
E + where '123' = <function TestMoreErrors.test_startswith_nested.<locals>
→˓.f at 0xdeadbeef>()
E + and '456' = <function TestMoreErrors.test_startswith_nested.<locals>.
→˓g at 0xdeadbeef>()

failure_demo.py:235: AssertionError
_____________________ TestMoreErrors.test_global_func ______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_global_func(self):
> assert isinstance(globf(42), float)
E assert False
E + where False = isinstance(43, float)
E + where 43 = globf(42)

failure_demo.py:238: AssertionError
_______________________ TestMoreErrors.test_instance _______________________

(continues on next page)

27.1. Demo of Python failure reports with pytest 255



pytest Documentation, Release 6.2

(continued from previous page)

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_instance(self):
self.x = 6 * 7

> assert self.x != 42
E assert 42 != 42
E + where 42 = <failure_demo.TestMoreErrors object at 0xdeadbeef>.x

failure_demo.py:242: AssertionError
_______________________ TestMoreErrors.test_compare ________________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_compare(self):
> assert globf(10) < 5
E assert 11 < 5
E + where 11 = globf(10)

failure_demo.py:245: AssertionError
_____________________ TestMoreErrors.test_try_finally ______________________

self = <failure_demo.TestMoreErrors object at 0xdeadbeef>

def test_try_finally(self):
x = 1
try:

> assert x == 0
E assert 1 == 0

failure_demo.py:250: AssertionError
___________________ TestCustomAssertMsg.test_single_line ___________________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

def test_single_line(self):
class A:

a = 1

b = 2
> assert A.a == b, "A.a appears not to be b"
E AssertionError: A.a appears not to be b
E assert 1 == 2
E + where 1 = <class 'failure_demo.TestCustomAssertMsg.test_single_line.
→˓<locals>.A'>.a

failure_demo.py:261: AssertionError
____________________ TestCustomAssertMsg.test_multiline ____________________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

def test_multiline(self):
class A:

a = 1

b = 2
> assert (

A.a == b
(continues on next page)

256 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

), "A.a appears not to be b\nor does not appear to be b\none of those"
E AssertionError: A.a appears not to be b
E or does not appear to be b
E one of those
E assert 1 == 2
E + where 1 = <class 'failure_demo.TestCustomAssertMsg.test_multiline.<locals>
→˓.A'>.a

failure_demo.py:268: AssertionError
___________________ TestCustomAssertMsg.test_custom_repr ___________________

self = <failure_demo.TestCustomAssertMsg object at 0xdeadbeef>

def test_custom_repr(self):
class JSON:

a = 1

def __repr__(self):
return "This is JSON\n{\n 'foo': 'bar'\n}"

a = JSON()
b = 2

> assert a.a == b, a
E AssertionError: This is JSON
E {
E 'foo': 'bar'
E }
E assert 1 == 2
E + where 1 = This is JSON\n{\n 'foo': 'bar'\n}.a

failure_demo.py:281: AssertionError
========================= short test summary info ==========================
FAILED failure_demo.py::test_generative[3-6] - assert (3 * 2) < 6
FAILED failure_demo.py::TestFailing::test_simple - assert 42 == 43
FAILED failure_demo.py::TestFailing::test_simple_multiline - assert 42 == 54
FAILED failure_demo.py::TestFailing::test_not - assert not 42
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_text - Asser...
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_similar_text
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_multiline_text
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_long_text - ...
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_long_text_multiline
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_list - asser...
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_list_long - ...
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_dict - Asser...
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_set - Assert...
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_longer_list
FAILED failure_demo.py::TestSpecialisedExplanations::test_in_list - asser...
FAILED failure_demo.py::TestSpecialisedExplanations::test_not_in_text_multiline
FAILED failure_demo.py::TestSpecialisedExplanations::test_not_in_text_single
FAILED failure_demo.py::TestSpecialisedExplanations::test_not_in_text_single_long
FAILED failure_demo.py::TestSpecialisedExplanations::test_not_in_text_single_long_term
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_dataclass - ...
FAILED failure_demo.py::TestSpecialisedExplanations::test_eq_attrs - Asse...
FAILED failure_demo.py::test_attribute - assert 1 == 2
FAILED failure_demo.py::test_attribute_instance - AssertionError: assert ...
FAILED failure_demo.py::test_attribute_failure - Exception: Failed to get...
FAILED failure_demo.py::test_attribute_multiple - AssertionError: assert ...

(continues on next page)

27.1. Demo of Python failure reports with pytest 257



pytest Documentation, Release 6.2

(continued from previous page)

FAILED failure_demo.py::TestRaises::test_raises - ValueError: invalid lit...
FAILED failure_demo.py::TestRaises::test_raises_doesnt - Failed: DID NOT ...
FAILED failure_demo.py::TestRaises::test_raise - ValueError: demo error
FAILED failure_demo.py::TestRaises::test_tupleerror - ValueError: not eno...
FAILED failure_demo.py::TestRaises::test_reinterpret_fails_with_print_for_the_fun_of_
→˓it
FAILED failure_demo.py::TestRaises::test_some_error - NameError: name 'na...
FAILED failure_demo.py::test_dynamic_compile_shows_nicely - AssertionError
FAILED failure_demo.py::TestMoreErrors::test_complex_error - assert 44 == 43
FAILED failure_demo.py::TestMoreErrors::test_z1_unpack_error - ValueError...
FAILED failure_demo.py::TestMoreErrors::test_z2_type_error - TypeError: c...
FAILED failure_demo.py::TestMoreErrors::test_startswith - AssertionError:...
FAILED failure_demo.py::TestMoreErrors::test_startswith_nested - Assertio...
FAILED failure_demo.py::TestMoreErrors::test_global_func - assert False
FAILED failure_demo.py::TestMoreErrors::test_instance - assert 42 != 42
FAILED failure_demo.py::TestMoreErrors::test_compare - assert 11 < 5
FAILED failure_demo.py::TestMoreErrors::test_try_finally - assert 1 == 0
FAILED failure_demo.py::TestCustomAssertMsg::test_single_line - Assertion...
FAILED failure_demo.py::TestCustomAssertMsg::test_multiline - AssertionEr...
FAILED failure_demo.py::TestCustomAssertMsg::test_custom_repr - Assertion...
============================ 44 failed in 0.12s ============================

27.2 Basic patterns and examples

27.2.1 How to change command line options defaults

It can be tedious to type the same series of command line options every time you use pytest. For example, if you
always want to see detailed info on skipped and xfailed tests, as well as have terser “dot” progress output, you can
write it into a configuration file:

# content of pytest.ini
[pytest]
addopts = -ra -q

Alternatively, you can set a PYTEST_ADDOPTS environment variable to add command line options while the envi-
ronment is in use:

export PYTEST_ADDOPTS="-v"

Here’s how the command-line is built in the presence of addopts or the environment variable:

<pytest.ini:addopts> $PYTEST_ADDOPTS <extra command-line arguments>

So if the user executes in the command-line:

pytest -m slow

The actual command line executed is:

pytest -ra -q -v -m slow

Note that as usual for other command-line applications, in case of conflicting options the last one wins, so the example
above will show verbose output because -v overwrites -q.

258 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

27.2.2 Pass different values to a test function, depending on command line options

Suppose we want to write a test that depends on a command line option. Here is a basic pattern to achieve this:

# content of test_sample.py
def test_answer(cmdopt):

if cmdopt == "type1":
print("first")

elif cmdopt == "type2":
print("second")

assert 0 # to see what was printed

For this to work we need to add a command line option and provide the cmdopt through a fixture function:

# content of conftest.py
import pytest

def pytest_addoption(parser):
parser.addoption(

"--cmdopt", action="store", default="type1", help="my option: type1 or type2"
)

@pytest.fixture
def cmdopt(request):

return request.config.getoption("--cmdopt")

Let’s run this without supplying our new option:

$ pytest -q test_sample.py
F [100%]
================================= FAILURES =================================
_______________________________ test_answer ________________________________

cmdopt = 'type1'

def test_answer(cmdopt):
if cmdopt == "type1":

print("first")
elif cmdopt == "type2":

print("second")
> assert 0 # to see what was printed
E assert 0

test_sample.py:6: AssertionError
--------------------------- Captured stdout call ---------------------------
first
========================= short test summary info ==========================
FAILED test_sample.py::test_answer - assert 0
1 failed in 0.12s

And now with supplying a command line option:

$ pytest -q --cmdopt=type2
F [100%]
================================= FAILURES =================================
_______________________________ test_answer ________________________________

(continues on next page)

27.2. Basic patterns and examples 259



pytest Documentation, Release 6.2

(continued from previous page)

cmdopt = 'type2'

def test_answer(cmdopt):
if cmdopt == "type1":

print("first")
elif cmdopt == "type2":

print("second")
> assert 0 # to see what was printed
E assert 0

test_sample.py:6: AssertionError
--------------------------- Captured stdout call ---------------------------
second
========================= short test summary info ==========================
FAILED test_sample.py::test_answer - assert 0
1 failed in 0.12s

You can see that the command line option arrived in our test. This completes the basic pattern. However, one often
rather wants to process command line options outside of the test and rather pass in different or more complex objects.

27.2.3 Dynamically adding command line options

Through addopts you can statically add command line options for your project. You can also dynamically modify
the command line arguments before they get processed:

# setuptools plugin
import sys

def pytest_load_initial_conftests(args):
if "xdist" in sys.modules: # pytest-xdist plugin

import multiprocessing

num = max(multiprocessing.cpu_count() / 2, 1)
args[:] = ["-n", str(num)] + args

If you have the xdist plugin installed you will now always perform test runs using a number of subprocesses close to
your CPU. Running in an empty directory with the above conftest.py:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 0 items

========================== no tests ran in 0.12s ===========================

260 Chapter 27. Examples and customization tricks

https://pypi.org/project/pytest-xdist/


pytest Documentation, Release 6.2

27.2.4 Control skipping of tests according to command line option

Here is a conftest.py file adding a --runslow command line option to control skipping of pytest.mark.
slow marked tests:

# content of conftest.py

import pytest

def pytest_addoption(parser):
parser.addoption(

"--runslow", action="store_true", default=False, help="run slow tests"
)

def pytest_configure(config):
config.addinivalue_line("markers", "slow: mark test as slow to run")

def pytest_collection_modifyitems(config, items):
if config.getoption("--runslow"):

# --runslow given in cli: do not skip slow tests
return

skip_slow = pytest.mark.skip(reason="need --runslow option to run")
for item in items:

if "slow" in item.keywords:
item.add_marker(skip_slow)

We can now write a test module like this:

# content of test_module.py
import pytest

def test_func_fast():
pass

@pytest.mark.slow
def test_func_slow():

pass

and when running it will see a skipped “slow” test:

$ pytest -rs # "-rs" means report details on the little 's'
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .s [100%]

========================= short test summary info ==========================
SKIPPED [1] test_module.py:8: need --runslow option to run
======================= 1 passed, 1 skipped in 0.12s =======================

27.2. Basic patterns and examples 261



pytest Documentation, Release 6.2

Or run it including the slow marked test:

$ pytest --runslow
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .. [100%]

============================ 2 passed in 0.12s =============================

27.2.5 Writing well integrated assertion helpers

If you have a test helper function called from a test you can use the pytest.fail marker to fail a test with a certain
message. The test support function will not show up in the traceback if you set the __tracebackhide__ option
somewhere in the helper function. Example:

# content of test_checkconfig.py
import pytest

def checkconfig(x):
__tracebackhide__ = True
if not hasattr(x, "config"):

pytest.fail("not configured: {}".format(x))

def test_something():
checkconfig(42)

The __tracebackhide__ setting influences pytest showing of tracebacks: the checkconfig function will
not be shown unless the --full-trace command line option is specified. Let’s run our little function:

$ pytest -q test_checkconfig.py
F [100%]
================================= FAILURES =================================
______________________________ test_something ______________________________

def test_something():
> checkconfig(42)
E Failed: not configured: 42

test_checkconfig.py:11: Failed
========================= short test summary info ==========================
FAILED test_checkconfig.py::test_something - Failed: not configured: 42
1 failed in 0.12s

If you only want to hide certain exceptions, you can set __tracebackhide__ to a callable which gets the
ExceptionInfo object. You can for example use this to make sure unexpected exception types aren’t hidden:

import operator
import pytest

(continues on next page)

262 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

class ConfigException(Exception):
pass

def checkconfig(x):
__tracebackhide__ = operator.methodcaller("errisinstance", ConfigException)
if not hasattr(x, "config"):

raise ConfigException("not configured: {}".format(x))

def test_something():
checkconfig(42)

This will avoid hiding the exception traceback on unrelated exceptions (i.e. bugs in assertion helpers).

27.2.6 Detect if running from within a pytest run

Usually it is a bad idea to make application code behave differently if called from a test. But if you absolutely must
find out if your application code is running from a test you can do something like this:

# content of your_module.py

_called_from_test = False

# content of conftest.py

def pytest_configure(config):
your_module._called_from_test = True

and then check for the your_module._called_from_test flag:

if your_module._called_from_test:
# called from within a test run
...

else:
# called "normally"
...

accordingly in your application.

27.2.7 Adding info to test report header

It’s easy to present extra information in a pytest run:

# content of conftest.py

def pytest_report_header(config):
return "project deps: mylib-1.1"

which will add the string to the test header accordingly:

27.2. Basic patterns and examples 263



pytest Documentation, Release 6.2

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
project deps: mylib-1.1
rootdir: $REGENDOC_TMPDIR
collected 0 items

========================== no tests ran in 0.12s ===========================

It is also possible to return a list of strings which will be considered as several lines of information. You may consider
config.getoption('verbose') in order to display more information if applicable:

# content of conftest.py

def pytest_report_header(config):
if config.getoption("verbose") > 0:

return ["info1: did you know that ...", "did you?"]

which will add info only when run with “–v”:

$ pytest -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
info1: did you know that ...
did you?
rootdir: $REGENDOC_TMPDIR
collecting ... collected 0 items

========================== no tests ran in 0.12s ===========================

and nothing when run plainly:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 0 items

========================== no tests ran in 0.12s ===========================

27.2.8 Profiling test duration

If you have a slow running large test suite you might want to find out which tests are the slowest. Let’s make an
artificial test suite:

# content of test_some_are_slow.py
import time

def test_funcfast():

(continues on next page)

264 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

time.sleep(0.1)

def test_funcslow1():
time.sleep(0.2)

def test_funcslow2():
time.sleep(0.3)

Now we can profile which test functions execute the slowest:

$ pytest --durations=3
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_some_are_slow.py ... [100%]

=========================== slowest 3 durations ============================
0.30s call test_some_are_slow.py::test_funcslow2
0.20s call test_some_are_slow.py::test_funcslow1
0.10s call test_some_are_slow.py::test_funcfast
============================ 3 passed in 0.12s =============================

27.2.9 Incremental testing - test steps

Sometimes you may have a testing situation which consists of a series of test steps. If one step fails it makes no sense
to execute further steps as they are all expected to fail anyway and their tracebacks add no insight. Here is a simple
conftest.py file which introduces an incremental marker which is to be used on classes:

# content of conftest.py

from typing import Dict, Tuple
import pytest

# store history of failures per test class name and per index in parametrize (if
→˓parametrize used)
_test_failed_incremental: Dict[str, Dict[Tuple[int, ...], str]] = {}

def pytest_runtest_makereport(item, call):
if "incremental" in item.keywords:

# incremental marker is used
if call.excinfo is not None:

# the test has failed
# retrieve the class name of the test
cls_name = str(item.cls)
# retrieve the index of the test (if parametrize is used in combination

→˓with incremental)
parametrize_index = (

tuple(item.callspec.indices.values())
if hasattr(item, "callspec")

(continues on next page)

27.2. Basic patterns and examples 265



pytest Documentation, Release 6.2

(continued from previous page)

else ()
)
# retrieve the name of the test function
test_name = item.originalname or item.name
# store in _test_failed_incremental the original name of the failed test
_test_failed_incremental.setdefault(cls_name, {}).setdefault(

parametrize_index, test_name
)

def pytest_runtest_setup(item):
if "incremental" in item.keywords:

# retrieve the class name of the test
cls_name = str(item.cls)
# check if a previous test has failed for this class
if cls_name in _test_failed_incremental:

# retrieve the index of the test (if parametrize is used in combination
→˓with incremental)

parametrize_index = (
tuple(item.callspec.indices.values())
if hasattr(item, "callspec")
else ()

)
# retrieve the name of the first test function to fail for this class

→˓name and index
test_name = _test_failed_incremental[cls_name].get(parametrize_index,

→˓None)
# if name found, test has failed for the combination of class name & test

→˓name
if test_name is not None:

pytest.xfail("previous test failed ({})".format(test_name))

These two hook implementations work together to abort incremental-marked tests in a class. Here is a test module
example:

# content of test_step.py

import pytest

@pytest.mark.incremental
class TestUserHandling:

def test_login(self):
pass

def test_modification(self):
assert 0

def test_deletion(self):
pass

def test_normal():
pass

If we run this:

266 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

$ pytest -rx
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items

test_step.py .Fx. [100%]

================================= FAILURES =================================
____________________ TestUserHandling.test_modification ____________________

self = <test_step.TestUserHandling object at 0xdeadbeef>

def test_modification(self):
> assert 0
E assert 0

test_step.py:11: AssertionError
========================= short test summary info ==========================
XFAIL test_step.py::TestUserHandling::test_deletion

reason: previous test failed (test_modification)
================== 1 failed, 2 passed, 1 xfailed in 0.12s ==================

We’ll see that test_deletion was not executed because test_modification failed. It is reported as an
“expected failure”.

27.2.10 Package/Directory-level fixtures (setups)

If you have nested test directories, you can have per-directory fixture scopes by placing fixture functions in a
conftest.py file in that directory You can use all types of fixtures including autouse fixtures which are the equiv-
alent of xUnit’s setup/teardown concept. It’s however recommended to have explicit fixture references in your tests or
test classes rather than relying on implicitly executing setup/teardown functions, especially if they are far away from
the actual tests.

Here is an example for making a db fixture available in a directory:

# content of a/conftest.py
import pytest

class DB:
pass

@pytest.fixture(scope="session")
def db():

return DB()

and then a test module in that directory:

# content of a/test_db.py
def test_a1(db):

assert 0, db # to show value

another test module:

27.2. Basic patterns and examples 267



pytest Documentation, Release 6.2

# content of a/test_db2.py
def test_a2(db):

assert 0, db # to show value

and then a module in a sister directory which will not see the db fixture:

# content of b/test_error.py
def test_root(db): # no db here, will error out

pass

We can run this:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 7 items

test_step.py .Fx. [ 57%]
a/test_db.py F [ 71%]
a/test_db2.py F [ 85%]
b/test_error.py E [100%]

================================== ERRORS ==================================
_______________________ ERROR at setup of test_root ________________________
file $REGENDOC_TMPDIR/b/test_error.py, line 1

def test_root(db): # no db here, will error out
E fixture 'db' not found
> available fixtures: cache, capfd, capfdbinary, caplog, capsys, capsysbinary,
→˓doctest_namespace, monkeypatch, pytestconfig, record_property, record_testsuite_
→˓property, record_xml_attribute, recwarn, tmp_path, tmp_path_factory, tmpdir, tmpdir_
→˓factory
> use 'pytest --fixtures [testpath]' for help on them.

$REGENDOC_TMPDIR/b/test_error.py:1
================================= FAILURES =================================
____________________ TestUserHandling.test_modification ____________________

self = <test_step.TestUserHandling object at 0xdeadbeef>

def test_modification(self):
> assert 0
E assert 0

test_step.py:11: AssertionError
_________________________________ test_a1 __________________________________

db = <conftest.DB object at 0xdeadbeef>

def test_a1(db):
> assert 0, db # to show value
E AssertionError: <conftest.DB object at 0xdeadbeef>
E assert 0

a/test_db.py:2: AssertionError
_________________________________ test_a2 __________________________________

(continues on next page)

268 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

db = <conftest.DB object at 0xdeadbeef>

def test_a2(db):
> assert 0, db # to show value
E AssertionError: <conftest.DB object at 0xdeadbeef>
E assert 0

a/test_db2.py:2: AssertionError
========================= short test summary info ==========================
FAILED test_step.py::TestUserHandling::test_modification - assert 0
FAILED a/test_db.py::test_a1 - AssertionError: <conftest.DB object at 0x7...
FAILED a/test_db2.py::test_a2 - AssertionError: <conftest.DB object at 0x...
ERROR b/test_error.py::test_root
============= 3 failed, 2 passed, 1 xfailed, 1 error in 0.12s ==============

The two test modules in the a directory see the same db fixture instance while the one test in the sister-directory b
doesn’t see it. We could of course also define a db fixture in that sister directory’s conftest.py file. Note that
each fixture is only instantiated if there is a test actually needing it (unless you use “autouse” fixture which are always
executed ahead of the first test executing).

27.2.11 Post-process test reports / failures

If you want to postprocess test reports and need access to the executing environment you can implement a hook that
gets called when the test “report” object is about to be created. Here we write out all failing test calls and also access
a fixture (if it was used by the test) in case you want to query/look at it during your post processing. In our case we
just write some information out to a failures file:

# content of conftest.py

import pytest
import os.path

@pytest.hookimpl(tryfirst=True, hookwrapper=True)
def pytest_runtest_makereport(item, call):

# execute all other hooks to obtain the report object
outcome = yield
rep = outcome.get_result()

# we only look at actual failing test calls, not setup/teardown
if rep.when == "call" and rep.failed:

mode = "a" if os.path.exists("failures") else "w"
with open("failures", mode) as f:

# let's also access a fixture for the fun of it
if "tmpdir" in item.fixturenames:

extra = " ({})".format(item.funcargs["tmpdir"])
else:

extra = ""

f.write(rep.nodeid + extra + "\n")

if you then have failing tests:

27.2. Basic patterns and examples 269



pytest Documentation, Release 6.2

# content of test_module.py
def test_fail1(tmpdir):

assert 0

def test_fail2():
assert 0

and run them:

$ pytest test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py FF [100%]

================================= FAILURES =================================
________________________________ test_fail1 ________________________________

tmpdir = local('PYTEST_TMPDIR/test_fail10')

def test_fail1(tmpdir):
> assert 0
E assert 0

test_module.py:2: AssertionError
________________________________ test_fail2 ________________________________

def test_fail2():
> assert 0
E assert 0

test_module.py:6: AssertionError
========================= short test summary info ==========================
FAILED test_module.py::test_fail1 - assert 0
FAILED test_module.py::test_fail2 - assert 0
============================ 2 failed in 0.12s =============================

you will have a “failures” file which contains the failing test ids:

$ cat failures
test_module.py::test_fail1 (PYTEST_TMPDIR/test_fail10)
test_module.py::test_fail2

270 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

27.2.12 Making test result information available in fixtures

If you want to make test result reports available in fixture finalizers here is a little example implemented via a local
plugin:

# content of conftest.py

import pytest

@pytest.hookimpl(tryfirst=True, hookwrapper=True)
def pytest_runtest_makereport(item, call):

# execute all other hooks to obtain the report object
outcome = yield
rep = outcome.get_result()

# set a report attribute for each phase of a call, which can
# be "setup", "call", "teardown"

setattr(item, "rep_" + rep.when, rep)

@pytest.fixture
def something(request):

yield
# request.node is an "item" because we use the default
# "function" scope
if request.node.rep_setup.failed:

print("setting up a test failed!", request.node.nodeid)
elif request.node.rep_setup.passed:

if request.node.rep_call.failed:
print("executing test failed", request.node.nodeid)

if you then have failing tests:

# content of test_module.py

import pytest

@pytest.fixture
def other():

assert 0

def test_setup_fails(something, other):
pass

def test_call_fails(something):
assert 0

def test_fail2():
assert 0

and run it:

27.2. Basic patterns and examples 271



pytest Documentation, Release 6.2

$ pytest -s test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_module.py Esetting up a test failed! test_module.py::test_setup_fails
Fexecuting test failed test_module.py::test_call_fails
F

================================== ERRORS ==================================
____________________ ERROR at setup of test_setup_fails ____________________

@pytest.fixture
def other():

> assert 0
E assert 0

test_module.py:7: AssertionError
================================= FAILURES =================================
_____________________________ test_call_fails ______________________________

something = None

def test_call_fails(something):
> assert 0
E assert 0

test_module.py:15: AssertionError
________________________________ test_fail2 ________________________________

def test_fail2():
> assert 0
E assert 0

test_module.py:19: AssertionError
========================= short test summary info ==========================
FAILED test_module.py::test_call_fails - assert 0
FAILED test_module.py::test_fail2 - assert 0
ERROR test_module.py::test_setup_fails - assert 0
======================== 2 failed, 1 error in 0.12s ========================

You’ll see that the fixture finalizers could use the precise reporting information.

27.2.13 PYTEST_CURRENT_TEST environment variable

Sometimes a test session might get stuck and there might be no easy way to figure out which test got stuck, for example
if pytest was run in quiet mode (-q) or you don’t have access to the console output. This is particularly a problem if
the problem happens only sporadically, the famous “flaky” kind of tests.

pytest sets the PYTEST_CURRENT_TEST environment variable when running tests, which can be inspected by
process monitoring utilities or libraries like psutil to discover which test got stuck if necessary:

import psutil

(continues on next page)

272 Chapter 27. Examples and customization tricks

https://pypi.org/project/psutil/


pytest Documentation, Release 6.2

(continued from previous page)

for pid in psutil.pids():
environ = psutil.Process(pid).environ()
if "PYTEST_CURRENT_TEST" in environ:

print(f'pytest process {pid} running: {environ["PYTEST_CURRENT_TEST"]}')

During the test session pytest will set PYTEST_CURRENT_TEST to the current test nodeid and the current stage,
which can be setup, call, or teardown.

For example, when running a single test function named test_foo from foo_module.py,
PYTEST_CURRENT_TEST will be set to:

1. foo_module.py::test_foo (setup)

2. foo_module.py::test_foo (call)

3. foo_module.py::test_foo (teardown)

In that order.

Note: The contents of PYTEST_CURRENT_TEST is meant to be human readable and the actual format can be
changed between releases (even bug fixes) so it shouldn’t be relied on for scripting or automation.

27.2.14 Freezing pytest

If you freeze your application using a tool like PyInstaller in order to distribute it to your end-users, it is a good idea
to also package your test runner and run your tests using the frozen application. This way packaging errors such as
dependencies not being included into the executable can be detected early while also allowing you to send test files to
users so they can run them in their machines, which can be useful to obtain more information about a hard to reproduce
bug.

Fortunately recent PyInstaller releases already have a custom hook for pytest, but if you are using another tool
to freeze executables such as cx_freeze or py2exe, you can use pytest.freeze_includes() to obtain the
full list of internal pytest modules. How to configure the tools to find the internal modules varies from tool to tool,
however.

Instead of freezing the pytest runner as a separate executable, you can make your frozen program work as the pytest
runner by some clever argument handling during program startup. This allows you to have a single executable, which
is usually more convenient. Please note that the mechanism for plugin discovery used by pytest (setupttools entry
points) doesn’t work with frozen executables so pytest can’t find any third party plugins automatically. To include
third party plugins like pytest-timeout they must be imported explicitly and passed on to pytest.main.

# contents of app_main.py
import sys
import pytest_timeout # Third party plugin

if len(sys.argv) > 1 and sys.argv[1] == "--pytest":
import pytest

sys.exit(pytest.main(sys.argv[2:], plugins=[pytest_timeout]))
else:

# normal application execution: at this point argv can be parsed
# by your argument-parsing library of choice as usual
...

This allows you to execute tests using the frozen application with standard pytest command-line options:

27.2. Basic patterns and examples 273

https://pyinstaller.readthedocs.io


pytest Documentation, Release 6.2

./app_main --pytest --verbose --tb=long --junitxml=results.xml test-suite/

27.3 Parametrizing tests

pytest allows to easily parametrize test functions. For basic docs, see Parametrizing fixtures and test functions.

In the following we provide some examples using the builtin mechanisms.

27.3.1 Generating parameters combinations, depending on command line

Let’s say we want to execute a test with different computation parameters and the parameter range shall be determined
by a command line argument. Let’s first write a simple (do-nothing) computation test:

# content of test_compute.py

def test_compute(param1):
assert param1 < 4

Now we add a test configuration like this:

# content of conftest.py

def pytest_addoption(parser):
parser.addoption("--all", action="store_true", help="run all combinations")

def pytest_generate_tests(metafunc):
if "param1" in metafunc.fixturenames:

if metafunc.config.getoption("all"):
end = 5

else:
end = 2

metafunc.parametrize("param1", range(end))

This means that we only run 2 tests if we do not pass --all:

$ pytest -q test_compute.py
.. [100%]
2 passed in 0.12s

We run only two computations, so we see two dots. let’s run the full monty:

$ pytest -q --all
....F [100%]
================================= FAILURES =================================
_____________________________ test_compute[4] ______________________________

param1 = 4

def test_compute(param1):
> assert param1 < 4
E assert 4 < 4

(continues on next page)

274 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

test_compute.py:4: AssertionError
========================= short test summary info ==========================
FAILED test_compute.py::test_compute[4] - assert 4 < 4
1 failed, 4 passed in 0.12s

As expected when running the full range of param1 values we’ll get an error on the last one.

27.3.2 Different options for test IDs

pytest will build a string that is the test ID for each set of values in a parametrized test. These IDs can be used with
-k to select specific cases to run, and they will also identify the specific case when one is failing. Running pytest with
--collect-only will show the generated IDs.

Numbers, strings, booleans and None will have their usual string representation used in the test ID. For other objects,
pytest will make a string based on the argument name:

# content of test_time.py

import pytest

from datetime import datetime, timedelta

testdata = [
(datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1)),
(datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1)),

]

@pytest.mark.parametrize("a,b,expected", testdata)
def test_timedistance_v0(a, b, expected):

diff = a - b
assert diff == expected

@pytest.mark.parametrize("a,b,expected", testdata, ids=["forward", "backward"])
def test_timedistance_v1(a, b, expected):

diff = a - b
assert diff == expected

def idfn(val):
if isinstance(val, (datetime,)):

# note this wouldn't show any hours/minutes/seconds
return val.strftime("%Y%m%d")

@pytest.mark.parametrize("a,b,expected", testdata, ids=idfn)
def test_timedistance_v2(a, b, expected):

diff = a - b
assert diff == expected

@pytest.mark.parametrize(
"a,b,expected",

(continues on next page)

27.3. Parametrizing tests 275



pytest Documentation, Release 6.2

(continued from previous page)

[
pytest.param(

datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1), id="forward"
),
pytest.param(

datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1), id=
→˓"backward"

),
],

)
def test_timedistance_v3(a, b, expected):

diff = a - b
assert diff == expected

In test_timedistance_v0, we let pytest generate the test IDs.

In test_timedistance_v1, we specified ids as a list of strings which were used as the test IDs. These are
succinct, but can be a pain to maintain.

In test_timedistance_v2, we specified ids as a function that can generate a string representation to make part
of the test ID. So our datetime values use the label generated by idfn, but because we didn’t generate a label for
timedelta objects, they are still using the default pytest representation:

$ pytest test_time.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 8 items

<Module test_time.py>
<Function test_timedistance_v0[a0-b0-expected0]>
<Function test_timedistance_v0[a1-b1-expected1]>
<Function test_timedistance_v1[forward]>
<Function test_timedistance_v1[backward]>
<Function test_timedistance_v2[20011212-20011211-expected0]>
<Function test_timedistance_v2[20011211-20011212-expected1]>
<Function test_timedistance_v3[forward]>
<Function test_timedistance_v3[backward]>

======================== 8 tests collected in 0.12s ========================

In test_timedistance_v3, we used pytest.param to specify the test IDs together with the actual data,
instead of listing them separately.

27.3.3 A quick port of “testscenarios”

Here is a quick port to run tests configured with test scenarios, an add-on from Robert Collins for the standard
unittest framework. We only have to work a bit to construct the correct arguments for pytest’s Metafunc.
parametrize():

# content of test_scenarios.py

def pytest_generate_tests(metafunc):

(continues on next page)

276 Chapter 27. Examples and customization tricks

https://pypi.org/project/testscenarios/


pytest Documentation, Release 6.2

(continued from previous page)

idlist = []
argvalues = []
for scenario in metafunc.cls.scenarios:

idlist.append(scenario[0])
items = scenario[1].items()
argnames = [x[0] for x in items]
argvalues.append([x[1] for x in items])

metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class")

scenario1 = ("basic", {"attribute": "value"})
scenario2 = ("advanced", {"attribute": "value2"})

class TestSampleWithScenarios:
scenarios = [scenario1, scenario2]

def test_demo1(self, attribute):
assert isinstance(attribute, str)

def test_demo2(self, attribute):
assert isinstance(attribute, str)

this is a fully self-contained example which you can run with:

$ pytest test_scenarios.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items

test_scenarios.py .... [100%]

============================ 4 passed in 0.12s =============================

If you just collect tests you’ll also nicely see ‘advanced’ and ‘basic’ as variants for the test function:

$ pytest --collect-only test_scenarios.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items

<Module test_scenarios.py>
<Class TestSampleWithScenarios>

<Function test_demo1[basic]>
<Function test_demo2[basic]>
<Function test_demo1[advanced]>
<Function test_demo2[advanced]>

======================== 4 tests collected in 0.12s ========================

Note that we told metafunc.parametrize() that your scenario values should be considered class-scoped. With
pytest-2.3 this leads to a resource-based ordering.

27.3. Parametrizing tests 277



pytest Documentation, Release 6.2

27.3.4 Deferring the setup of parametrized resources

The parametrization of test functions happens at collection time. It is a good idea to setup expensive resources like DB
connections or subprocess only when the actual test is run. Here is a simple example how you can achieve that. This
test requires a db object fixture:

# content of test_backends.py

import pytest

def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":

pytest.fail("deliberately failing for demo purposes")

We can now add a test configuration that generates two invocations of the test_db_initialized function and
also implements a factory that creates a database object for the actual test invocations:

# content of conftest.py
import pytest

def pytest_generate_tests(metafunc):
if "db" in metafunc.fixturenames:

metafunc.parametrize("db", ["d1", "d2"], indirect=True)

class DB1:
"one database object"

class DB2:
"alternative database object"

@pytest.fixture
def db(request):

if request.param == "d1":
return DB1()

elif request.param == "d2":
return DB2()

else:
raise ValueError("invalid internal test config")

Let’s first see how it looks like at collection time:

$ pytest test_backends.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

<Module test_backends.py>
<Function test_db_initialized[d1]>
<Function test_db_initialized[d2]>

(continues on next page)

278 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

======================== 2 tests collected in 0.12s ========================

And then when we run the test:

$ pytest -q test_backends.py
.F [100%]
================================= FAILURES =================================
_________________________ test_db_initialized[d2] __________________________

db = <conftest.DB2 object at 0xdeadbeef>

def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":

> pytest.fail("deliberately failing for demo purposes")
E Failed: deliberately failing for demo purposes

test_backends.py:8: Failed
========================= short test summary info ==========================
FAILED test_backends.py::test_db_initialized[d2] - Failed: deliberately f...
1 failed, 1 passed in 0.12s

The first invocation with db == "DB1" passed while the second with db == "DB2" failed. Our db fixture func-
tion has instantiated each of the DB values during the setup phase while the pytest_generate_tests generated
two according calls to the test_db_initialized during the collection phase.

27.3.5 Indirect parametrization

Using the indirect=True parameter when parametrizing a test allows to parametrize a test with a fixture receiving
the values before passing them to a test:

import pytest

@pytest.fixture
def fixt(request):

return request.param * 3

@pytest.mark.parametrize("fixt", ["a", "b"], indirect=True)
def test_indirect(fixt):

assert len(fixt) == 3

This can be used, for example, to do more expensive setup at test run time in the fixture, rather than having to run
those setup steps at collection time.

27.3. Parametrizing tests 279



pytest Documentation, Release 6.2

27.3.6 Apply indirect on particular arguments

Very often parametrization uses more than one argument name. There is opportunity to apply indirect parameter
on particular arguments. It can be done by passing list or tuple of arguments’ names to indirect. In the example
below there is a function test_indirect which uses two fixtures: x and y. Here we give to indirect the list, which
contains the name of the fixture x. The indirect parameter will be applied to this argument only, and the value a will
be passed to respective fixture function:

# content of test_indirect_list.py

import pytest

@pytest.fixture(scope="function")
def x(request):

return request.param * 3

@pytest.fixture(scope="function")
def y(request):

return request.param * 2

@pytest.mark.parametrize("x, y", [("a", "b")], indirect=["x"])
def test_indirect(x, y):

assert x == "aaa"
assert y == "b"

The result of this test will be successful:

$ pytest -v test_indirect_list.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 1 item

test_indirect_list.py::test_indirect[a-b] PASSED [100%]

============================ 1 passed in 0.12s =============================

27.3.7 Parametrizing test methods through per-class configuration

Here is an example pytest_generate_tests function implementing a parametrization scheme similar to
Michael Foord’s unittest parametrizer but in a lot less code:

# content of ./test_parametrize.py
import pytest

def pytest_generate_tests(metafunc):
# called once per each test function
funcarglist = metafunc.cls.params[metafunc.function.__name__]
argnames = sorted(funcarglist[0])
metafunc.parametrize(

(continues on next page)

280 Chapter 27. Examples and customization tricks

https://github.com/testing-cabal/unittest-ext/blob/master/params.py


pytest Documentation, Release 6.2

(continued from previous page)

argnames, [[funcargs[name] for name in argnames] for funcargs in funcarglist]
)

class TestClass:
# a map specifying multiple argument sets for a test method
params = {

"test_equals": [dict(a=1, b=2), dict(a=3, b=3)],
"test_zerodivision": [dict(a=1, b=0)],

}

def test_equals(self, a, b):
assert a == b

def test_zerodivision(self, a, b):
with pytest.raises(ZeroDivisionError):

a / b

Our test generator looks up a class-level definition which specifies which argument sets to use for each test function.
Let’s run it:

$ pytest -q
F.. [100%]
================================= FAILURES =================================
________________________ TestClass.test_equals[1-2] ________________________

self = <test_parametrize.TestClass object at 0xdeadbeef>, a = 1, b = 2

def test_equals(self, a, b):
> assert a == b
E assert 1 == 2

test_parametrize.py:21: AssertionError
========================= short test summary info ==========================
FAILED test_parametrize.py::TestClass::test_equals[1-2] - assert 1 == 2
1 failed, 2 passed in 0.12s

27.3.8 Indirect parametrization with multiple fixtures

Here is a stripped down real-life example of using parametrized testing for testing serialization of objects between
different python interpreters. We define a test_basic_objects function which is to be run with different sets of
arguments for its three arguments:

• python1: first python interpreter, run to pickle-dump an object to a file

• python2: second interpreter, run to pickle-load an object from a file

• obj: object to be dumped/loaded

"""
module containing a parametrized tests testing cross-python
serialization via the pickle module.
"""
import shutil
import subprocess
import textwrap

(continues on next page)

27.3. Parametrizing tests 281



pytest Documentation, Release 6.2

(continued from previous page)

import pytest

pythonlist = ["python3.5", "python3.6", "python3.7"]

@pytest.fixture(params=pythonlist)
def python1(request, tmpdir):

picklefile = tmpdir.join("data.pickle")
return Python(request.param, picklefile)

@pytest.fixture(params=pythonlist)
def python2(request, python1):

return Python(request.param, python1.picklefile)

class Python:
def __init__(self, version, picklefile):

self.pythonpath = shutil.which(version)
if not self.pythonpath:

pytest.skip(f"{version!r} not found")
self.picklefile = picklefile

def dumps(self, obj):
dumpfile = self.picklefile.dirpath("dump.py")
dumpfile.write(

textwrap.dedent(
r"""
import pickle
f = open({!r}, 'wb')
s = pickle.dump({!r}, f, protocol=2)
f.close()
""".format(

str(self.picklefile), obj
)

)
)
subprocess.check_call((self.pythonpath, str(dumpfile)))

def load_and_is_true(self, expression):
loadfile = self.picklefile.dirpath("load.py")
loadfile.write(

textwrap.dedent(
r"""
import pickle
f = open({!r}, 'rb')
obj = pickle.load(f)
f.close()
res = eval({!r})
if not res:

raise SystemExit(1)
""".format(

str(self.picklefile), expression
)

)
)

(continues on next page)

282 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

print(loadfile)
subprocess.check_call((self.pythonpath, str(loadfile)))

@pytest.mark.parametrize("obj", [42, {}, {1: 3}])
def test_basic_objects(python1, python2, obj):

python1.dumps(obj)
python2.load_and_is_true(f"obj == {obj}")

Running it results in some skips if we don’t have all the python interpreters installed and otherwise runs all combina-
tions (3 interpreters times 3 interpreters times 3 objects to serialize/deserialize):

. $ pytest -rs -q multipython.py
sssssssssssssssssssssssssss [100%]
========================= short test summary info ==========================
SKIPPED [9] multipython.py:29: 'python3.5' not found
SKIPPED [9] multipython.py:29: 'python3.6' not found
SKIPPED [9] multipython.py:29: 'python3.7' not found
27 skipped in 0.12s

27.3.9 Indirect parametrization of optional implementations/imports

If you want to compare the outcomes of several implementations of a given API, you can write test functions that
receive the already imported implementations and get skipped in case the implementation is not importable/available.
Let’s say we have a “base” implementation and the other (possibly optimized ones) need to provide similar results:

# content of conftest.py

import pytest

@pytest.fixture(scope="session")
def basemod(request):

return pytest.importorskip("base")

@pytest.fixture(scope="session", params=["opt1", "opt2"])
def optmod(request):

return pytest.importorskip(request.param)

And then a base implementation of a simple function:

# content of base.py
def func1():

return 1

And an optimized version:

# content of opt1.py
def func1():

return 1.0001

And finally a little test module:

27.3. Parametrizing tests 283



pytest Documentation, Release 6.2

# content of test_module.py

def test_func1(basemod, optmod):
assert round(basemod.func1(), 3) == round(optmod.func1(), 3)

If you run this with reporting for skips enabled:

$ pytest -rs test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items

test_module.py .s [100%]

========================= short test summary info ==========================
SKIPPED [1] conftest.py:12: could not import 'opt2': No module named 'opt2'
======================= 1 passed, 1 skipped in 0.12s =======================

You’ll see that we don’t have an opt2 module and thus the second test run of our test_func1 was skipped. A few
notes:

• the fixture functions in the conftest.py file are “session-scoped” because we don’t need to import more
than once

• if you have multiple test functions and a skipped import, you will see the [1] count increasing in the report

• you can put @pytest.mark.parametrize style parametrization on the test functions to parametrize input/output
values as well.

27.3.10 Set marks or test ID for individual parametrized test

Use pytest.param to apply marks or set test ID to individual parametrized test. For example:

# content of test_pytest_param_example.py
import pytest

@pytest.mark.parametrize(
"test_input,expected",
[

("3+5", 8),
pytest.param("1+7", 8, marks=pytest.mark.basic),
pytest.param("2+4", 6, marks=pytest.mark.basic, id="basic_2+4"),
pytest.param(

"6*9", 42, marks=[pytest.mark.basic, pytest.mark.xfail], id="basic_6*9"
),

],
)
def test_eval(test_input, expected):

assert eval(test_input) == expected

In this example, we have 4 parametrized tests. Except for the first test, we mark the rest three parametrized tests with
the custom marker basic, and for the fourth test we also use the built-in mark xfail to indicate this test is expected
to fail. For explicitness, we set test ids for some tests.

284 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

Then run pytest with verbose mode and with only the basic marker:

$ pytest -v -m basic
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 24 items / 21 deselected / 3 selected

test_pytest_param_example.py::test_eval[1+7-8] PASSED [ 33%]
test_pytest_param_example.py::test_eval[basic_2+4] PASSED [ 66%]
test_pytest_param_example.py::test_eval[basic_6*9] XFAIL [100%]

=============== 2 passed, 21 deselected, 1 xfailed in 0.12s ================

As the result:

• Four tests were collected

• One test was deselected because it doesn’t have the basic mark.

• Three tests with the basic mark was selected.

• The test test_eval[1+7-8] passed, but the name is autogenerated and confusing.

• The test test_eval[basic_2+4] passed.

• The test test_eval[basic_6*9] was expected to fail and did fail.

27.3.11 Parametrizing conditional raising

Use pytest.raises() with the pytest.mark.parametrize decorator to write parametrized tests in which some tests
raise exceptions and others do not.

It is helpful to define a no-op context manager does_not_raise to serve as a complement to raises. For
example:

from contextlib import contextmanager
import pytest

@contextmanager
def does_not_raise():

yield

@pytest.mark.parametrize(
"example_input,expectation",
[

(3, does_not_raise()),
(2, does_not_raise()),
(1, does_not_raise()),
(0, pytest.raises(ZeroDivisionError)),

],
)
def test_division(example_input, expectation):

"""Test how much I know division."""

(continues on next page)

27.3. Parametrizing tests 285



pytest Documentation, Release 6.2

(continued from previous page)

with expectation:
assert (6 / example_input) is not None

In the example above, the first three test cases should run unexceptionally, while the fourth should raise
ZeroDivisionError.

If you’re only supporting Python 3.7+, you can simply use nullcontext to define does_not_raise:

from contextlib import nullcontext as does_not_raise

Or, if you’re supporting Python 3.3+ you can use:

from contextlib import ExitStack as does_not_raise

Or, if desired, you can pip install contextlib2 and use:

from contextlib2 import nullcontext as does_not_raise

27.4 Working with custom markers

Here are some examples using the Marking test functions with attributes mechanism.

27.4.1 Marking test functions and selecting them for a run

You can “mark” a test function with custom metadata like this:

# content of test_server.py

import pytest

@pytest.mark.webtest
def test_send_http():

pass # perform some webtest test for your app

def test_something_quick():
pass

def test_another():
pass

class TestClass:
def test_method(self):

pass

You can then restrict a test run to only run tests marked with webtest:

$ pytest -v -m webtest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python (continues on next page)

286 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 3 deselected / 1 selected

test_server.py::test_send_http PASSED [100%]

===================== 1 passed, 3 deselected in 0.12s ======================

Or the inverse, running all tests except the webtest ones:

$ pytest -v -m "not webtest"
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 1 deselected / 3 selected

test_server.py::test_something_quick PASSED [ 33%]
test_server.py::test_another PASSED [ 66%]
test_server.py::TestClass::test_method PASSED [100%]

===================== 3 passed, 1 deselected in 0.12s ======================

27.4.2 Selecting tests based on their node ID

You can provide one or more node IDs as positional arguments to select only specified tests. This makes it easy to
select tests based on their module, class, method, or function name:

$ pytest -v test_server.py::TestClass::test_method
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 1 item

test_server.py::TestClass::test_method PASSED [100%]

============================ 1 passed in 0.12s =============================

You can also select on the class:

$ pytest -v test_server.py::TestClass
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 1 item

test_server.py::TestClass::test_method PASSED [100%]

============================ 1 passed in 0.12s =============================

Or select multiple nodes:

27.4. Working with custom markers 287



pytest Documentation, Release 6.2

$ pytest -v test_server.py::TestClass test_server.py::test_send_http
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 2 items

test_server.py::TestClass::test_method PASSED [ 50%]
test_server.py::test_send_http PASSED [100%]

============================ 2 passed in 0.12s =============================

Note: Node IDs are of the form module.py::class::method or module.py::function. Node IDs
control which tests are collected, so module.py::class will select all test methods on the class. Nodes are also
created for each parameter of a parametrized fixture or test, so selecting a parametrized test must include the parameter
value, e.g. module.py::function[param].

Node IDs for failing tests are displayed in the test summary info when running pytest with the -rf option. You can
also construct Node IDs from the output of pytest --collectonly.

27.4.3 Using -k expr to select tests based on their name

New in version 2.0/2.3.4.

You can use the -k command line option to specify an expression which implements a substring match on the test
names instead of the exact match on markers that -m provides. This makes it easy to select tests based on their names:

Changed in version 5.4.

The expression matching is now case-insensitive.

$ pytest -v -k http # running with the above defined example module
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 3 deselected / 1 selected

test_server.py::test_send_http PASSED [100%]

===================== 1 passed, 3 deselected in 0.12s ======================

And you can also run all tests except the ones that match the keyword:

$ pytest -k "not send_http" -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 1 deselected / 3 selected

test_server.py::test_something_quick PASSED [ 33%]

(continues on next page)

288 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

test_server.py::test_another PASSED [ 66%]
test_server.py::TestClass::test_method PASSED [100%]

===================== 3 passed, 1 deselected in 0.12s ======================

Or to select “http” and “quick” tests:

$ pytest -k "http or quick" -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 4 items / 2 deselected / 2 selected

test_server.py::test_send_http PASSED [ 50%]
test_server.py::test_something_quick PASSED [100%]

===================== 2 passed, 2 deselected in 0.12s ======================

You can use and, or, not and parentheses.

In addition to the test’s name, -k also matches the names of the test’s parents (usually, the name of the file and class
it’s in), attributes set on the test function, markers applied to it or its parents and any extra keywords explicitly
added to it or its parents.

27.4.4 Registering markers

Registering markers for your test suite is simple:

# content of pytest.ini
[pytest]
markers =

webtest: mark a test as a webtest.
slow: mark test as slow.

Multiple custom markers can be registered, by defining each one in its own line, as shown in above example.

You can ask which markers exist for your test suite - the list includes our just defined webtest and slow markers:

$ pytest --markers
@pytest.mark.webtest: mark a test as a webtest.

@pytest.mark.slow: mark test as slow.

@pytest.mark.filterwarnings(warning): add a warning filter to the given test. see
→˓https://docs.pytest.org/en/stable/warnings.html#pytest-mark-filterwarnings

@pytest.mark.skip(reason=None): skip the given test function with an optional reason.
→˓Example: skip(reason="no way of currently testing this") skips the test.

@pytest.mark.skipif(condition, ..., *, reason=...): skip the given test function if
→˓any of the conditions evaluate to True. Example: skipif(sys.platform == 'win32')
→˓skips the test if we are on the win32 platform. See https://docs.pytest.org/en/
→˓stable/reference.html#pytest-mark-skipif

(continues on next page)

27.4. Working with custom markers 289



pytest Documentation, Release 6.2

(continued from previous page)

@pytest.mark.xfail(condition, ..., *, reason=..., run=True, raises=None, strict=xfail_
→˓strict): mark the test function as an expected failure if any of the conditions
→˓evaluate to True. Optionally specify a reason for better reporting and run=False if
→˓you don't even want to execute the test function. If only specific exception(s) are
→˓expected, you can list them in raises, and if the test fails in other ways, it will
→˓be reported as a true failure. See https://docs.pytest.org/en/stable/reference.html
→˓#pytest-mark-xfail

@pytest.mark.parametrize(argnames, argvalues): call a test function multiple times
→˓passing in different arguments in turn. argvalues generally needs to be a list of
→˓values if argnames specifies only one name or a list of tuples of values if
→˓argnames specifies multiple names. Example: @parametrize('arg1', [1,2]) would lead
→˓to two calls of the decorated test function, one with arg1=1 and another with
→˓arg1=2.see https://docs.pytest.org/en/stable/parametrize.html for more info and
→˓examples.

@pytest.mark.usefixtures(fixturename1, fixturename2, ...): mark tests as needing all
→˓of the specified fixtures. see https://docs.pytest.org/en/stable/fixture.html
→˓#usefixtures

@pytest.mark.tryfirst: mark a hook implementation function such that the plugin
→˓machinery will try to call it first/as early as possible.

@pytest.mark.trylast: mark a hook implementation function such that the plugin
→˓machinery will try to call it last/as late as possible.

For an example on how to add and work with markers from a plugin, see Custom marker and command line option to
control test runs.

Note: It is recommended to explicitly register markers so that:

• There is one place in your test suite defining your markers

• Asking for existing markers via pytest --markers gives good output

• Typos in function markers are treated as an error if you use the --strict-markers option.

27.4.5 Marking whole classes or modules

You may use pytest.mark decorators with classes to apply markers to all of its test methods:

# content of test_mark_classlevel.py
import pytest

@pytest.mark.webtest
class TestClass:

def test_startup(self):
pass

def test_startup_and_more(self):
pass

This is equivalent to directly applying the decorator to the two test functions.

To apply marks at the module level, use the pytestmark global variable:

290 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

import pytest
pytestmark = pytest.mark.webtest

or multiple markers:

pytestmark = [pytest.mark.webtest, pytest.mark.slowtest]

Due to legacy reasons, before class decorators were introduced, it is possible to set the pytestmark attribute on a
test class like this:

import pytest

class TestClass:
pytestmark = pytest.mark.webtest

27.4.6 Marking individual tests when using parametrize

When using parametrize, applying a mark will make it apply to each individual test. However it is also possible to
apply a marker to an individual test instance:

import pytest

@pytest.mark.foo
@pytest.mark.parametrize(

("n", "expected"), [(1, 2), pytest.param(1, 3, marks=pytest.mark.bar), (2, 3)]
)
def test_increment(n, expected):

assert n + 1 == expected

In this example the mark “foo” will apply to each of the three tests, whereas the “bar” mark is only applied to the
second test. Skip and xfail marks can also be applied in this way, see Skip/xfail with parametrize.

27.4.7 Custom marker and command line option to control test runs

Plugins can provide custom markers and implement specific behaviour based on it. This is a self-contained example
which adds a command line option and a parametrized test function marker to run tests specifies via named environ-
ments:

# content of conftest.py

import pytest

def pytest_addoption(parser):
parser.addoption(

"-E",
action="store",
metavar="NAME",
help="only run tests matching the environment NAME.",

)

(continues on next page)

27.4. Working with custom markers 291



pytest Documentation, Release 6.2

(continued from previous page)

def pytest_configure(config):
# register an additional marker
config.addinivalue_line(

"markers", "env(name): mark test to run only on named environment"
)

def pytest_runtest_setup(item):
envnames = [mark.args[0] for mark in item.iter_markers(name="env")]
if envnames:

if item.config.getoption("-E") not in envnames:
pytest.skip("test requires env in {!r}".format(envnames))

A test file using this local plugin:

# content of test_someenv.py

import pytest

@pytest.mark.env("stage1")
def test_basic_db_operation():

pass

and an example invocations specifying a different environment than what the test needs:

$ pytest -E stage2
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_someenv.py s [100%]

============================ 1 skipped in 0.12s ============================

and here is one that specifies exactly the environment needed:

$ pytest -E stage1
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_someenv.py . [100%]

============================ 1 passed in 0.12s =============================

The --markers option always gives you a list of available markers:

$ pytest --markers
@pytest.mark.env(name): mark test to run only on named environment

@pytest.mark.filterwarnings(warning): add a warning filter to the given test. see
→˓https://docs.pytest.org/en/stable/warnings.html#pytest-mark-filterwarnings

(continues on next page)

292 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

@pytest.mark.skip(reason=None): skip the given test function with an optional reason.
→˓Example: skip(reason="no way of currently testing this") skips the test.

@pytest.mark.skipif(condition, ..., *, reason=...): skip the given test function if
→˓any of the conditions evaluate to True. Example: skipif(sys.platform == 'win32')
→˓skips the test if we are on the win32 platform. See https://docs.pytest.org/en/
→˓stable/reference.html#pytest-mark-skipif

@pytest.mark.xfail(condition, ..., *, reason=..., run=True, raises=None, strict=xfail_
→˓strict): mark the test function as an expected failure if any of the conditions
→˓evaluate to True. Optionally specify a reason for better reporting and run=False if
→˓you don't even want to execute the test function. If only specific exception(s) are
→˓expected, you can list them in raises, and if the test fails in other ways, it will
→˓be reported as a true failure. See https://docs.pytest.org/en/stable/reference.html
→˓#pytest-mark-xfail

@pytest.mark.parametrize(argnames, argvalues): call a test function multiple times
→˓passing in different arguments in turn. argvalues generally needs to be a list of
→˓values if argnames specifies only one name or a list of tuples of values if
→˓argnames specifies multiple names. Example: @parametrize('arg1', [1,2]) would lead
→˓to two calls of the decorated test function, one with arg1=1 and another with
→˓arg1=2.see https://docs.pytest.org/en/stable/parametrize.html for more info and
→˓examples.

@pytest.mark.usefixtures(fixturename1, fixturename2, ...): mark tests as needing all
→˓of the specified fixtures. see https://docs.pytest.org/en/stable/fixture.html
→˓#usefixtures

@pytest.mark.tryfirst: mark a hook implementation function such that the plugin
→˓machinery will try to call it first/as early as possible.

@pytest.mark.trylast: mark a hook implementation function such that the plugin
→˓machinery will try to call it last/as late as possible.

27.4.8 Passing a callable to custom markers

Below is the config file that will be used in the next examples:

# content of conftest.py
import sys

def pytest_runtest_setup(item):
for marker in item.iter_markers(name="my_marker"):

print(marker)
sys.stdout.flush()

A custom marker can have its argument set, i.e. args and kwargs properties, defined by either invoking it as a
callable or using pytest.mark.MARKER_NAME.with_args. These two methods achieve the same effect most
of the time.

However, if there is a callable as the single positional argument with no keyword arguments, using the pytest.
mark.MARKER_NAME(c) will not pass c as a positional argument but decorate c with the custom marker (see
MarkDecorator). Fortunately, pytest.mark.MARKER_NAME.with_args comes to the rescue:

27.4. Working with custom markers 293



pytest Documentation, Release 6.2

# content of test_custom_marker.py
import pytest

def hello_world(*args, **kwargs):
return "Hello World"

@pytest.mark.my_marker.with_args(hello_world)
def test_with_args():

pass

The output is as follows:

$ pytest -q -s
Mark(name='my_marker', args=(<function hello_world at 0xdeadbeef>,), kwargs={})
.
1 passed in 0.12s

We can see that the custom marker has its argument set extended with the function hello_world. This is the key
difference between creating a custom marker as a callable, which invokes __call__ behind the scenes, and using
with_args.

27.4.9 Reading markers which were set from multiple places

If you are heavily using markers in your test suite you may encounter the case where a marker is applied several times
to a test function. From plugin code you can read over all such settings. Example:

# content of test_mark_three_times.py
import pytest

pytestmark = pytest.mark.glob("module", x=1)

@pytest.mark.glob("class", x=2)
class TestClass:

@pytest.mark.glob("function", x=3)
def test_something(self):

pass

Here we have the marker “glob” applied three times to the same test function. From a conftest file we can read it like
this:

# content of conftest.py
import sys

def pytest_runtest_setup(item):
for mark in item.iter_markers(name="glob"):

print("glob args={} kwargs={}".format(mark.args, mark.kwargs))
sys.stdout.flush()

Let’s run this without capturing output and see what we get:

$ pytest -q -s
glob args=('function',) kwargs={'x': 3}

(continues on next page)

294 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

glob args=('class',) kwargs={'x': 2}
glob args=('module',) kwargs={'x': 1}
.
1 passed in 0.12s

27.4.10 Marking platform specific tests with pytest

Consider you have a test suite which marks tests for particular platforms, namely pytest.mark.darwin,
pytest.mark.win32 etc. and you also have tests that run on all platforms and have no specific marker. If you
now want to have a way to only run the tests for your particular platform, you could use the following plugin:

# content of conftest.py
#
import sys
import pytest

ALL = set("darwin linux win32".split())

def pytest_runtest_setup(item):
supported_platforms = ALL.intersection(mark.name for mark in item.iter_markers())
plat = sys.platform
if supported_platforms and plat not in supported_platforms:

pytest.skip("cannot run on platform {}".format(plat))

then tests will be skipped if they were specified for a different platform. Let’s do a little test file to show how this looks
like:

# content of test_plat.py

import pytest

@pytest.mark.darwin
def test_if_apple_is_evil():

pass

@pytest.mark.linux
def test_if_linux_works():

pass

@pytest.mark.win32
def test_if_win32_crashes():

pass

def test_runs_everywhere():
pass

then you will see two tests skipped and two executed tests as expected:

$ pytest -rs # this option reports skip reasons
=========================== test session starts ============================

(continues on next page)

27.4. Working with custom markers 295



pytest Documentation, Release 6.2

(continued from previous page)

platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items

test_plat.py s.s. [100%]

========================= short test summary info ==========================
SKIPPED [2] conftest.py:12: cannot run on platform linux
======================= 2 passed, 2 skipped in 0.12s =======================

Note that if you specify a platform via the marker-command line option like this:

$ pytest -m linux
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items / 3 deselected / 1 selected

test_plat.py . [100%]

===================== 1 passed, 3 deselected in 0.12s ======================

then the unmarked-tests will not be run. It is thus a way to restrict the run to the specific tests.

27.4.11 Automatically adding markers based on test names

If you have a test suite where test function names indicate a certain type of test, you can implement a hook that
automatically defines markers so that you can use the -m option with it. Let’s look at this test module:

# content of test_module.py

def test_interface_simple():
assert 0

def test_interface_complex():
assert 0

def test_event_simple():
assert 0

def test_something_else():
assert 0

We want to dynamically define two markers and can do it in a conftest.py plugin:

# content of conftest.py

import pytest

(continues on next page)

296 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

def pytest_collection_modifyitems(items):
for item in items:

if "interface" in item.nodeid:
item.add_marker(pytest.mark.interface)

elif "event" in item.nodeid:
item.add_marker(pytest.mark.event)

We can now use the -m option to select one set:

$ pytest -m interface --tb=short
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items / 2 deselected / 2 selected

test_module.py FF [100%]

================================= FAILURES =================================
__________________________ test_interface_simple ___________________________
test_module.py:4: in test_interface_simple

assert 0
E assert 0
__________________________ test_interface_complex __________________________
test_module.py:8: in test_interface_complex

assert 0
E assert 0
========================= short test summary info ==========================
FAILED test_module.py::test_interface_simple - assert 0
FAILED test_module.py::test_interface_complex - assert 0
===================== 2 failed, 2 deselected in 0.12s ======================

or to select both “event” and “interface” tests:

$ pytest -m "interface or event" --tb=short
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items / 1 deselected / 3 selected

test_module.py FFF [100%]

================================= FAILURES =================================
__________________________ test_interface_simple ___________________________
test_module.py:4: in test_interface_simple

assert 0
E assert 0
__________________________ test_interface_complex __________________________
test_module.py:8: in test_interface_complex

assert 0
E assert 0
____________________________ test_event_simple _____________________________
test_module.py:12: in test_event_simple

assert 0
E assert 0

(continues on next page)

27.4. Working with custom markers 297



pytest Documentation, Release 6.2

(continued from previous page)

========================= short test summary info ==========================
FAILED test_module.py::test_interface_simple - assert 0
FAILED test_module.py::test_interface_complex - assert 0
FAILED test_module.py::test_event_simple - assert 0
===================== 3 failed, 1 deselected in 0.12s ======================

27.5 A session-fixture which can look at all collected tests

A session-scoped fixture effectively has access to all collected test items. Here is an example of a fixture function
which walks all collected tests and looks if their test class defines a callme method and calls it:

# content of conftest.py

import pytest

@pytest.fixture(scope="session", autouse=True)
def callattr_ahead_of_alltests(request):

print("callattr_ahead_of_alltests called")
seen = {None}
session = request.node
for item in session.items:

cls = item.getparent(pytest.Class)
if cls not in seen:

if hasattr(cls.obj, "callme"):
cls.obj.callme()

seen.add(cls)

test classes may now define a callme method which will be called ahead of running any tests:

# content of test_module.py

class TestHello:
@classmethod
def callme(cls):

print("callme called!")

def test_method1(self):
print("test_method1 called")

def test_method2(self):
print("test_method1 called")

class TestOther:
@classmethod
def callme(cls):

print("callme other called")

def test_other(self):
print("test other")

(continues on next page)

298 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

(continued from previous page)

# works with unittest as well ...
import unittest

class SomeTest(unittest.TestCase):
@classmethod
def callme(self):

print("SomeTest callme called")

def test_unit1(self):
print("test_unit1 method called")

If you run this without output capturing:

$ pytest -q -s test_module.py
callattr_ahead_of_alltests called
callme called!
callme other called
SomeTest callme called
test_method1 called
.test_method1 called
.test other
.test_unit1 method called
.
4 passed in 0.12s

27.6 Changing standard (Python) test discovery

27.6.1 Ignore paths during test collection

You can easily ignore certain test directories and modules during collection by passing the --ignore=path option
on the cli. pytest allows multiple --ignore options. Example:

tests/
|-- example
| |-- test_example_01.py
| |-- test_example_02.py
| '-- test_example_03.py
|-- foobar
| |-- test_foobar_01.py
| |-- test_foobar_02.py
| '-- test_foobar_03.py
'-- hello

'-- world
|-- test_world_01.py
|-- test_world_02.py
'-- test_world_03.py

Now if you invoke pytest with --ignore=tests/foobar/test_foobar_03.py --ignore=tests/
hello/, you will see that pytest only collects test-modules, which do not match the patterns specified:

=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y

(continues on next page)

27.6. Changing standard (Python) test discovery 299



pytest Documentation, Release 6.2

(continued from previous page)

rootdir: $REGENDOC_TMPDIR, inifile:
collected 5 items

tests/example/test_example_01.py . [ 20%]
tests/example/test_example_02.py . [ 40%]
tests/example/test_example_03.py . [ 60%]
tests/foobar/test_foobar_01.py . [ 80%]
tests/foobar/test_foobar_02.py . [100%]

========================= 5 passed in 0.02 seconds =========================

The --ignore-glob option allows to ignore test file paths based on Unix shell-style wildcards. If you want to
exclude test-modules that end with _01.py, execute pytest with --ignore-glob='*_01.py'.

27.6.2 Deselect tests during test collection

Tests can individually be deselected during collection by passing the --deselect=item option. For exam-
ple, say tests/foobar/test_foobar_01.py contains test_a and test_b. You can run all of the
tests within tests/ except for tests/foobar/test_foobar_01.py::test_a by invoking pytest with
--deselect tests/foobar/test_foobar_01.py::test_a. pytest allows multiple --deselect
options.

27.6.3 Keeping duplicate paths specified from command line

Default behavior of pytest is to ignore duplicate paths specified from the command line. Example:

pytest path_a path_a

...
collected 1 item
...

Just collect tests once.

To collect duplicate tests, use the --keep-duplicates option on the cli. Example:

pytest --keep-duplicates path_a path_a

...
collected 2 items
...

As the collector just works on directories, if you specify twice a single test file, pytest will still collect it twice, no
matter if the --keep-duplicates is not specified. Example:

pytest test_a.py test_a.py

...
collected 2 items
...

300 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

27.6.4 Changing directory recursion

You can set the norecursedirs option in an ini-file, for example your pytest.ini in the project root directory:

# content of pytest.ini
[pytest]
norecursedirs = .svn _build tmp*

This would tell pytest to not recurse into typical subversion or sphinx-build directories or into any tmp prefixed
directory.

27.6.5 Changing naming conventions

You can configure different naming conventions by setting the python_files, python_classes and
python_functions in your configuration file. Here is an example:

# content of pytest.ini
# Example 1: have pytest look for "check" instead of "test"
[pytest]
python_files = check_*.py
python_classes = Check
python_functions = *_check

This would make pytest look for tests in files that match the check_* .py glob-pattern, Check prefixes in
classes, and functions and methods that match *_check. For example, if we have:

# content of check_myapp.py
class CheckMyApp:

def simple_check(self):
pass

def complex_check(self):
pass

The test collection would look like this:

$ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, configfile: pytest.ini
collected 2 items

<Module check_myapp.py>
<Class CheckMyApp>

<Function simple_check>
<Function complex_check>

======================== 2 tests collected in 0.12s ========================

You can check for multiple glob patterns by adding a space between the patterns:

# Example 2: have pytest look for files with "test" and "example"
# content of pytest.ini
[pytest]
python_files = test_*.py example_*.py

27.6. Changing standard (Python) test discovery 301



pytest Documentation, Release 6.2

Note: the python_functions and python_classes options has no effect for unittest.TestCase test
discovery because pytest delegates discovery of test case methods to unittest code.

27.6.6 Interpreting cmdline arguments as Python packages

You can use the --pyargs option to make pytest try interpreting arguments as python package names, deriving
their file system path and then running the test. For example if you have unittest2 installed you can type:

pytest --pyargs unittest2.test.test_skipping -q

which would run the respective test module. Like with other options, through an ini-file and the addopts option you
can make this change more permanently:

# content of pytest.ini
[pytest]
addopts = --pyargs

Now a simple invocation of pytest NAME will check if NAME exists as an importable package/module and other-
wise treat it as a filesystem path.

27.6.7 Finding out what is collected

You can always peek at the collection tree without running tests like this:

. $ pytest --collect-only pythoncollection.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, configfile: pytest.ini
collected 3 items

<Module CWD/pythoncollection.py>
<Function test_function>
<Class TestClass>

<Function test_method>
<Function test_anothermethod>

======================== 3 tests collected in 0.12s ========================

27.6.8 Customizing test collection

You can easily instruct pytest to discover tests from every Python file:

# content of pytest.ini
[pytest]
python_files = *.py

However, many projects will have a setup.py which they don’t want to be imported. Moreover, there may files only
importable by a specific python version. For such cases you can dynamically define files to be ignored by listing them
in a conftest.py file:

302 Chapter 27. Examples and customization tricks



pytest Documentation, Release 6.2

# content of conftest.py
import sys

collect_ignore = ["setup.py"]
if sys.version_info[0] > 2:

collect_ignore.append("pkg/module_py2.py")

and then if you have a module file like this:

# content of pkg/module_py2.py
def test_only_on_python2():

try:
assert 0

except Exception, e:
pass

and a setup.py dummy file like this:

# content of setup.py
0 / 0 # will raise exception if imported

If you run with a Python 2 interpreter then you will find the one test and will leave out the setup.py file:

#$ pytest --collect-only
====== test session starts ======
platform linux2 -- Python 2.7.10, pytest-2.9.1, py-1.4.31, pluggy-0.3.1
rootdir: $REGENDOC_TMPDIR, inifile: pytest.ini
collected 1 items
<Module 'pkg/module_py2.py'>

<Function 'test_only_on_python2'>

====== 1 tests found in 0.04 seconds ======

If you run with a Python 3 interpreter both the one test and the setup.py file will be left out:

$ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR, configfile: pytest.ini
collected 0 items

======================= no tests collected in 0.12s ========================

It’s also possible to ignore files based on Unix shell-style wildcards by adding patterns to collect_ignore_glob.

The following example conftest.py ignores the file setup.py and in addition all files that end with *_py2.py
when executed with a Python 3 interpreter:

# content of conftest.py
import sys

collect_ignore = ["setup.py"]
if sys.version_info[0] > 2:

collect_ignore_glob = ["*_py2.py"]

Since Pytest 2.6, users can prevent pytest from discovering classes that start with Test by setting a boolean
__test__ attribute to False.

27.6. Changing standard (Python) test discovery 303



pytest Documentation, Release 6.2

# Will not be discovered as a test
class TestClass:

__test__ = False

27.7 Working with non-python tests

27.7.1 A basic example for specifying tests in Yaml files

Here is an example conftest.py (extracted from Ali Afshar’s special purpose pytest-yamlwsgi plugin). This
conftest.py will collect test*.yaml files and will execute the yaml-formatted content as custom tests:

# content of conftest.py
import pytest

def pytest_collect_file(parent, path):
if path.ext == ".yaml" and path.basename.startswith("test"):

return YamlFile.from_parent(parent, fspath=path)

class YamlFile(pytest.File):
def collect(self):

# We need a yaml parser, e.g. PyYAML.
import yaml

raw = yaml.safe_load(self.fspath.open())
for name, spec in sorted(raw.items()):

yield YamlItem.from_parent(self, name=name, spec=spec)

class YamlItem(pytest.Item):
def __init__(self, name, parent, spec):

super().__init__(name, parent)
self.spec = spec

def runtest(self):
for name, value in sorted(self.spec.items()):

# Some custom test execution (dumb example follows).
if name != value:

raise YamlException(self, name, value)

def repr_failure(self, excinfo):
"""Called when self.runtest() raises an exception."""
if isinstance(excinfo.value, YamlException):

return "\n".join(
[

"usecase execution failed",
" spec failed: {1!r}: {2!r}".format(*excinfo.value.args),
" no further details known at this point.",

]
)

def reportinfo(self):
return self.fspath, 0, f"usecase: {self.name}"

(continues on next page)

304 Chapter 27. Examples and customization tricks

http://bitbucket.org/aafshar/pytest-yamlwsgi/src/tip/pytest_yamlwsgi.py


pytest Documentation, Release 6.2

(continued from previous page)

class YamlException(Exception):
"""Custom exception for error reporting."""

You can create a simple example file:

# test_simple.yaml
ok:

sub1: sub1

hello:
world: world
some: other

and if you installed PyYAML or a compatible YAML-parser you can now execute the test specification:

nonpython $ pytest test_simple.yaml
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/nonpython
collected 2 items

test_simple.yaml F. [100%]

================================= FAILURES =================================
______________________________ usecase: hello ______________________________
usecase execution failed

spec failed: 'some': 'other'
no further details known at this point.

========================= short test summary info ==========================
FAILED test_simple.yaml::hello
======================= 1 failed, 1 passed in 0.12s ========================

You get one dot for the passing sub1: sub1 check and one failure. Obviously in the above conftest.py you’ll
want to implement a more interesting interpretation of the yaml-values. You can easily write your own domain specific
testing language this way.

Note: repr_failure(excinfo) is called for representing test failures. If you create custom collection nodes
you can return an error representation string of your choice. It will be reported as a (red) string.

reportinfo() is used for representing the test location and is also consulted when reporting in verbose mode:

nonpython $ pytest -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y -- $PYTHON_
→˓PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/nonpython
collecting ... collected 2 items

test_simple.yaml::hello FAILED [ 50%]
test_simple.yaml::ok PASSED [100%]

(continues on next page)

27.7. Working with non-python tests 305

https://pypi.org/project/PyYAML/


pytest Documentation, Release 6.2

(continued from previous page)

================================= FAILURES =================================
______________________________ usecase: hello ______________________________
usecase execution failed

spec failed: 'some': 'other'
no further details known at this point.

========================= short test summary info ==========================
FAILED test_simple.yaml::hello
======================= 1 failed, 1 passed in 0.12s ========================

While developing your custom test collection and execution it’s also interesting to just look at the collection tree:

nonpython $ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-6.x.y, py-1.x.y, pluggy-1.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR/nonpython
collected 2 items

<Package nonpython>
<YamlFile test_simple.yaml>
<YamlItem hello>
<YamlItem ok>

======================== 2 tests collected in 0.12s ========================

306 Chapter 27. Examples and customization tricks



CHAPTER

TWENTYEIGHT

SETTING UP BASH COMPLETION

When using bash as your shell, pytest can use argcomplete (https://argcomplete.readthedocs.io/) for auto-
completion. For this argcomplete needs to be installed and enabled.

Install argcomplete using:

sudo pip install 'argcomplete>=0.5.7'

For global activation of all argcomplete enabled python applications run:

sudo activate-global-python-argcomplete

For permanent (but not global) pytest activation, use:

register-python-argcomplete pytest >> ~/.bashrc

For one-time activation of argcomplete for pytest only, use:

eval "$(register-python-argcomplete pytest)"

307

https://argcomplete.readthedocs.io/


pytest Documentation, Release 6.2

308 Chapter 28. Setting up bash completion



CHAPTER

TWENTYNINE

BACKWARDS COMPATIBILITY POLICY

pytest is actively evolving and is a project that has been decades in the making, we keep learning about new and better
structures to express different details about testing.

While we implement those modifications we try to ensure an easy transition and don’t want to impose unnecessary
churn on our users and community/plugin authors.

As of now, pytest considers multiple types of backward compatibility transitions:

a) trivial: APIs which trivially translate to the new mechanism, and do not cause problematic changes.

We try to support those indefinitely while encouraging users to switch to newer/better mechanisms through
documentation.

b) transitional: the old and new API don’t conflict and we can help users transition by using warnings, while
supporting both for a prolonged time.

We will only start the removal of deprecated functionality in major releases (e.g. if we deprecate something in
3.0 we will start to remove it in 4.0), and keep it around for at least two minor releases (e.g. if we deprecate
something in 3.9 and 4.0 is the next release, we start to remove it in 5.0, not in 4.0).

When the deprecation expires (e.g. 4.0 is released), we won’t remove the deprecated functionality immediately,
but will use the standard warning filters to turn them into errors by default. This approach makes it explicit that
removal is imminent, and still gives you time to turn the deprecated feature into a warning instead of an error
so it can be dealt with in your own time. In the next minor release (e.g. 4.1), the feature will be effectively
removed.

c) true breakage: should only be considered when normal transition is unreasonably unsustainable and would offset
important development/features by years. In addition, they should be limited to APIs where the number of actual
users is very small (for example only impacting some plugins), and can be coordinated with the community in
advance.

Examples for such upcoming changes:

• removal of pytest_runtest_protocol/nextitem - #895

• rearranging of the node tree to include FunctionDefinition

• rearranging of SetupState #895

True breakages must be announced first in an issue containing:

• Detailed description of the change

• Rationale

• Expected impact on users and plugin authors (example in #895)

After there’s no hard -1 on the issue it should be followed up by an initial proof-of-concept Pull Request.

309

https://github.com/pytest-dev/pytest/issues/895
https://github.com/pytest-dev/pytest/issues/895
https://github.com/pytest-dev/pytest/issues/895


pytest Documentation, Release 6.2

This POC serves as both a coordination point to assess impact and potential inspiration to come up with a
transitional solution after all.

After a reasonable amount of time the PR can be merged to base a new major release.

For the PR to mature from POC to acceptance, it must contain: * Setup of deprecation errors/warnings that help
users fix and port their code. If it is possible to introduce a deprecation period under the current series, before
the true breakage, it should be introduced in a separate PR and be part of the current release stream. * Detailed
description of the rationale and examples on how to port code in doc/en/deprecations.rst.

310 Chapter 29. Backwards Compatibility Policy



CHAPTER

THIRTY

HISTORY

30.1 Focus primary on smooth transition - stance (pre 6.0)

Keeping backwards compatibility has a very high priority in the pytest project. Although we have deprecated func-
tionality over the years, most of it is still supported. All deprecations in pytest were done because simpler or more
efficient ways of accomplishing the same tasks have emerged, making the old way of doing things unnecessary.

With the pytest 3.0 release we introduced a clear communication scheme for when we will actually remove the old
busted joint and politely ask you to use the new hotness instead, while giving you enough time to adjust your tests or
raise concerns if there are valid reasons to keep deprecated functionality around.

To communicate changes we issue deprecation warnings using a custom warning hierarchy (see Internal pytest warn-
ings). These warnings may be suppressed using the standard means: -W command-line flag or filterwarnings
ini options (see Warnings Capture), but we suggest to use these sparingly and temporarily, and heed the warnings
when possible.

We will only start the removal of deprecated functionality in major releases (e.g. if we deprecate something in 3.0 we
will start to remove it in 4.0), and keep it around for at least two minor releases (e.g. if we deprecate something in 3.9
and 4.0 is the next release, we start to remove it in 5.0, not in 4.0).

When the deprecation expires (e.g. 4.0 is released), we won’t remove the deprecated functionality immediately, but
will use the standard warning filters to turn them into errors by default. This approach makes it explicit that removal
is imminent, and still gives you time to turn the deprecated feature into a warning instead of an error so it can be dealt
with in your own time. In the next minor release (e.g. 4.1), the feature will be effectively removed.

30.1.1 Deprecation Roadmap

Features currently deprecated and removed in previous releases can be found in Deprecations and Removals.

We track future deprecation and removal of features using milestones and the deprecation and removal labels on
GitHub.

311

https://github.com/pytest-dev/pytest/issues?q=label%3A%22type%3A+deprecation%22
https://github.com/pytest-dev/pytest/labels/type%3A%20removal


pytest Documentation, Release 6.2

312 Chapter 30. History



CHAPTER

THIRTYONE

DEPRECATIONS AND REMOVALS

This page lists all pytest features that are currently deprecated or have been removed in past major releases. The
objective is to give users a clear rationale why a certain feature has been removed, and what alternatives should be
used instead.

• Deprecated Features

– The --strict command-line option

– The yield_fixture function/decorator

– The pytest_warning_captured hook

– The pytest.collect module

– The pytest._fillfuncargs function

• Removed Features

– --no-print-logs command-line option

– Result log (--result-log)

– pytest_collect_directory hook

– TerminalReporter.writer

– junit_family default value change to “xunit2”

– Node Construction changed to Node.from_parent

– pytest.fixture arguments are keyword only

– funcargnames alias for fixturenames

– pytest.config global

– "message" parameter of pytest.raises

– raises / warns with a string as the second argument

– Using Class in custom Collectors

– marks in pytest.mark.parametrize

– pytest_funcarg__ prefix

– [pytest] section in setup.cfg files

– Metafunc.addcall

– cached_setup

313



pytest Documentation, Release 6.2

– pytest_plugins in non-top-level conftest files

– Config.warn and Node.warn

– record_xml_property

– Passing command-line string to pytest.main()

– Calling fixtures directly

– yield tests

– Internal classes accessed through Node

– Node.get_marker

– somefunction.markname

– pytest_namespace

31.1 Deprecated Features

Below is a complete list of all pytest features which are considered deprecated. Using those features will issue
PytestWarning or subclasses, which can be filtered using standard warning filters.

31.1.1 The --strict command-line option

Deprecated since version 6.2.

The --strict command-line option has been deprecated in favor of --strict-markers, which better conveys
what the option does.

We have plans to maybe in the future to reintroduce --strict and make it an encompassing flag for all strictness
related options (--strict-markers and --strict-config at the moment, more might be introduced in the
future).

31.1.2 The yield_fixture function/decorator

Deprecated since version 6.2.

pytest.yield_fixture is a deprecated alias for pytest.fixture().

It has been so for a very long time, so can be search/replaced safely.

31.1.3 The pytest_warning_captured hook

Deprecated since version 6.0.

This hook has an item parameter which cannot be serialized by pytest-xdist.

Use the pytest_warning_recored hook instead, which replaces the item parameter by a nodeid parameter.

314 Chapter 31. Deprecations and Removals



pytest Documentation, Release 6.2

31.1.4 The pytest.collect module

Deprecated since version 6.0.

The pytest.collect module is no longer part of the public API, all its names should now be imported from
pytest directly instead.

31.1.5 The pytest._fillfuncargs function

Deprecated since version 6.0.

This function was kept for backward compatibility with an older plugin.

It’s functionality is not meant to be used directly, but if you must replace it, use function._request.
_fillfixtures() instead, though note this is not a public API and may break in the future.

31.2 Removed Features

As stated in our Backwards Compatibility Policy policy, deprecated features are removed only in major releases after
an appropriate period of deprecation has passed.

31.2.1 --no-print-logs command-line option

Deprecated since version 5.4.

Removed in version 6.0.

The --no-print-logs option and log_print ini setting are removed. If you used them, please use
--show-capture instead.

A --show-capture command-line option was added in pytest 3.5.0 which allows to specify how to display
captured output when tests fail: no, stdout, stderr, log or all (the default).

31.2.2 Result log (--result-log)

Deprecated since version 4.0.

Removed in version 6.0.

The --result-log option produces a stream of test reports which can be analysed at runtime, but it uses a custom
format which requires users to implement their own parser.

The pytest-reportlog plugin provides a --report-log option, a more standard and extensible alternative, producing
one JSON object per-line, and should cover the same use cases. Please try it out and provide feedback.

The pytest-reportlog plugin might even be merged into the core at some point, depending on the plans for the
plugins and number of users using it.

31.2. Removed Features 315

https://github.com/pytest-dev/pytest-reportlog


pytest Documentation, Release 6.2

31.2.3 pytest_collect_directory hook

Removed in version 6.0.

The pytest_collect_directory has not worked properly for years (it was called but the results were ignored).
Users may consider using pytest_collection_modifyitems instead.

31.2.4 TerminalReporter.writer

Removed in version 6.0.

The TerminalReporter.writer attribute has been deprecated and should no longer be used. This was inadver-
tently exposed as part of the public API of that plugin and ties it too much with py.io.TerminalWriter.

Plugins that used TerminalReporter.writer directly should instead use TerminalReporter methods that
provide the same functionality.

31.2.5 junit_family default value change to “xunit2”

Changed in version 6.0.

The default value of junit_family option will change to xunit2 in pytest 6.0, which is an update of the old
xunit1 format and is supported by default in modern tools that manipulate this type of file (for example, Jenkins,
Azure Pipelines, etc.).

Users are recommended to try the new xunit2 format and see if their tooling that consumes the JUnit XML file
supports it.

To use the new format, update your pytest.ini:

[pytest]
junit_family=xunit2

If you discover that your tooling does not support the new format, and want to keep using the legacy version, set the
option to legacy instead:

[pytest]
junit_family=legacy

By using legacy you will keep using the legacy/xunit1 format when upgrading to pytest 6.0, where the default format
will be xunit2.

In order to let users know about the transition, pytest will issue a warning in case the --junitxml option is given in
the command line but junit_family is not explicitly configured in pytest.ini.

Services known to support the xunit2 format:

• Jenkins with the JUnit plugin.

• Azure Pipelines.

316 Chapter 31. Deprecations and Removals

https://www.jenkins.io/
https://plugins.jenkins.io/junit
https://azure.microsoft.com/en-us/services/devops/pipelines


pytest Documentation, Release 6.2

31.2.6 Node Construction changed to Node.from_parent

Changed in version 6.0.

The construction of nodes now should use the named constructor from_parent. This limitation in api surface
intends to enable better/simpler refactoring of the collection tree.

This means that instead of MyItem(name="foo", parent=collector, obj=42) one now has to invoke
MyItem.from_parent(collector, name="foo").

Plugins that wish to support older versions of pytest and suppress the warning can use hasattr to check if
from_parent exists in that version:

def pytest_pycollect_makeitem(collector, name, obj):
if hasattr(MyItem, "from_parent"):

item = MyItem.from_parent(collector, name="foo")
item.obj = 42
return item

else:
return MyItem(name="foo", parent=collector, obj=42)

Note that from_parent should only be called with keyword arguments for the parameters.

31.2.7 pytest.fixture arguments are keyword only

Removed in version 6.0.

Passing arguments to pytest.fixture() as positional arguments has been removed - pass them by keyword instead.

31.2.8 funcargnames alias for fixturenames

Removed in version 6.0.

The FixtureRequest, Metafunc, and Function classes track the names of their associated fixtures, with the
aptly-named fixturenames attribute.

Prior to pytest 2.3, this attribute was named funcargnames, and we have kept that as an alias since. It is finally due
for removal, as it is often confusing in places where we or plugin authors must distinguish between fixture names and
names supplied by non-fixture things such as pytest.mark.parametrize.

31.2.9 pytest.config global

Removed in version 5.0.

The pytest.config global object is deprecated. Instead use request.config (via the request fixture) or if
you are a plugin author use the pytest_configure(config) hook. Note that many hooks can also access the
config object indirectly, through session.config or item.config for example.

31.2. Removed Features 317



pytest Documentation, Release 6.2

31.2.10 "message" parameter of pytest.raises

Removed in version 5.0.

It is a common mistake to think this parameter will match the exception message, while in fact it only serves to provide
a custom message in case the pytest.raises check fails. To prevent users from making this mistake, and because
it is believed to be little used, pytest is deprecating it without providing an alternative for the moment.

If you have a valid use case for this parameter, consider that to obtain the same results you can just call pytest.fail
manually at the end of the with statement.

For example:

with pytest.raises(TimeoutError, message="Client got unexpected message"):
wait_for(websocket.recv(), 0.5)

Becomes:

with pytest.raises(TimeoutError):
wait_for(websocket.recv(), 0.5)
pytest.fail("Client got unexpected message")

If you still have concerns about this deprecation and future removal, please comment on issue #3974.

31.2.11 raises / warns with a string as the second argument

Removed in version 5.0.

Use the context manager form of these instead. When necessary, invoke exec directly.

Example:

pytest.raises(ZeroDivisionError, "1 / 0")
pytest.raises(SyntaxError, "a $ b")

pytest.warns(DeprecationWarning, "my_function()")
pytest.warns(SyntaxWarning, "assert(1, 2)")

Becomes:

with pytest.raises(ZeroDivisionError):
1 / 0

with pytest.raises(SyntaxError):
exec("a $ b") # exec is required for invalid syntax

with pytest.warns(DeprecationWarning):
my_function()

with pytest.warns(SyntaxWarning):
exec("assert(1, 2)") # exec is used to avoid a top-level warning

318 Chapter 31. Deprecations and Removals

https://github.com/pytest-dev/pytest/issues/3974


pytest Documentation, Release 6.2

31.2.12 Using Class in custom Collectors

Removed in version 4.0.

Using objects named "Class" as a way to customize the type of nodes that are collected in Collector subclasses
has been deprecated. Users instead should use pytest_pycollect_makeitem to customize node types during
collection.

This issue should affect only advanced plugins who create new collection types, so if you see this warning message
please contact the authors so they can change the code.

31.2.13 marks in pytest.mark.parametrize

Removed in version 4.0.

Applying marks to values of a pytest.mark.parametrize call is now deprecated. For example:

@pytest.mark.parametrize(
"a, b",
[

(3, 9),
pytest.mark.xfail(reason="flaky")(6, 36),
(10, 100),
(20, 200),
(40, 400),
(50, 500),

],
)
def test_foo(a, b):

...

This code applies the pytest.mark.xfail(reason="flaky") mark to the (6, 36) value of the above
parametrization call.

This was considered hard to read and understand, and also its implementation presented problems to the code prevent-
ing further internal improvements in the marks architecture.

To update the code, use pytest.param:

@pytest.mark.parametrize(
"a, b",
[

(3, 9),
pytest.param(6, 36, marks=pytest.mark.xfail(reason="flaky")),
(10, 100),
(20, 200),
(40, 400),
(50, 500),

],
)
def test_foo(a, b):

...

31.2. Removed Features 319



pytest Documentation, Release 6.2

31.2.14 pytest_funcarg__ prefix

Removed in version 4.0.

In very early pytest versions fixtures could be defined using the pytest_funcarg__ prefix:

def pytest_funcarg__data():
return SomeData()

Switch over to the @pytest.fixture decorator:

@pytest.fixture
def data():

return SomeData()

31.2.15 [pytest] section in setup.cfg files

Removed in version 4.0.

[pytest] sections in setup.cfg files should now be named [tool:pytest] to avoid conflicts with other
distutils commands.

31.2.16 Metafunc.addcall

Removed in version 4.0.

_pytest.python.Metafunc.addcall was a precursor to the current parametrized mechanism. Users should
use _pytest.python.Metafunc.parametrize() instead.

Example:

def pytest_generate_tests(metafunc):
metafunc.addcall({"i": 1}, id="1")
metafunc.addcall({"i": 2}, id="2")

Becomes:

def pytest_generate_tests(metafunc):
metafunc.parametrize("i", [1, 2], ids=["1", "2"])

31.2.17 cached_setup

Removed in version 4.0.

request.cached_setup was the precursor of the setup/teardown mechanism available to fixtures.

Example:

@pytest.fixture
def db_session():

return request.cached_setup(
setup=Session.create, teardown=lambda session: session.close(), scope="module"

)

This should be updated to make use of standard fixture mechanisms:

320 Chapter 31. Deprecations and Removals



pytest Documentation, Release 6.2

@pytest.fixture(scope="module")
def db_session():

session = Session.create()
yield session
session.close()

You can consult funcarg comparison section in the docs for more information.

31.2.18 pytest_plugins in non-top-level conftest files

Removed in version 4.0.

Defining pytest_plugins is now deprecated in non-top-level conftest.py files because they will activate referenced
plugins globally, which is surprising because for all other pytest features conftest.py files are only active for tests
at or below it.

31.2.19 Config.warn and Node.warn

Removed in version 4.0.

Those methods were part of the internal pytest warnings system, but since 3.8 pytest is using the builtin warning
system for its own warnings, so those two functions are now deprecated.

Config.warn should be replaced by calls to the standard warnings.warn, example:

config.warn("C1", "some warning")

Becomes:

warnings.warn(pytest.PytestWarning("some warning"))

Node.warn now supports two signatures:

• node.warn(PytestWarning("some message")): is now the recommended way to call this func-
tion. The warning instance must be a PytestWarning or subclass.

• node.warn("CI", "some message"): this code/message form has been removed and should be con-
verted to the warning instance form above.

31.2.20 record_xml_property

Removed in version 4.0.

The record_xml_property fixture is now deprecated in favor of the more generic record_property, which
can be used by other consumers (for example pytest-html) to obtain custom information about the test run.

This is just a matter of renaming the fixture as the API is the same:

def test_foo(record_xml_property):
...

Change to:

def test_foo(record_property):
...

31.2. Removed Features 321

https://docs.pytest.org/en/stable/funcarg_compare.html


pytest Documentation, Release 6.2

31.2.21 Passing command-line string to pytest.main()

Removed in version 4.0.

Passing a command-line string to pytest.main() is deprecated:

pytest.main("-v -s")

Pass a list instead:

pytest.main(["-v", "-s"])

By passing a string, users expect that pytest will interpret that command-line using the shell rules they are working on
(for example bash or Powershell), but this is very hard/impossible to do in a portable way.

31.2.22 Calling fixtures directly

Removed in version 4.0.

Calling a fixture function directly, as opposed to request them in a test function, is deprecated.

For example:

@pytest.fixture
def cell():

return ...

@pytest.fixture
def full_cell():

cell = cell()
cell.make_full()
return cell

This is a great source of confusion to new users, which will often call the fixture functions and request them from test
functions interchangeably, which breaks the fixture resolution model.

In those cases just request the function directly in the dependent fixture:

@pytest.fixture
def cell():

return ...

@pytest.fixture
def full_cell(cell):

cell.make_full()
return cell

Alternatively if the fixture function is called multiple times inside a test (making it hard to apply the above pattern)
or if you would like to make minimal changes to the code, you can create a fixture which calls the original function
together with the name parameter:

def cell():
return ...

(continues on next page)

322 Chapter 31. Deprecations and Removals



pytest Documentation, Release 6.2

(continued from previous page)

@pytest.fixture(name="cell")
def cell_fixture():

return cell()

31.2.23 yield tests

Removed in version 4.0.

pytest supported yield-style tests, where a test function actually yield functions and values that are then turned
into proper test methods. Example:

def check(x, y):
assert x ** x == y

def test_squared():
yield check, 2, 4
yield check, 3, 9

This would result into two actual test functions being generated.

This form of test function doesn’t support fixtures properly, and users should switch to pytest.mark.
parametrize:

@pytest.mark.parametrize("x, y", [(2, 4), (3, 9)])
def test_squared(x, y):

assert x ** x == y

31.2.24 Internal classes accessed through Node

Removed in version 4.0.

Access of Module, Function, Class, Instance, File and Item through Node instances now issue this
warning:

usage of Function.Module is deprecated, please use pytest.Module instead

Users should just import pytest and access those objects using the pytest module.

This has been documented as deprecated for years, but only now we are actually emitting deprecation warnings.

31.2.25 Node.get_marker

Removed in version 4.0.

As part of a large Marker revamp and iteration, _pytest.nodes.Node.get_marker is removed. See the
documentation on tips on how to update your code.

31.2. Removed Features 323



pytest Documentation, Release 6.2

31.2.26 somefunction.markname

Removed in version 4.0.

As part of a large Marker revamp and iteration we already deprecated using MarkInfo the only correct way to get
markers of an element is via node.iter_markers(name).

31.2.27 pytest_namespace

Removed in version 4.0.

This hook is deprecated because it greatly complicates the pytest internals regarding configuration and initialization,
making some bug fixes and refactorings impossible.

Example of usage:

class MySymbol:
...

def pytest_namespace():
return {"my_symbol": MySymbol()}

Plugin authors relying on this hook should instead require that users now import the plugin modules directly (with an
appropriate public API).

As a stopgap measure, plugin authors may still inject their names into pytest’s namespace, usually during
pytest_configure:

import pytest

def pytest_configure():
pytest.my_symbol = MySymbol()

324 Chapter 31. Deprecations and Removals



CHAPTER

THIRTYTWO

PYTHON 2.7 AND 3.4 SUPPORT

It is demanding on the maintainers of an open source project to support many Python versions, as there’s extra cost of
keeping code compatible between all versions, while holding back on features only made possible on newer Python
versions.

In case of Python 2 and 3, the difference between the languages makes it even more prominent, because many new
Python 3 features cannot be used in a Python 2/3 compatible code base.

Python 2.7 EOL has been reached in 2020, with the last release made in April, 2020.

Python 3.4 EOL has been reached in 2019, with the last release made in March, 2019.

For those reasons, in Jun 2019 it was decided that pytest 4.6 series will be the last to support Python 2.7 and 3.4.

32.1 What this means for general users

Thanks to the python_requires setuptools option, Python 2.7 and Python 3.4 users using a modern pip version will
install the last pytest 4.6.X version automatically even if 5.0 or later versions are available on PyPI.

Users should ensure they are using the latest pip and setuptools versions for this to work.

32.2 Maintenance of 4.6.X versions

Until January 2020, the pytest core team ported many bug-fixes from the main release into the 4.6.x branch, with
several 4.6.X releases being made along the year.

From now on, the core team will no longer actively backport patches, but the 4.6.x branch will continue to exist
so the community itself can contribute patches.

The core team will be happy to accept those patches, and make new 4.6.X releases until mid-2020 (but consider that
date as a ballpark, after that date the team might still decide to make new releases for critical bugs).

325

https://legacy.python.org/dev/peps/pep-0373/#id4
https://www.python.org/dev/peps/pep-0429/#release-schedule
https://packaging.python.org/guides/distributing-packages-using-setuptools/#python-requires


pytest Documentation, Release 6.2

32.2.1 Technical aspects

(This section is a transcript from #5275).

In this section we describe the technical aspects of the Python 2.7 and 3.4 support plan.

What goes into 4.6.X releases

New 4.6.X releases will contain bug fixes only.

When will 4.6.X releases happen

New 4.6.X releases will happen after we have a few bugs in place to release, or if a few weeks have passed (say a
single bug has been fixed a month after the latest 4.6.X release).

No hard rules here, just ballpark.

Who will handle applying bug fixes

We core maintainers expect that people still using Python 2.7/3.4 and being affected by bugs to step up and provide
patches and/or port bug fixes from the active branches.

We will be happy to guide users interested in doing so, so please don’t hesitate to ask.

Backporting changes into 4.6

Please follow these instructions:

1. git fetch --all --prune

2. git checkout origin/4.6.x -b backport-XXXX # use the PR number here

3. Locate the merge commit on the PR, in the merged message, for example:

nicoddemus merged commit 0f8b462 into pytest-dev:features

4. git cherry-pick -m1 REVISION # use the revision you found above (0f8b462).

5. Open a PR targeting 4.6.x:

• Prefix the message with [4.6] so it is an obvious backport

• Delete the PR body, it usually contains a duplicate commit message.

Providing new PRs to 4.6

Fresh pull requests to 4.6.xwill be accepted provided that the equivalent code in the active branches does not contain
that bug (for example, a bug is specific to Python 2 only).

Bug fixes that also happen in the mainstream version should be first fixed there, and then backported as per instructions
above.

326 Chapter 32. Python 2.7 and 3.4 support

https://github.com/pytest-dev/pytest/issues/5275


CHAPTER

THIRTYTHREE

CONTRIBUTION GETTING STARTED

Contributions are highly welcomed and appreciated. Every little bit of help counts, so do not hesitate!

Contents

• Contribution getting started

– Feature requests and feedback

– Report bugs

– Fix bugs

– Implement features

– Write documentation

– Submitting Plugins to pytest-dev

– Preparing Pull Requests

– Joining the Development Team

– Backporting bug fixes for the next patch release

– Handling stale issues/PRs

– Closing Issues

33.1 Feature requests and feedback

Do you like pytest? Share some love on Twitter or in your blog posts!

We’d also like to hear about your propositions and suggestions. Feel free to submit them as issues and:

• Explain in detail how they should work.

• Keep the scope as narrow as possible. This will make it easier to implement.

327

https://github.com/pytest-dev/pytest/issues


pytest Documentation, Release 6.2

33.2 Report bugs

Report bugs for pytest in the issue tracker.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting, specifically the Python interpreter
version, installed libraries, and pytest version.

• Detailed steps to reproduce the bug.

If you can write a demonstration test that currently fails but should pass (xfail), that is a very useful commit to make
as well, even if you cannot fix the bug itself.

33.3 Fix bugs

Look through the GitHub issues for bugs.

Talk to developers to find out how you can fix specific bugs. To indicate that you are going to work on a particular
issue, add a comment to that effect on the specific issue.

Don’t forget to check the issue trackers of your favourite plugins, too!

33.4 Implement features

Look through the GitHub issues for enhancements.

Talk to developers to find out how you can implement specific features.

33.5 Write documentation

Pytest could always use more documentation. What exactly is needed?

• More complementary documentation. Have you perhaps found something unclear?

• Documentation translations. We currently have only English.

• Docstrings. There can never be too many of them.

• Blog posts, articles and such – they’re all very appreciated.

You can also edit documentation files directly in the GitHub web interface, without using a local copy. This can be
convenient for small fixes.

Note: Build the documentation locally with the following command:

$ tox -e docs

The built documentation should be available in doc/en/_build/html, where ‘en’ refers to the documentation
language.

328 Chapter 33. Contribution getting started

https://github.com/pytest-dev/pytest/issues
https://github.com/pytest-dev/pytest/labels/type:%20bug
https://github.com/pytest-dev/pytest/labels/type:%20enhancement


pytest Documentation, Release 6.2

Pytest has an API reference which in large part is generated automatically from the docstrings of the documented
items. Pytest uses the Sphinx docstring format. For example:

def my_function(arg: ArgType) -> Foo:
"""Do important stuff.

More detailed info here, in separate paragraphs from the subject line.
Use proper sentences -- start sentences with capital letters and end
with periods.

Can include annotated documentation:

:param short_arg: An argument which determines stuff.
:param long_arg:

A long explanation which spans multiple lines, overflows
like this.

:returns: The result.
:raises ValueError:

Detailed information when this can happen.

.. versionadded:: 6.0

Including types into the annotations above is not necessary when
type-hinting is being used (as in this example).
"""

33.6 Submitting Plugins to pytest-dev

Pytest development of the core, some plugins and support code happens in repositories living under the pytest-dev
organisations:

• pytest-dev on GitHub

All pytest-dev Contributors team members have write access to all contained repositories. Pytest core and plugins are
generally developed using pull requests to respective repositories.

The objectives of the pytest-dev organisation are:

• Having a central location for popular pytest plugins

• Sharing some of the maintenance responsibility (in case a maintainer no longer wishes to maintain a plugin)

You can submit your plugin by subscribing to the pytest-dev mail list and writing a mail pointing to your existing
pytest plugin repository which must have the following:

• PyPI presence with packaging metadata that contains a pytest- prefixed name, version number, authors, short
and long description.

• a tox configuration for running tests using tox.

• a README describing how to use the plugin and on which platforms it runs.

• a LICENSE file containing the licensing information, with matching info in its packaging metadata.

• an issue tracker for bug reports and enhancement requests.

• a changelog.

If no contributor strongly objects and two agree, the repository can then be transferred to the pytest-dev organisa-
tion.

33.6. Submitting Plugins to pytest-dev 329

https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html
https://github.com/pytest-dev
https://mail.python.org/mailman/listinfo/pytest-dev
https://tox.readthedocs.io/en/latest/config.html#configuration-discovery
https://tox.readthedocs.io
http://keepachangelog.com/


pytest Documentation, Release 6.2

Here’s a rundown of how a repository transfer usually proceeds (using a repository named joedoe/pytest-xyz
as example):

• joedoe transfers repository ownership to pytest-dev administrator calvin.

• calvin creates pytest-xyz-admin and pytest-xyz-developers teams, inviting joedoe to both
as maintainer.

• calvin transfers repository to pytest-dev and configures team access:

– pytest-xyz-admin admin access;

– pytest-xyz-developers write access;

The pytest-dev/Contributors team has write access to all projects, and every project administrator is in it.
We recommend that each plugin has at least three people who have the right to release to PyPI.

Repository owners can rest assured that no pytest-dev administrator will ever make releases of your repository
or take ownership in any way, except in rare cases where someone becomes unresponsive after months of contact
attempts. As stated, the objective is to share maintenance and avoid “plugin-abandon”.

33.7 Preparing Pull Requests

33.7.1 Short version

1. Fork the repository.

2. Enable and install pre-commit to ensure style-guides and code checks are followed.

3. Follow PEP-8 for naming and black for formatting.

4. Tests are run using tox:

tox -e linting,py37

The test environments above are usually enough to cover most cases locally.

5. Write a changelog entry: changelog/2574.bugfix.rst, use issue id number and one of feature,
improvement, bugfix, doc, deprecation, breaking, vendor or trivial for the issue type.

6. Unless your change is a trivial or a documentation fix (e.g., a typo or reword of a small section) please add
yourself to the AUTHORS file, in alphabetical order.

33.7.2 Long version

What is a “pull request”? It informs the project’s core developers about the changes you want to review and merge.
Pull requests are stored on GitHub servers. Once you send a pull request, we can discuss its potential modifications
and even add more commits to it later on. There’s an excellent tutorial on how Pull Requests work in the GitHub Help
Center.

Here is a simple overview, with pytest-specific bits:

1. Fork the pytest GitHub repository. It’s fine to use pytest as your fork repository name because it will live
under your user.

2. Clone your fork locally using git and create a branch:

330 Chapter 33. Contribution getting started

https://pre-commit.com
https://github.com/psf/black
https://github.com/pytest-dev/pytest/pulls
https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/using-pull-requests/
https://github.com/pytest-dev/pytest
https://git-scm.com/


pytest Documentation, Release 6.2

$ git clone git@github.com:YOUR_GITHUB_USERNAME/pytest.git
$ cd pytest
# now, create your own branch off "master":

$ git checkout -b your-bugfix-branch-name main

Given we have “major.minor.micro” version numbers, bug fixes will usually be released in micro releases
whereas features will be released in minor releases and incompatible changes in major releases.

If you need some help with Git, follow this quick start guide: https://git.wiki.kernel.org/index.php/QuickStart

3. Install pre-commit and its hook on the pytest repo:

$ pip install --user pre-commit
$ pre-commit install

Afterwards pre-commit will run whenever you commit.

https://pre-commit.com/ is a framework for managing and maintaining multi-language pre-commit hooks to
ensure code-style and code formatting is consistent.

4. Install tox

Tox is used to run all the tests and will automatically setup virtualenvs to run the tests in. (will implicitly use
http://www.virtualenv.org/en/latest/):

$ pip install tox

5. Run all the tests

You need to have Python 3.7 available in your system. Now running tests is as simple as issuing this command:

$ tox -e linting,py37

This command will run tests via the “tox” tool against Python 3.7 and also perform “lint” coding-style checks.

6. You can now edit your local working copy and run the tests again as necessary. Please follow PEP-8 for naming.

You can pass different options to tox. For example, to run tests on Python 3.7 and pass options to pytest (e.g.
enter pdb on failure) to pytest you can do:

$ tox -e py37 -- --pdb

Or to only run tests in a particular test module on Python 3.7:

$ tox -e py37 -- testing/test_config.py

When committing, pre-commit will re-format the files if necessary.

7. If instead of using tox you prefer to run the tests directly, then we suggest to create a virtual environment and
use an editable install with the testing extra:

$ python3 -m venv .venv
$ source .venv/bin/activate # Linux
$ .venv/Scripts/activate.bat # Windows
$ pip install -e ".[testing]"

Afterwards, you can edit the files and run pytest normally:

33.7. Preparing Pull Requests 331

https://git.wiki.kernel.org/index.php/QuickStart
https://pre-commit.com
https://pre-commit.com/
http://www.virtualenv.org/en/latest/


pytest Documentation, Release 6.2

$ pytest testing/test_config.py

8. Create a new changelog entry in changelog. The file should be named <issueid>.<type>.rst, where
issueid is the number of the issue related to the change and type is one of feature, improvement, bugfix,
doc, deprecation, breaking, vendor or trivial. You may skip creating the changelog entry if the
change doesn’t affect the documented behaviour of pytest.

9. Add yourself to AUTHORS file if not there yet, in alphabetical order.

10. Commit and push once your tests pass and you are happy with your change(s):

$ git commit -a -m "<commit message>"
$ git push -u

11. Finally, submit a pull request through the GitHub website using this data:

head-fork: YOUR_GITHUB_USERNAME/pytest
compare: your-branch-name

base-fork: pytest-dev/pytest
base: main

33.7.3 Writing Tests

Writing tests for plugins or for pytest itself is often done using the testdir fixture, as a “black-box” test.

For example, to ensure a simple test passes you can write:

def test_true_assertion(testdir):
testdir.makepyfile(

"""
def test_foo():

assert True
"""
)
result = testdir.runpytest()
result.assert_outcomes(failed=0, passed=1)

Alternatively, it is possible to make checks based on the actual output of the termal using glob-like expressions:

def test_true_assertion(testdir):
testdir.makepyfile(

"""
def test_foo():

assert False
"""
)
result = testdir.runpytest()
result.stdout.fnmatch_lines(["*assert False*", "*1 failed*"])

When choosing a file where to write a new test, take a look at the existing files and see if there’s one file which looks like
a good fit. For example, a regression test about a bug in the --lf option should go into test_cacheprovider.
py, given that this option is implemented in cacheprovider.py. If in doubt, go ahead and open a PR with your
best guess and we can discuss this over the code.

332 Chapter 33. Contribution getting started

https://docs.pytest.org/en/stable/reference.html#testdir


pytest Documentation, Release 6.2

33.8 Joining the Development Team

Anyone who has successfully seen through a pull request which did not require any extra work from the development
team to merge will themselves gain commit access if they so wish (if we forget to ask please send a friendly reminder).
This does not mean there is any change in your contribution workflow: everyone goes through the same pull-request-
and-review process and no-one merges their own pull requests unless already approved. It does however mean you can
participate in the development process more fully since you can merge pull requests from other contributors yourself
after having reviewed them.

33.9 Backporting bug fixes for the next patch release

Pytest makes feature release every few weeks or months. In between, patch releases are made to the previous feature
release, containing bug fixes only. The bug fixes usually fix regressions, but may be any change that should reach users
before the next feature release.

Suppose for example that the latest release was 1.2.3, and you want to include a bug fix in 1.2.4 (check https://github.
com/pytest-dev/pytest/releases for the actual latest release). The procedure for this is:

1. First, make sure the bug is fixed the master branch, with a regular pull request, as described above. An
exception to this is if the bug fix is not applicable to master anymore.

2. git checkout origin/1.2.x -b backport-XXXX # use the master PR number here

3. Locate the merge commit on the PR, in the merged message, for example:

nicoddemus merged commit 0f8b462 into pytest-dev:master

4. git cherry-pick -x -m1 REVISION # use the revision you found above (0f8b462).

5. Open a PR targeting 1.2.x:

• Prefix the message with [1.2.x].

• Delete the PR body, it usually contains a duplicate commit message.

33.9.1 Who does the backporting

As mentioned above, bugs should first be fixed on master (except in rare occasions that a bug only happens in a
previous release). So who should do the backport procedure described above?

1. If the bug was fixed by a core developer, it is the main responsibility of that core developer to do the backport.

2. However, often the merge is done by another maintainer, in which case it is nice of them to do the backport
procedure if they have the time.

3. For bugs submitted by non-maintainers, it is expected that a core developer will to do the backport, normally
the one that merged the PR on master.

4. If a non-maintainers notices a bug which is fixed on master but has not been backported (due to maintainers
forgetting to apply the needs backport label, or just plain missing it), they are also welcome to open a PR with
the backport. The procedure is simple and really helps with the maintenance of the project.

All the above are not rules, but merely some guidelines/suggestions on what we should expect about backports.

33.8. Joining the Development Team 333

https://github.com/pytest-dev/pytest/releases
https://github.com/pytest-dev/pytest/releases


pytest Documentation, Release 6.2

33.10 Handling stale issues/PRs

Stale issues/PRs are those where pytest contributors have asked for questions/changes and the authors didn’t get around
to answer/implement them yet after a somewhat long time, or the discussion simply died because people seemed to
lose interest.

There are many reasons why people don’t answer questions or implement requested changes: they might get busy,
lose interest, or just forget about it, but the fact is that this is very common in open source software.

The pytest team really appreciates every issue and pull request, but being a high-volume project with many issues and
pull requests being submitted daily, we try to reduce the number of stale issues and PRs by regularly closing them.
When an issue/pull request is closed in this manner, it is by no means a dismissal of the topic being tackled by the
issue/pull request, but it is just a way for us to clear up the queue and make the maintainers’ work more manageable.
Submitters can always reopen the issue/pull request in their own time later if it makes sense.

33.10.1 When to close

Here are a few general rules the maintainers use to decide when to close issues/PRs because of lack of inactivity:

• Issues labeled question or needs information: closed after 14 days inactive.

• Issues labeled proposal: closed after six months inactive.

• Pull requests: after one month, consider pinging the author, update linked issue, or consider closing. For pull
requests which are nearly finished, the team should consider finishing it up and merging it.

The above are not hard rules, but merely guidelines, and can be (and often are!) reviewed on a case-by-case basis.

33.10.2 Closing pull requests

When closing a Pull Request, it needs to be acknowledge the time, effort, and interest demonstrated by the person
which submitted it. As mentioned previously, it is not the intent of the team to dismiss stalled pull request entirely but
to merely to clear up our queue, so a message like the one below is warranted when closing a pull request that went
stale:

Hi <contributor>,

First of all we would like to thank you for your time and effort on working on this, the pytest team deeply
appreciates it.

We noticed it has been awhile since you have updated this PR, however. pytest is a high activity project,
with many issues/PRs being opened daily, so it is hard for us maintainers to track which PRs are ready for
merging, for review, or need more attention.

So for those reasons we think it is best to close the PR for now, but with the only intention to cleanup our
queue, it is by no means a rejection of your changes. We still encourage you to re-open this PR (it is just
a click of a button away) when you are ready to get back to it.

Again we appreciate your time for working on this, and hope you might get back to this at a later time!

<bye>

334 Chapter 33. Contribution getting started



pytest Documentation, Release 6.2

33.11 Closing Issues

When a pull request is submitted to fix an issue, add text like closes #XYZW to the PR description and/or commits
(where XYZW is the issue number). See the GitHub docs for more information.

When an issue is due to user error (e.g. misunderstanding of a functionality), please politely explain to the user why
the issue raised is really a non-issue and ask them to close the issue if they have no further questions. If the original
requestor is unresponsive, the issue will be handled as described in the section Handling stale issues/PRs above.

33.11. Closing Issues 335

https://help.github.com/en/github/managing-your-work-on-github/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword


pytest Documentation, Release 6.2

336 Chapter 33. Contribution getting started



CHAPTER

THIRTYFOUR

DEVELOPMENT GUIDE

The contributing guidelines are to be found here. The release procedure for pytest is documented on GitHub.

337

https://github.com/pytest-dev/pytest/blob/main/RELEASING.rst


pytest Documentation, Release 6.2

338 Chapter 34. Development Guide



CHAPTER

THIRTYFIVE

SPONSOR

pytest is maintained by a team of volunteers from all around the world in their free time. While we work on pytest
because we love the project and use it daily at our daily jobs, monetary compensation when possible is welcome to
justify time away from friends, family and personal time.

Money is also used to fund local sprints, merchandising (stickers to distribute in conferences for example) and every
few years a large sprint involving all members.

35.1 OpenCollective

Open Collective is an online funding platform for open and transparent communities. It provide tools to raise money
and share your finances in full transparency.

It is the platform of choice for individuals and companies that want to make one-time or monthly donations directly to
the project.

See more details in the pytest collective.

339

https://opencollective.com
https://opencollective.com/pytest


pytest Documentation, Release 6.2

340 Chapter 35. Sponsor



CHAPTER

THIRTYSIX

PYTEST FOR ENTERPRISE

Tidelift is working with the maintainers of pytest and thousands of other open source projects to deliver commercial
support and maintenance for the open source dependencies you use to build your applications. Save time, reduce risk,
and improve code health, while paying the maintainers of the exact dependencies you use.

Get more details

The Tidelift Subscription is a managed open source subscription for application dependencies covering millions of
open source projects across JavaScript, Python, Java, PHP, Ruby, .NET, and more.

Your subscription includes:

• Security updates

– Tidelift’s security response team coordinates patches for new breaking security vulnerabilities and alerts
immediately through a private channel, so your software supply chain is always secure.

• Licensing verification and indemnification

– Tidelift verifies license information to enable easy policy enforcement and adds intellectual property in-
demnification to cover creators and users in case something goes wrong. You always have a 100% up-to-
date bill of materials for your dependencies to share with your legal team, customers, or partners.

• Maintenance and code improvement

– Tidelift ensures the software you rely on keeps working as long as you need it to work. Your managed
dependencies are actively maintained and we recruit additional maintainers where required.

• Package selection and version guidance

– Tidelift helps you choose the best open source packages from the start—and then guide you through
updates to stay on the best releases as new issues arise.

• Roadmap input

– Take a seat at the table with the creators behind the software you use. Tidelift’s participating maintainers
earn more income as their software is used by more subscribers, so they’re interested in knowing what you
need.

• Tooling and cloud integration

– Tidelift works with GitHub, GitLab, BitBucket, and every cloud platform (and other deployment targets,
too).

The end result? All of the capabilities you expect from commercial-grade software, for the full breadth of open
source you use. That means less time grappling with esoteric open source trivia, and more time building your own
applications—and your business.

Request a demo

341

https://tidelift.com
https://tidelift.com/subscription/pkg/pypi-pytest?utm_source=pypi-pytest&utm_medium=referral&utm_campaign=enterprise
https://tidelift.com/subscription/request-a-demo?utm_source=pypi-pytest&utm_medium=referral&utm_campaign=enterprise


pytest Documentation, Release 6.2

342 Chapter 36. pytest for enterprise



CHAPTER

THIRTYSEVEN

LICENSE

Distributed under the terms of the MIT license, pytest is free and open source software.

The MIT License (MIT)

Copyright (c) 2004-2020 Holger Krekel and others

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

343

https://github.com/pytest-dev/pytest/blob/main/LICENSE


pytest Documentation, Release 6.2

344 Chapter 37. License



CHAPTER

THIRTYEIGHT

CONTACT CHANNELS

• pytest issue tracker to report bugs or suggest features (for version 2.0 and above).

• pytest discussions at github for general questions.

• pytest on stackoverflow.com to post precise questions with the tag pytest. New Questions will usually be
seen by pytest users or developers and answered quickly.

• Testing In Python: a mailing list for Python testing tools and discussion.

• pytest-dev at python.org (mailing list) pytest specific announcements and discussions.

• contribution guide for help on submitting pull requests to GitHub.

• #pytest on irc.libera.chat IRC channel for random questions (using an IRC client, via webchat, or via Matrix).

• private mail to Holger.Krekel at gmail com if you want to communicate sensitive issues

• merlinux.eu offers pytest and tox-related professional teaching and consulting.

345

https://github.com/pytest-dev/pytest/issues
https://github.com/pytest-dev/pytest/discussions
http://stackoverflow.com/search?q=pytest
http://lists.idyll.org/listinfo/testing-in-python
http://mail.python.org/mailman/listinfo/pytest-dev
ircs://irc.libera.chat:6697/#pytest
https://web.libera.chat/#pytest
https://matrix.to/#/%23pytest:libera.chat
http://merlinux.eu


pytest Documentation, Release 6.2

346 Chapter 38. Contact channels



CHAPTER

THIRTYNINE

HISTORICAL NOTES

This page lists features or behavior from previous versions of pytest which have changed over the years. They are kept
here as a historical note so users looking at old code can find documentation related to them.

39.1 Marker revamp and iteration

Changed in version 3.6.

pytest’s marker implementation traditionally worked by simply updating the __dict__ attribute of functions to cu-
mulatively add markers. As a result, markers would unintentionally be passed along class hierarchies in surprising
ways. Further, the API for retrieving them was inconsistent, as markers from parameterization would be stored differ-
ently than markers applied using the @pytest.mark decorator and markers added via node.add_marker.

This state of things made it technically next to impossible to use data from markers correctly without having a deep
understanding of the internals, leading to subtle and hard to understand bugs in more advanced usages.

Depending on how a marker got declared/changed one would get either a MarkerInfo which might contain markers
from sibling classes, MarkDecorators when marks came from parameterization or from a node.add_marker
call, discarding prior marks. Also MarkerInfo acts like a single mark, when it in fact represents a merged view on
multiple marks with the same name.

On top of that markers were not accessible in the same way for modules, classes, and functions/methods. In fact,
markers were only accessible in functions, even if they were declared on classes/modules.

A new API to access markers has been introduced in pytest 3.6 in order to solve the problems with the initial design,
providing the _pytest.nodes.Node.iter_markers() method to iterate over markers in a consistent manner
and reworking the internals, which solved a great deal of problems with the initial design.

39.1.1 Updating code

The old Node.get_marker(name) function is considered deprecated because it returns an internal MarkerInfo
object which contains the merged name, *args and **kwargs of all the markers which apply to that node.

In general there are two scenarios on how markers should be handled:

1. Marks overwrite each other. Order matters but you only want to think of your mark as a single item. E.g.
log_level('info') at a module level can be overwritten by log_level('debug') for a specific test.

In this case, use Node.get_closest_marker(name):

# replace this:
marker = item.get_marker("log_level")
if marker:

(continues on next page)

347



pytest Documentation, Release 6.2

(continued from previous page)

level = marker.args[0]

# by this:
marker = item.get_closest_marker("log_level")
if marker:

level = marker.args[0]

2. Marks compose in an additive manner. E.g. skipif(condition) marks mean you just want to evaluate all of
them, order doesn’t even matter. You probably want to think of your marks as a set here.

In this case iterate over each mark and handle their *args and **kwargs individually.

# replace this
skipif = item.get_marker("skipif")
if skipif:

for condition in skipif.args:
# eval condition
...

# by this:
for skipif in item.iter_markers("skipif"):

condition = skipif.args[0]
# eval condition

If you are unsure or have any questions, please consider opening an issue.

39.1.2 Related issues

Here is a non-exhaustive list of issues fixed by the new implementation:

• Marks don’t pick up nested classes (#199).

• Markers stain on all related classes (#568).

• Combining marks - args and kwargs calculation (#2897).

• request.node.get_marker('name') returns None for markers applied in classes (#902).

• Marks applied in parametrize are stored as markdecorator (#2400).

• Fix marker interaction in a backward incompatible way (#1670).

• Refactor marks to get rid of the current “marks transfer” mechanism (#2363).

• Introduce FunctionDefinition node, use it in generate_tests (#2522).

• Remove named marker attributes and collect markers in items (#891).

• skipif mark from parametrize hides module level skipif mark (#1540).

• skipif + parametrize not skipping tests (#1296).

• Marker transfer incompatible with inheritance (#535).

More details can be found in the original PR.

Note: in a future major release of pytest we will introduce class based markers, at which point markers will no longer
be limited to instances of Mark.

348 Chapter 39. Historical Notes

https://github.com/pytest-dev/pytest/issues
https://github.com/pytest-dev/pytest/issues/199
https://github.com/pytest-dev/pytest/issues/568
https://github.com/pytest-dev/pytest/issues/2897
https://github.com/pytest-dev/pytest/issues/902
https://github.com/pytest-dev/pytest/issues/2400
https://github.com/pytest-dev/pytest/issues/1670
https://github.com/pytest-dev/pytest/issues/2363
https://github.com/pytest-dev/pytest/issues/2522
https://github.com/pytest-dev/pytest/issues/891
https://github.com/pytest-dev/pytest/issues/1540
https://github.com/pytest-dev/pytest/issues/1296
https://github.com/pytest-dev/pytest/issues/535
https://github.com/pytest-dev/pytest/pull/3317


pytest Documentation, Release 6.2

39.2 cache plugin integrated into the core

The functionality of the core cache plugin was previously distributed as a third party plugin named pytest-cache.
The core plugin is compatible regarding command line options and API usage except that you can only store/receive
data between test runs that is json-serializable.

39.3 funcargs and pytest_funcarg__

In versions prior to 2.3 there was no @pytest.fixture marker and you had to use a magic
pytest_funcarg__NAME prefix for the fixture factory. This remains and will remain supported but is not anymore
advertised as the primary means of declaring fixture functions.

39.4 @pytest.yield_fixture decorator

Prior to version 2.10, in order to use a yield statement to execute teardown code one had to mark a fixture using
the yield_fixture marker. From 2.10 onward, normal fixtures can use yield directly so the yield_fixture
decorator is no longer needed and considered deprecated.

39.5 [pytest] header in setup.cfg

Prior to 3.0, the supported section name was [pytest]. Due to how this may collide with some distutils commands,
the recommended section name for setup.cfg files is now [tool:pytest].

Note that for pytest.ini and tox.ini files the section name is [pytest].

39.6 Applying marks to @pytest.mark.parametrize parameters

Prior to version 3.1 the supported mechanism for marking values used the syntax:

import pytest

@pytest.mark.parametrize(
"test_input,expected", [("3+5", 8), ("2+4", 6), pytest.mark.xfail(("6*9", 42))]

)
def test_eval(test_input, expected):

assert eval(test_input) == expected

This was an initial hack to support the feature but soon was demonstrated to be incomplete, broken for passing func-
tions or applying multiple marks with the same name but different parameters.

The old syntax is planned to be removed in pytest-4.0.

39.2. cache plugin integrated into the core 349



pytest Documentation, Release 6.2

39.7 @pytest.mark.parametrize argument names as a tuple

In versions prior to 2.4 one needed to specify the argument names as a tuple. This remains valid but the simpler
"name1,name2,..." comma-separated-string syntax is now advertised first because it’s easier to write and pro-
duces less line noise.

39.8 setup: is now an “autouse fixture”

During development prior to the pytest-2.3 release the name pytest.setup was used but before the release it was
renamed and moved to become part of the general fixture mechanism, namely Autouse fixtures (fixtures you don’t have
to request)

39.9 Conditions as strings instead of booleans

Prior to pytest-2.4 the only way to specify skipif/xfail conditions was to use strings:

import sys

@pytest.mark.skipif("sys.version_info >= (3,3)")
def test_function():

...

During test function setup the skipif condition is evaluated by calling eval('sys.version_info >= (3,
0)', namespace). The namespace contains all the module globals, and os and sys as a minimum.

Since pytest-2.4 boolean conditions are considered preferable because markers can then be freely imported between
test modules. With strings you need to import not only the marker but all variables used by the marker, which violates
encapsulation.

The reason for specifying the condition as a string was that pytest can report a summary of skip conditions based
purely on the condition string. With conditions as booleans you are required to specify a reason string.

Note that string conditions will remain fully supported and you are free to use them if you have no need for cross-
importing markers.

The evaluation of a condition string in pytest.mark.skipif(conditionstring) or pytest.mark.
xfail(conditionstring) takes place in a namespace dictionary which is constructed as follows:

• the namespace is initialized by putting the sys and os modules and the pytest config object into it.

• updated with the module globals of the test function for which the expression is applied.

The pytest config object allows you to skip based on a test configuration value which you might have added:

@pytest.mark.skipif("not config.getvalue('db')")
def test_function():

...

The equivalent with “boolean conditions” is:

@pytest.mark.skipif(not pytest.config.getvalue("db"), reason="--db was not specified")
def test_function():

pass

350 Chapter 39. Historical Notes



pytest Documentation, Release 6.2

Note: You cannot use pytest.config.getvalue() in code imported before pytest’s argument parsing
takes place. For example, conftest.py files are imported before command line parsing and thus config.
getvalue() will not execute correctly.

39.10 pytest.set_trace()

Previous to version 2.4 to set a break point in code one needed to use pytest.set_trace():

import pytest

def test_function():
...
pytest.set_trace() # invoke PDB debugger and tracing

This is no longer needed and one can use the native import pdb;pdb.set_trace() call directly.

For more details see Setting breakpoints.

39.11 “compat” properties

Access of Module, Function, Class, Instance, File and Item through Node instances have long been
documented as deprecated, but started to emit warnings from pytest 3.9 and onward.

Users should just import pytest and access those objects using the pytest module.

39.10. pytest.set_trace() 351



pytest Documentation, Release 6.2

352 Chapter 39. Historical Notes



CHAPTER

FORTY

TALKS AND TUTORIALS

40.1 Books

• pytest Quick Start Guide, by Bruno Oliveira (2018).

• Python Testing with pytest, by Brian Okken (2017).

40.2 Talks and blog postings

• Webinar: pytest: Test Driven Development für Python (German), Florian Bruhin, via mylearning.ch, 2020

• Webinar: Simplify Your Tests with Fixtures, Oliver Bestwalter, via JetBrains, 2020

• Training: Introduction to pytest - simple, rapid and fun testing with Python, Florian Bruhin, PyConDE 2019

• Abridged metaprogramming classics - this episode: pytest, Oliver Bestwalter, PyConDE 2019 (repository,
recording)

• Testing PySide/PyQt code easily using the pytest framework, Florian Bruhin, Qt World Summit 2019 (slides,
recording)

• pytest: recommendations, basic packages for testing in Python and Django, Andreu Vallbona, PyBCN June
2019.

• pytest: recommendations, basic packages for testing in Python and Django, Andreu Vallbona, PyconES 2017
(slides in english, video in spanish)

• pytest advanced, Andrew Svetlov (Russian, PyCon Russia, 2016).

• Pythonic testing, Igor Starikov (Russian, PyNsk, November 2016).

• pytest - Rapid Simple Testing, Florian Bruhin, Swiss Python Summit 2016.

• Improve your testing with Pytest and Mock, Gabe Hollombe, PyCon SG 2015.

• Introduction to pytest, Andreas Pelme, EuroPython 2014.

• Advanced Uses of py.test Fixtures, Floris Bruynooghe, EuroPython 2014.

• Why i use py.test and maybe you should too, Andy Todd, Pycon AU 2013

• 3-part blog series about pytest from @pydanny alias Daniel Greenfeld (January 2014)

• pytest: helps you write better Django apps, Andreas Pelme, DjangoCon Europe 2014.

• Testing Django Applications with pytest, Andreas Pelme, EuroPython 2013.

• Testes pythonics com py.test, Vinicius Belchior Assef Neto, Plone Conf 2013, Brazil.

353

https://www.packtpub.com/web-development/pytest-quick-start-guide
https://pragprog.com/book/bopytest/python-testing-with-pytest
https://bruhin.software/ins-pytest/
https://blog.jetbrains.com/pycharm/2020/08/webinar-recording-simplify-your-tests-with-fixtures-with-oliver-bestwalter/
https://www.youtube.com/watch?v=CMuSn9cofbI
https://github.com/obestwalter/abridged-meta-programming-classics
https://www.youtube.com/watch?v=zHpeMTJsBRk&feature=youtu.be
https://bruhin.software/talks/qtws19.pdf
https://www.youtube.com/watch?v=zdsBS5BXGqQ
https://www.slideshare.net/AndreuVallbonaPlazas/pybcn-pytest-recomendaciones-paquetes-bsicos-para-testing-en-python-y-django
https://www.slideshare.net/AndreuVallbonaPlazas/pybcn-pytest-recomendaciones-paquetes-bsicos-para-testing-en-python-y-django
http://talks.apsl.io/testing-pycones-2017/
https://www.youtube.com/watch?v=K20GeR-lXDk
https://www.youtube.com/watch?v=7KgihdKTWY4
https://www.youtube.com/watch?v=_92nfdd5nK8
https://www.youtube.com/watch?v=rCBHkQ_LVIs
https://www.youtube.com/watch?v=RcN26hznmk4
https://www.youtube.com/watch?v=LdVJj65ikRY
https://www.youtube.com/watch?v=IBC_dxr-4ps
https://www.youtube.com/watch?v=P-AhpukDIik
https://daniel.roygreenfeld.com/pytest-no-boilerplate-testing.html
https://www.youtube.com/watch?v=aaArYVh6XSM
https://www.youtube.com/watch?v=aUf8Fkb7TaY
https://www.youtube.com/watch?v=QUKoq2K7bis


pytest Documentation, Release 6.2

• Introduction to py.test fixtures, FOSDEM 2013, Floris Bruynooghe.

• pytest feature and release highlights, Holger Krekel (GERMAN, October 2013)

• pytest introduction from Brian Okken (January 2013)

• pycon australia 2012 pytest talk from Brianna Laugher (video, slides, code)

• pycon 2012 US talk video from Holger Krekel

• monkey patching done right (blog post, consult monkeypatch plugin for up-to-date API)

Test parametrization:

• generating parametrized tests with fixtures.

• test generators and cached setup

• parametrizing tests, generalized (blog post)

• putting test-hooks into local or global plugins (blog post)

Assertion introspection:

• (07/2011) Behind the scenes of pytest’s new assertion rewriting

Distributed testing:

• simultaneously test your code on all platforms (blog entry)

Plugin specific examples:

• skipping slow tests by default in pytest (blog entry)

• many examples in the docs for plugins

354 Chapter 40. Talks and Tutorials

https://www.youtube.com/watch?v=bJhRW4eZMco
http://pyvideo.org/video/2429/pytest-feature-and-new-release-highlights
http://pythontesting.net/framework/pytest-introduction/
http://www.youtube.com/watch?v=DTNejE9EraI
https://www.slideshare.net/pfctdayelise/funcargs-other-fun-with-pytest
https://gist.github.com/3386951
http://www.youtube.com/watch?v=9LVqBQcFmyw
http://tetamap.wordpress.com/2009/03/03/monkeypatching-in-unit-tests-done-right/
monkeypatch.html
parametrize.html#test-generators
http://bruynooghe.blogspot.com/2010/06/pytest-test-generators-and-cached-setup.html
http://tetamap.wordpress.com/2009/05/13/parametrizing-python-tests-generalized/
http://tetamap.wordpress.com/2009/05/14/putting-test-hooks-into-local-and-global-plugins/
http://pybites.blogspot.com/2011/07/behind-scenes-of-pytests-new-assertion.html
http://tetamap.wordpress.com/2009/03/23/new-simultanously-test-your-code-on-all-platforms/
http://bruynooghe.blogspot.com/2009/12/skipping-slow-test-by-default-in-pytest.html
plugins.html


pytest Documentation, Release 6.2

40.2. Talks and blog postings 355



pytest Documentation, Release 6.2

356 Chapter 40. Talks and Tutorials



CHAPTER

FORTYONE

PROJECT EXAMPLES

Here are some examples of projects using pytest (please send notes via Contact channels):

• PyPy, Python with a JIT compiler, running over 21000 tests

• the MoinMoin Wiki Engine

• sentry, realtime app-maintenance and exception tracking

• Astropy and affiliated packages

• tox, virtualenv/Hudson integration tool

• PyPM ActiveState’s package manager

• Fom a fluid object mapper for FluidDB

• applib cross-platform utilities

• six Python 2 and 3 compatibility utilities

• pediapress MediaWiki articles

• mwlib mediawiki parser and utility library

• The Translate Toolkit for localization and conversion

• execnet rapid multi-Python deployment

• pylib cross-platform path, IO, dynamic code library

• bbfreeze create standalone executables from Python scripts

• pdb++ a fancier version of PDB

• pudb full-screen console debugger for python

• py-s3fuse Amazon S3 FUSE based filesystem

• waskr WSGI Stats Middleware

• guachi global persistent configs for Python modules

• Circuits lightweight Event Driven Framework

• pygtk-helpers easy interaction with PyGTK

• QuantumCore statusmessage and repoze openid plugin

• pydataportability libraries for managing the open web

• XIST extensible HTML/XML generator

• tiddlyweb optionally headless, extensible RESTful datastore

357

http://pypy.org
http://buildbot.pypy.org/summary?branch=%3Ctrunk%3E
http://moinmo.in
https://getsentry.com/welcome/
http://www.astropy.org/
http://www.astropy.org/affiliated/index.html
http://testrun.org/tox
http://code.activestate.com/pypm/
http://packages.python.org/Fom/
https://github.com/ActiveState/applib
https://pypi.org/project/six/
http://code.pediapress.com/wiki/wiki
https://pypi.org/project/mwlib/
http://translate.sourceforge.net/wiki/toolkit/index
http://codespeak.net/execnet
https://pylib.readthedocs.io/en/stable/
https://pypi.org/project/bbfreeze/
https://github.com/pdbpp/pdbpp
https://github.com/inducer/pudb
http://code.google.com/p/py-s3fuse/
http://code.google.com/p/waskr/
http://code.google.com/p/guachi/
https://pypi.org/project/circuits/
http://bitbucket.org/aafshar/pygtkhelpers-main/
http://quantumcore.org/
http://pydataportability.net/
http://www.livinglogic.de/Python/xist/
https://pypi.org/project/tiddlyweb/


pytest Documentation, Release 6.2

• fancycompleter for colorful tab-completion

• Paludis tools for Gentoo Paludis package manager

• Gerald schema comparison tool

• abjad Python API for Formalized Score control

• bu a microscopic build system

• katcp Telescope communication protocol over Twisted

• kss plugin timer

• pyudev a pure Python binding to the Linux library libudev

• pytest-localserver a plugin for pytest that provides an httpserver and smtpserver

• pytest-monkeyplus a plugin that extends monkeypatch

These projects help integrate pytest into other Python frameworks:

• pytest-django for Django

• zope.pytest for Zope and Grok

• pytest_gae for Google App Engine

• There is some work underway for Kotti, a CMS built in Pyramid/Pylons

41.1 Some organisations using pytest

• Square Kilometre Array, Cape Town

• Some Mozilla QA people use pytest to distribute their Selenium tests

• Shootq

• Stups department of Heinrich Heine University Duesseldorf

• cellzome

• Open End, Gothenborg

• Laboratory of Bioinformatics, Warsaw

• merlinux, Germany

• ESSS, Brazil

• many more . . . (please be so kind to send a note via Contact channels)

358 Chapter 41. Project examples

http://bitbucket.org/antocuni/fancycompleter/src
http://paludis.exherbo.org/
http://halfcooked.com/code/gerald/
http://code.google.com/p/abjad/
http://packages.python.org/bu/
https://bitbucket.org/hodgestar/katcp
https://pypi.org/project/kss.plugin.timer/
https://pyudev.readthedocs.io/en/latest/tests/plugins.html
https://bitbucket.org/pytest-dev/pytest-localserver/
https://pypi.org/project/pytest-monkeyplus/
https://pypi.org/project/pytest-django/
http://packages.python.org/zope.pytest/
https://pypi.org/project/pytest_gae/0.2.1/
https://github.com/Kotti/Kotti/blob/master/kotti/testing.py
http://ska.ac.za/
https://www.theautomatedtester.co.uk/blog/2011/pytest_and_xdist_plugin/
http://web.shootq.com/
http://www.stups.uni-duesseldorf.de/projects.php
http://www.openend.se
http://genesilico.pl/
http://merlinux.eu
http://www.esss.com.br


INDEX

Symbols
__str__() (LineMatcher method), 179
_pytest.tmpdir.tmp_path_factory

fixture, 183

A
add_cleanup() (Config method), 198
add_hookcall_monitoring() (PytestPluginMan-

ager method), 209
add_hookspecs() (PytestPluginManager method),

209
add_marker() (Node method), 207
add_report_section() (Item method), 203
addfinalizer() (FixtureRequest method), 168
addfinalizer() (Node method), 207
addini() (Parser method), 208
addinivalue_line() (Config method), 199
addoption() (Parser method), 208
addopts

configuration value, 216
applymarker() (FixtureRequest method), 168
approx() (in module pytest), 153
args (Config.InvocationParams attribute), 197
args (Mark attribute), 204
args() (MarkDecorator property), 204
assert_outcomes() (RunResult method), 179
at_level() (LogCaptureFixture method), 170

B
built-in function

pytest.mark.filterwarnings(), 161
pytest.mark.skip(), 162
pytest.mark.skipif(), 162
pytest.mark.usefixtures(), 162
pytest.mark.xfail(), 162

C
cache

fixture, 164
Cache (class in pytest), 165
cache_dir

configuration value, 216

CallInfo (class in _pytest.runner), 195
capfd

fixture, 166
capfd() (in module _pytest.capture), 166
capfdbinary

fixture, 166
capfdbinary() (in module _pytest.capture), 167
caplog

fixture, 169
caplog() (CollectReport property), 196
caplog() (in module _pytest.logging), 169
caplog() (TestReport property), 212
capstderr() (CollectReport property), 196
capstderr() (TestReport property), 212
capstdout() (CollectReport property), 196
capstdout() (TestReport property), 212
capsys

fixture, 165
capsys() (in module _pytest.capture), 165
capsysbinary

fixture, 166
capsysbinary() (in module _pytest.capture), 166
CaptureFixture (class in pytest), 166
chdir() (MonkeyPatch method), 172
chdir() (Pytester method), 173
chdir() (Testdir method), 181
check_pending() (PytestPluginManager method),

209
Class (class in pytest), 195
clear() (LogCaptureFixture method), 170
clear() (WarningsRecorder method), 183
CLOSE_STDIN (Pytester attribute), 173
CLOSE_STDIN (Testdir attribute), 180
cls (Metafunc attribute), 205
cls() (FixtureRequest property), 168
collect() (Class method), 195
collect() (Collector method), 196
collect() (Module method), 206
collect() (Pytester.Session method), 174
collect() (Session method), 211
collect() (Testdir.Session method), 180
collect_by_name() (Pytester method), 177

359



pytest Documentation, Release 6.2

collect_by_name() (Testdir method), 182
collect_ignore

global variable interpreted by
pytest, 213

collect_ignore_glob
global variable interpreted by

pytest, 213
Collector (class in pytest), 196
Collector.CollectError, 196
CollectReport (class in _pytest.reports), 196
combined_with() (Mark method), 204
confcutdir

configuration value, 216
Config (class in _pytest.config), 197
config (Metafunc attribute), 205
config() (FixtureRequest property), 167
Config.InvocationParams (class in

_pytest.config), 197
configuration value

addopts, 216
cache_dir, 216
confcutdir, 216
console_output_style, 216
doctest_encoding, 217
doctest_optionflags, 217
empty_parameter_set_mark, 217
faulthandler_timeout, 217
filterwarnings, 217
junit_duration_report, 217
junit_family, 218
junit_log_passing_tests, 218
junit_logging, 218
junit_suite_name, 218
log_auto_indent, 218
log_cli, 219
log_cli_date_format, 219
log_cli_format, 219
log_cli_level, 219
log_date_format, 219
log_file, 219
log_file_date_format, 220
log_file_format, 220
log_file_level, 220
log_format, 220
log_level, 220
markers, 220
minversion, 221
norecursedirs, 221
python_classes, 221
python_files, 221
python_functions, 222
required_plugins, 222
testpaths, 222
usefixtures, 222

xfail_strict, 222
consider_conftest() (PytestPluginManager

method), 209
consider_env() (PytestPluginManager method),

209
consider_module() (PytestPluginManager

method), 209
consider_pluginarg() (PytestPluginManager

method), 209
consider_preparse() (PytestPluginManager

method), 209
console_output_style

configuration value, 216
context() (MonkeyPatch class method), 171
copy_example() (Pytester method), 174
copy_example() (Testdir method), 182
count_towards_summary() (CollectReport prop-

erty), 196
count_towards_summary() (TestReport property),

212

D
definition (Metafunc attribute), 205
delattr() (MonkeyPatch method), 171
delenv() (MonkeyPatch method), 172
delitem() (MonkeyPatch method), 172
deprecated_call() (in module pytest), 159
dir (Config.InvocationParams attribute), 197
disabled() (CaptureFixture method), 166
doctest_encoding

configuration value, 217
doctest_namespace

fixture, 167
doctest_namespace() (in module _pytest.doctest),

167
doctest_optionflags

configuration value, 217
duration (RunResult attribute), 178
duration (TestReport attribute), 212

E
empty_parameter_set_mark

configuration value, 217
enable_tracing() (PytestPluginManager method),

210
environment variable

FORCE_COLOR, 214
NO_COLOR, 214
PY_COLORS, 214
PYTEST_ADDOPTS, 214
PYTEST_CURRENT_TEST, 214, 234, 272
PYTEST_DEBUG, 214
PYTEST_DISABLE_PLUGIN_AUTOLOAD, 214
PYTEST_PLUGINS, 133, 214

360 Index



pytest Documentation, Release 6.2

errisinstance() (ExceptionInfo method), 200
errlines (RunResult attribute), 178
ExceptionInfo (class in _pytest._code), 199
exconly() (ExceptionInfo method), 200
exit() (in module pytest), 157
ExitCode (class in pytest), 201
extra_keyword_matches (Node attribute), 206

F
fail() (in module pytest), 156
faulthandler_timeout

configuration value, 217
File (class in pytest), 201
fill_unfilled() (ExceptionInfo method), 200
filterwarnings

configuration value, 217
finalize() (Testdir method), 181
fixture

_pytest.tmpdir.tmp_path_factory, 183
cache, 164
capfd, 166
capfdbinary, 166
caplog, 169
capsys, 165
capsysbinary, 166
doctest_namespace, 167
monkeypatch, 171
pytestconfig, 168
pytester, 172
record_property, 168
record_testsuite_property, 169
recwarn, 183
request, 167
testdir, 180
tmp_path, 183
tmpdir, 184
tmpdir_factory, 184

fixture() (in module pytest), 164
FixtureDef (class in _pytest.fixtures), 201
fixturename (FixtureRequest attribute), 167
fixturenames (Metafunc attribute), 205
fixturenames() (FixtureRequest property), 167
FixtureRequest (class in pytest), 167
fnmatch_lines() (LineMatcher method), 179
fnmatch_lines_random() (LineMatcher method),

179
for_later() (ExceptionInfo class method), 199
freeze_includes() (in module pytest), 161
from_config() (Pytester.Session class method), 175
from_config() (Testdir.Session class method), 180
from_current() (ExceptionInfo class method), 199
from_exc_info() (ExceptionInfo class method), 199
from_item_and_call() (TestReport class method),

212

from_parent() (Class class method), 195
from_parent() (FSCollector class method), 201
from_parent() (Function class method), 202
from_parent() (Node class method), 206
fromdictargs() (Config class method), 198
FSCollector (class in _pytest.nodes), 201
fspath (Node attribute), 206
fspath() (FixtureRequest property), 168
Function (class in pytest), 202
function (Metafunc attribute), 205
function() (FixtureRequest property), 168
function() (Function property), 202
FunctionDefinition (class in _pytest.python), 203

G
genitems() (Pytester method), 175
genitems() (Pytester.Session method), 175
genitems() (Testdir method), 182
genitems() (Testdir.Session method), 180
get() (Cache method), 165
get_canonical_name() (PytestPluginManager

method), 210
get_closest_marker() (Node method), 207
get_hookcallers() (PytestPluginManager

method), 210
get_lines_after() (LineMatcher method), 179
get_name() (PytestPluginManager method), 210
get_plugin() (PytestPluginManager method), 210
get_plugins() (PytestPluginManager method), 210
get_records() (LogCaptureFixture method), 170
getfixturevalue() (FixtureRequest method), 168
getgroup() (Parser method), 208
gethookproxy() (Pytester.Session method), 175
gethookproxy() (Testdir.Session method), 181
getini() (Config method), 199
getinicfg() (Pytester method), 173
getinicfg() (Testdir method), 181
getitem() (Pytester method), 176
getitem() (Testdir method), 182
getitems() (Pytester method), 177
getitems() (Testdir method), 182
getmodulecol() (Pytester method), 177
getmodulecol() (Testdir method), 182
getnode() (Pytester method), 175
getnode() (Testdir method), 182
getoption() (Config method), 199
getparent() (Node method), 208
getpathnode() (Pytester method), 175
getpathnode() (Testdir method), 182
getplugin() (PytestPluginManager method), 209
getrepr() (ExceptionInfo method), 200
getvalue() (Config method), 199
getvalueorskip() (Config method), 199
global variable interpreted by pytest

Index 361



pytest Documentation, Release 6.2

collect_ignore, 213
collect_ignore_glob, 213
pytest_plugins, 213
pytestmark, 213

H
handler() (LogCaptureFixture property), 169
has_plugin() (PytestPluginManager method), 210
hasplugin() (PytestPluginManager method), 209
head_line() (CollectReport property), 196
head_line() (TestReport property), 212
HookRecorder (class in _pytest.pytester), 180

I
ihook() (Node property), 207
import_plugin() (PytestPluginManager method),

209
importorskip() (in module pytest), 156
inifile() (Config property), 198
inipath() (Config property), 198
inline_genitems() (Pytester method), 176
inline_genitems() (Testdir method), 182
inline_run() (Pytester method), 176
inline_run() (Testdir method), 182
inline_runsource() (Pytester method), 175
inline_runsource() (Testdir method), 182
instance() (FixtureRequest property), 168
INTERNAL_ERROR (ExitCode attribute), 201
INTERRUPTED (ExitCode attribute), 201
invocation_dir() (Config property), 198
invocation_params (Config attribute), 197
is_blocked() (PytestPluginManager method), 210
is_registered() (PytestPluginManager method),

210
isinitpath() (Pytester.Session method), 175
isinitpath() (Testdir.Session method), 181
issue_config_time_warning() (Config

method), 198
Item (class in pytest), 203
iter_markers() (Node method), 207
iter_markers_with_node() (Node method), 207

J
junit_duration_report

configuration value, 217
junit_family

configuration value, 218
junit_log_passing_tests

configuration value, 218
junit_logging

configuration value, 218
junit_suite_name

configuration value, 218

K
keywords (Node attribute), 206
keywords (TestReport attribute), 211
keywords() (FixtureRequest property), 168
kwargs (Mark attribute), 204
kwargs() (MarkDecorator property), 204

L
LineMatcher (class in _pytest.pytester), 179
list() (WarningsRecorder property), 183
list_name_plugin() (PytestPluginManager

method), 210
list_plugin_distinfo() (PytestPluginManager

method), 210
listchain() (Node method), 207
listextrakeywords() (Node method), 207
load_setuptools_entrypoints() (PytestPlug-

inManager method), 210
location (TestReport attribute), 211
log_auto_indent

configuration value, 218
log_cli

configuration value, 219
log_cli_date_format

configuration value, 219
log_cli_format

configuration value, 219
log_cli_level

configuration value, 219
log_date_format

configuration value, 219
log_file

configuration value, 219
log_file_date_format

configuration value, 220
log_file_format

configuration value, 220
log_file_level

configuration value, 220
log_format

configuration value, 220
log_level

configuration value, 220
LogCaptureFixture (class in pytest), 169
longrepr (CollectReport attribute), 196
longrepr (TestReport attribute), 211
longreprtext() (CollectReport property), 197
longreprtext() (TestReport property), 212

M
main() (in module pytest), 157
make_hook_recorder() (Pytester method), 173
make_hook_recorder() (Testdir method), 181

362 Index



pytest Documentation, Release 6.2

makeconftest() (Pytester method), 173
makeconftest() (Testdir method), 181
makedir() (Cache method), 165
makefile() (Pytester method), 173
makefile() (Testdir method), 181
makeini() (Pytester method), 173
makeini() (Testdir method), 181
makepyfile() (Pytester method), 174
makepyfile() (Testdir method), 181
makepyprojecttoml() (Pytester method), 173
makepyprojecttoml() (Testdir method), 181
maketxtfile() (Pytester method), 174
maketxtfile() (Testdir method), 181
Mark (class in _pytest.mark.structures), 204
MarkDecorator (class in _pytest.mark), 203
markers

configuration value, 220
MarkGenerator (class in _pytest.mark), 204
match() (ExceptionInfo method), 200
matchreport() (HookRecorder method), 180
messages() (LogCaptureFixture property), 170
Metafunc (class in _pytest.python), 205
minversion

configuration value, 221
mkdir() (Pytester method), 174
mkdir() (Testdir method), 181
mkpydir() (Pytester method), 174
mkpydir() (Testdir method), 181
Module (class in pytest), 206
module (Metafunc attribute), 205
module() (FixtureRequest property), 168
monkeypatch

fixture, 171
MonkeyPatch (class in pytest), 171
monkeypatch() (in module _pytest.monkeypatch),

171

N
name (Mark attribute), 204
name (Node attribute), 206
name() (MarkDecorator property), 204
no_fnmatch_line() (LineMatcher method), 180
no_re_match_line() (LineMatcher method), 180
NO_TESTS_COLLECTED (ExitCode attribute), 201
Node (class in _pytest.nodes), 206
node() (FixtureRequest property), 167
nodeid (CollectReport attribute), 196
nodeid (TestReport attribute), 211
nodeid() (Node property), 207
norecursedirs

configuration value, 221

O
OK (ExitCode attribute), 201

option (Config attribute), 197
originalname (Function attribute), 202
outcome (CollectReport attribute), 196
outcome (TestReport attribute), 211
outlines (RunResult attribute), 178
own_markers (Node attribute), 206

P
param() (in module pytest), 157
parametrize() (Metafunc method), 205
parent (Node attribute), 206
parse_hookimpl_opts() (PytestPluginManager

method), 209
parse_hookspec_opts() (PytestPluginManager

method), 209
parse_known_and_unknown_args() (Parser

method), 208
parse_known_args() (Parser method), 208
parse_summary_nouns() (RunResult class

method), 179
parseconfig() (Pytester method), 176
parseconfig() (Testdir method), 182
parseconfigure() (Pytester method), 176
parseconfigure() (Testdir method), 182
parseoutcomes() (RunResult method), 178
Parser (class in _pytest.config.argparsing), 208
path() (Pytester property), 173
perform_collect() (Pytester.Session method), 175
perform_collect() (Session method), 211
perform_collect() (Testdir.Session method), 181
pluginmanager (Config attribute), 198
plugins (Config.InvocationParams attribute), 197
pop() (WarningsRecorder method), 183
popen() (Pytester method), 177
popen() (Testdir method), 182
pytest.mark.filterwarnings()

built-in function, 161
pytest.mark.skip()

built-in function, 162
pytest.mark.skipif()

built-in function, 162
pytest.mark.usefixtures()

built-in function, 162
pytest.mark.xfail()

built-in function, 162
pytest_addhooks() (in module _pytest.hookspec),

186
pytest_addoption() (in module _pytest.hookspec),

185
pytest_assertion_pass() (in module

_pytest.hookspec), 194
pytest_assertrepr_compare() (in module

_pytest.hookspec), 193

Index 363



pytest Documentation, Release 6.2

pytest_cmdline_main() (in module
_pytest.hookspec), 185

pytest_cmdline_parse() (in module
_pytest.hookspec), 185

pytest_cmdline_preparse() (in module
_pytest.hookspec), 185

pytest_collect_file() (in module
_pytest.hookspec), 188

pytest_collection() (Config method), 198
pytest_collection() (in module

_pytest.hookspec), 187
pytest_collection_finish() (in module

_pytest.hookspec), 189
pytest_collection_modifyitems() (in mod-

ule _pytest.hookspec), 188
pytest_collectreport() (in module

_pytest.hookspec), 191
pytest_collectreport() (Pytester.Session

method), 175
pytest_collectreport() (Testdir.Session

method), 181
pytest_collectstart() (in module

_pytest.hookspec), 191
pytest_collectstart() (Pytester.Session

method), 175
pytest_collectstart() (Testdir.Session method),

181
pytest_configure() (in module _pytest.hookspec),

186
PYTEST_CURRENT_TEST, 234, 272
pytest_deselected() (in module

_pytest.hookspec), 191
pytest_enter_pdb() (in module _pytest.hookspec),

194
pytest_exception_interact() (in module

_pytest.hookspec), 194
pytest_fixture_post_finalizer() (in mod-

ule _pytest.hookspec), 192
pytest_fixture_setup() (in module

_pytest.hookspec), 192
pytest_generate_tests() (in module

_pytest.hookspec), 188
pytest_ignore_collect() (in module

_pytest.hookspec), 187
pytest_internalerror() (in module

_pytest.hookspec), 194
pytest_itemcollected() (in module

_pytest.hookspec), 191
pytest_keyboard_interrupt() (in module

_pytest.hookspec), 194
pytest_load_initial_conftests() (in mod-

ule _pytest.hookspec), 184
pytest_make_collect_report() (in module

_pytest.hookspec), 191

pytest_make_parametrize_id() (in module
_pytest.hookspec), 188

pytest_plugin_registered() (in module
_pytest.hookspec), 186

PYTEST_PLUGINS, 133
pytest_plugins

global variable interpreted by
pytest, 213

pytest_pycollect_makeitem() (in module
_pytest.hookspec), 188

pytest_pycollect_makemodule() (in module
_pytest.hookspec), 188

pytest_pyfunc_call() (in module
_pytest.hookspec), 191

pytest_report_collectionfinish() (in mod-
ule _pytest.hookspec), 191

pytest_report_header() (in module
_pytest.hookspec), 191

pytest_report_teststatus() (in module
_pytest.hookspec), 192

pytest_runtest_call() (in module
_pytest.hookspec), 190

pytest_runtest_logfinish() (in module
_pytest.hookspec), 190

pytest_runtest_logreport() (in module
_pytest.hookspec), 193

pytest_runtest_logreport() (Pytester.Session
method), 175

pytest_runtest_logreport() (Testdir.Session
method), 181

pytest_runtest_logstart() (in module
_pytest.hookspec), 190

pytest_runtest_makereport() (in module
_pytest.hookspec), 190

pytest_runtest_protocol() (in module
_pytest.hookspec), 189

pytest_runtest_setup() (in module
_pytest.hookspec), 190

pytest_runtest_teardown() (in module
_pytest.hookspec), 190

pytest_runtestloop() (in module
_pytest.hookspec), 189

pytest_sessionfinish() (in module
_pytest.hookspec), 186

pytest_sessionstart() (in module
_pytest.hookspec), 186

pytest_terminal_summary() (in module
_pytest.hookspec), 192

pytest_unconfigure() (in module
_pytest.hookspec), 186

pytest_warning_captured() (in module
_pytest.hookspec), 192

pytest_warning_recorded() (in module
_pytest.hookspec), 193

364 Index



pytest Documentation, Release 6.2

PytestAssertRewriteWarning (class in pytest),
215

PytestCacheWarning (class in pytest), 215
PytestCollectionWarning (class in pytest), 215
pytestconfig

fixture, 168
pytestconfig() (in module _pytest.fixtures), 168
PytestConfigWarning (class in pytest), 215
PytestDeprecationWarning (class in pytest), 215
pytester

fixture, 172
Pytester (class in pytest), 172
Pytester.Session (class in pytest), 174
Pytester.Session.Failed, 174
Pytester.Session.Interrupted, 174
Pytester.TimeoutExpired, 173
PytestExperimentalApiWarning (class in

pytest), 215
pytestmark

global variable interpreted by
pytest, 213

PytestPluginManager (class in _pytest.config), 209
PytestUnhandledCoroutineWarning (class in

pytest), 215
PytestUnhandledThreadExceptionWarning

(class in pytest), 215
PytestUnknownMarkWarning (class in pytest), 215
PytestUnraisableExceptionWarning (class in

pytest), 215
PytestWarning (class in pytest), 215
Python Enhancement Proposals

PEP 302, 135
python_classes

configuration value, 221
python_files

configuration value, 221
python_functions

configuration value, 222

R
raiseerror() (FixtureRequest method), 168
raises() (in module pytest), 158
re_match_lines() (LineMatcher method), 179
re_match_lines_random() (LineMatcher

method), 179
readouterr() (CaptureFixture method), 166
record_property

fixture, 168
record_property() (in module _pytest.junitxml),

169
record_testsuite_property

fixture, 169
record_testsuite_property() (in module

_pytest.junitxml), 169

record_tuples() (LogCaptureFixture property),
170

records() (LogCaptureFixture property), 170
recwarn

fixture, 183
recwarn() (in module _pytest.recwarn), 183
register() (PytestPluginManager method), 209
register_assert_rewrite() (in module pytest),

160
repr_failure() (Collector method), 196
repr_failure() (Function method), 202
repr_failure() (Node method), 208
request

fixture, 167
required_plugins

configuration value, 222
result (CollectReport attribute), 196
ret (RunResult attribute), 178
rootdir() (Config property), 198
rootpath() (Config property), 198
run() (Pytester method), 177
run() (Testdir method), 182
runitem() (Pytester method), 175
runitem() (Testdir method), 182
runpytest() (Pytester method), 176
runpytest() (Testdir method), 182
runpytest_inprocess() (Pytester method), 176
runpytest_inprocess() (Testdir method), 182
runpytest_subprocess() (Pytester method), 178
runpytest_subprocess() (Testdir method), 183
runpython() (Pytester method), 178
runpython() (Testdir method), 182
runpython_c() (Pytester method), 178
runpython_c() (Testdir method), 182
RunResult (class in _pytest.pytester), 178
runtest() (Function method), 202
runtest() (FunctionDefinition method), 203

S
scope (FixtureRequest attribute), 167
sections (TestReport attribute), 211
Session (class in pytest), 211
session() (FixtureRequest property), 168
Session.Failed, 211
Session.Interrupted, 211
set() (Cache method), 165
set_blocked() (PytestPluginManager method), 210
set_level() (LogCaptureFixture method), 170
setattr() (MonkeyPatch method), 171
setenv() (MonkeyPatch method), 172
setitem() (MonkeyPatch method), 172
setup() (FunctionDefinition method), 203
skip() (in module pytest), 156
spawn() (Pytester method), 178

Index 365



pytest Documentation, Release 6.2

spawn() (Testdir method), 183
spawn_pytest() (Pytester method), 178
spawn_pytest() (Testdir method), 183
stderr (RunResult attribute), 178
stdout (RunResult attribute), 178
str() (LineMatcher method), 180
subset_hook_caller() (PytestPluginManager

method), 210
syspath_prepend() (MonkeyPatch method), 172
syspathinsert() (Pytester method), 174
syspathinsert() (Testdir method), 181

T
tb() (ExceptionInfo property), 200
TempdirFactory (class in pytest), 184
TempPathFactory (class in pytest), 184
testdir

fixture, 180
Testdir (class in pytest), 180
Testdir.Session (class in pytest), 180
Testdir.Session.Failed, 180
Testdir.Session.Interrupted, 180
Testdir.TimeoutExpired, 180
testpaths

configuration value, 222
TestReport (class in _pytest.reports), 211
TESTS_FAILED (ExitCode attribute), 201
text() (LogCaptureFixture property), 170
tmp_path

fixture, 183
tmp_path() (in module _pytest.tmpdir), 183
tmpdir

fixture, 184
tmpdir() (in module _pytest.tmpdir), 184
tmpdir() (Testdir property), 181
tmpdir_factory

fixture, 184
traceback() (ExceptionInfo property), 200
type() (ExceptionInfo property), 200
typename() (ExceptionInfo property), 200

U
undo() (MonkeyPatch method), 172
unregister() (PytestPluginManager method), 210
USAGE_ERROR (ExitCode attribute), 201
UsageError (class in pytest), 214
usefixtures

configuration value, 222
user_properties (Item attribute), 203
user_properties (TestReport attribute), 211

V
value() (ExceptionInfo property), 200

W
warn() (Node method), 207
WarningsRecorder (class in pytest), 183
warns() (in module pytest), 160
when (TestReport attribute), 211
with_args() (MarkDecorator method), 204

X
xfail() (in module pytest), 157
xfail_strict

configuration value, 222

366 Index


	Installation and Getting Started
	Install pytest
	Create your first test
	Run multiple tests
	Assert that a certain exception is raised
	Group multiple tests in a class
	Request a unique temporary directory for functional tests
	Continue reading

	Usage and Invocations
	Calling pytest through python -m pytest
	Possible exit codes
	Getting help on version, option names, environment variables
	Stopping after the first (or N) failures
	Specifying tests / selecting tests
	Modifying Python traceback printing
	Detailed summary report
	Dropping to PDB (Python Debugger) on failures
	Dropping to PDB (Python Debugger) at the start of a test
	Setting breakpoints
	Using the builtin breakpoint function
	Profiling test execution duration
	Fault Handler
	Warning about unraisable exceptions and unhandled thread exceptions
	Creating JUnitXML format files
	Creating resultlog format files
	Sending test report to online pastebin service
	Early loading plugins
	Disabling plugins
	Calling pytest from Python code

	Using pytest with an existing test suite
	Running an existing test suite with pytest

	The writing and reporting of assertions in tests
	Asserting with the assert statement
	Assertions about expected exceptions
	Assertions about expected warnings
	Making use of context-sensitive comparisons
	Defining your own explanation for failed assertions
	Assertion introspection details

	pytest fixtures: explicit, modular, scalable
	What fixtures are
	“Requesting” fixtures
	Autouse fixtures (fixtures you don’t have to request)
	Scope: sharing fixtures across classes, modules, packages or session
	Fixture errors
	Teardown/Cleanup (AKA Fixture finalization)
	Safe teardowns
	Fixture availability
	Sharing test data
	Fixture instantiation order
	Running multiple assert statements safely
	Fixtures can introspect the requesting test context
	Using markers to pass data to fixtures
	Factories as fixtures
	Parametrizing fixtures
	Using marks with parametrized fixtures
	Modularity: using fixtures from a fixture function
	Automatic grouping of tests by fixture instances
	Use fixtures in classes and modules with usefixtures
	Overriding fixtures on various levels
	Using fixtures from other projects

	Marking test functions with attributes
	Registering marks
	Raising errors on unknown marks

	Monkeypatching/mocking modules and environments
	Simple example: monkeypatching functions
	Monkeypatching returned objects: building mock classes
	Global patch example: preventing “requests” from remote operations
	Monkeypatching environment variables
	Monkeypatching dictionaries
	API Reference

	Temporary directories and files
	The tmp_path fixture
	The tmp_path_factory fixture
	The ‘tmpdir’ fixture
	The ‘tmpdir_factory’ fixture
	The default base temporary directory

	Capturing of the stdout/stderr output
	Default stdout/stderr/stdin capturing behaviour
	Setting capturing methods or disabling capturing
	Using print statements for debugging
	Accessing captured output from a test function

	Warnings Capture
	@pytest.mark.filterwarnings
	Disabling warnings summary
	Disabling warning capture entirely
	DeprecationWarning and PendingDeprecationWarning
	Ensuring code triggers a deprecation warning
	Asserting warnings with the warns function
	Recording warnings
	Custom failure messages
	Internal pytest warnings

	Doctest integration for modules and test files
	Encoding
	Using ‘doctest’ options
	Continue on failure
	Output format
	pytest-specific features
	Alternatives

	Skip and xfail: dealing with tests that cannot succeed
	Skipping test functions
	XFail: mark test functions as expected to fail
	Skip/xfail with parametrize

	Parametrizing fixtures and test functions
	@pytest.mark.parametrize: parametrizing test functions
	Basic pytest_generate_tests example
	More examples

	Cache: working with cross-testrun state
	Usage
	Rerunning only failures or failures first
	Behavior when no tests failed in the last run
	The new config.cache object
	Inspecting Cache content
	Clearing Cache content
	Stepwise

	unittest.TestCase Support
	Benefits out of the box
	pytest features in unittest.TestCase subclasses
	Mixing pytest fixtures into unittest.TestCase subclasses using marks
	Using autouse fixtures and accessing other fixtures

	Running tests written for nose
	Usage
	Supported nose Idioms
	Unsupported idioms / known issues
	Migrating from nose to pytest

	classic xunit-style setup
	Module level setup/teardown
	Class level setup/teardown
	Method and function level setup/teardown

	Installing and Using plugins
	Requiring/Loading plugins in a test module or conftest file
	Finding out which plugins are active
	Deactivating / unregistering a plugin by name

	Writing plugins
	Plugin discovery order at tool startup
	conftest.py: local per-directory plugins
	Writing your own plugin
	Making your plugin installable by others
	Assertion Rewriting
	Requiring/Loading plugins in a test module or conftest file
	Accessing another plugin by name
	Registering custom markers
	Testing plugins

	Writing hook functions
	hook function validation and execution
	firstresult: stop at first non-None result
	hookwrapper: executing around other hooks
	Hook function ordering / call example
	Declaring new hooks
	Using hooks in pytest_addoption
	Optionally using hooks from 3rd party plugins

	Logging
	caplog fixture
	Live Logs
	Release notes
	Incompatible changes in pytest 3.4

	API Reference
	Functions
	Marks
	Fixtures
	Hooks
	Objects
	Global Variables
	Environment Variables
	Exceptions
	Warnings
	Configuration Options
	Command-line Flags

	Good Integration Practices
	Install package with pip
	Conventions for Python test discovery
	Choosing a test layout / import rules
	tox

	Flaky tests
	Why flaky tests are a problem
	Potential root causes
	Pytest features
	Other general strategies
	Research
	Resources

	pytest import mechanisms and sys.path/PYTHONPATH
	Import modes
	prepend and append import modes scenarios
	Invoking pytest versus python -m pytest

	Configuration
	Command line options and configuration file settings
	Configuration file formats
	Initialization: determining rootdir and configfile
	Builtin configuration file options

	Examples and customization tricks
	Demo of Python failure reports with pytest
	Basic patterns and examples
	Parametrizing tests
	Working with custom markers
	A session-fixture which can look at all collected tests
	Changing standard (Python) test discovery
	Working with non-python tests

	Setting up bash completion
	Backwards Compatibility Policy
	History
	Focus primary on smooth transition - stance (pre 6.0)

	Deprecations and Removals
	Deprecated Features
	Removed Features

	Python 2.7 and 3.4 support
	What this means for general users
	Maintenance of 4.6.X versions

	Contribution getting started
	Feature requests and feedback
	Report bugs
	Fix bugs
	Implement features
	Write documentation
	Submitting Plugins to pytest-dev
	Preparing Pull Requests
	Joining the Development Team
	Backporting bug fixes for the next patch release
	Handling stale issues/PRs
	Closing Issues

	Development Guide
	Sponsor
	OpenCollective

	pytest for enterprise
	License
	Contact channels
	Historical Notes
	Marker revamp and iteration
	cache plugin integrated into the core
	funcargs and pytest_funcarg__
	@pytest.yield_fixture decorator
	[pytest] header in setup.cfg
	Applying marks to @pytest.mark.parametrize parameters
	@pytest.mark.parametrize argument names as a tuple
	setup: is now an “autouse fixture”
	Conditions as strings instead of booleans
	pytest.set_trace()
	“compat” properties

	Talks and Tutorials
	Books
	Talks and blog postings

	Project examples
	Some organisations using pytest

	Index

